aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/70-graphen/wavelets.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/70-graphen/wavelets.tex')
-rw-r--r--buch/chapters/70-graphen/wavelets.tex458
1 files changed, 333 insertions, 125 deletions
diff --git a/buch/chapters/70-graphen/wavelets.tex b/buch/chapters/70-graphen/wavelets.tex
index 26a9e42..ef1520e 100644
--- a/buch/chapters/70-graphen/wavelets.tex
+++ b/buch/chapters/70-graphen/wavelets.tex
@@ -1,125 +1,333 @@
-%
-% wavelets.tex -- Wavelets auf Graphen
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Wavelets auf Graphen
-\label{buch:section:wavelets-auf-graphen}}
-\rhead{Wavelets auf Graphen}
-In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis} wurde
-gezeigt dass die Standardbasis den Zusammenhang zwischen den einzelnen
-Teilen des Graphen völlig ignoriert, während die Eigenbasis Wellen
-beschreibt, die mit vergleichbarer Amplitude sich über den ganzen
-Graphen entsprechen.
-Die Eigenbasis unterdrückt also die ``Individualität'' der einzelnen
-Knoten fast vollständig.
-
-Wenn man einen Standardbasisvektor in einem Knoten $i$
-als Anfangstemperaturverteilung verwendet, erwartet man eine Lösung,
-die für kleine Zeiten $t$ die Energie immer in der Nähe des Knotens $i$
-konzentriert hat.
-Weder die Standardbasis noch die Eigenbasis haben diese Eigenschaft.
-
-\subsection{Vergleich mit der Wärmeleitung auf $\mathbb{R}$}
-Ein ähnliches Phänomen findet man bei der Wärmeausbreitung gemäss
-der partiellen Differentialgleichung
-\[
-\frac{\partial T}{\partial t} = -\kappa \frac{\partial^2 T}{\partial x^2}.
-\]
-Die von Fourier erfundene Methode, die Fourier-Theorie, verwendet die
-Funktionen $e^{ik x}$, die Eigenvektoren der zweiten Ableitung
-$\partial^2/\partial x^2$ sind.
-Diese haben das gleiche Problem, der Betrag von $e^{ikx}$ ist $1$, die
-Entfernung von einem Punkt spielt überhaupt keine Rolle.
-Die Funktion
-\[
-F(x,t)
-=
-\frac{1}{\sqrt{4\pi\kappa t}}e^{-x^2/4\kappa t}
-\]
-ist eine Lösung der Wärmeleitungsgleichung mit einem Maximum an
-der Stelle $0$.
-Sie heisst die Fundamentallösung der Wärmeleitungsgleichung.
-Durch Überlagerung von Translaten in eine Funktion
-\begin{equation}
-f(x,t)
-=
-\int_{-\infty}^\infty f(\xi) F(x-\xi,t)\,d\xi
-\label{buch:graphen:eqn:fundamentalueberlagerung}
-\end{equation}
-kann man die allgemeine Lösung aus Fundamentallösungen zusammensetzen.
-Die Fundamentallösungen $f(x-\xi,t)$ sind für kleine Zeiten immer noch
-deutlich in einer Umgebung von $\xi$ konzentriert.
-
-% XXX Ausbreitung der Fundamentallösung illustrieren
-\begin{figure}
-\centering
-\includegraphics{chapters/70-graphen/images/fundamental.pdf}
-\caption{Vergleich der verschiedenen Funktionenfamilien, mit denen
-Lösungenfunktionen durch Linearkombination erzeugt werden können.
-In der Standarbasis (links) ist es am einfachsten, die Funktionswerte
-abzulesen, in der Eigenbasis (Mitte) kann die zeitliche Entwicklung
-besonders leicht berechnet werden.
-Dazuwischen liegen die Fundamentallösungen (rechts), die eine einigermassen
-übersichtliche Zeitentwicklung haben, die Berechnung der Temperatur an
-einer Stelle $x$ zur Zeit $t$ ist aber erst durch das Integral
-\eqref{buch:graphen:eqn:fundamentalueberlagerung} gegeben.
-\label{buch:graphen:fig:fundamental}}
-\end{figure}
-
-\subsection{Fundamentallösungen auf einem Graphen}
-Die Wärmeleitungsgleichung auf einem Graphen kann für einen
-Standardbasisvektor mit Hilfe der
-Lösungsformel~\eqref{buch:graphen:eqn:eigloesung}
-gefunden werden.
-Aus physikalischen Gründen ist aber offensichtlich, dass die
-Wärmeenergie Fundamentallösungen $F_i(t)$ für kurze Zeiten $t$
-in der Nähe des Knoten $i$ konzentriert ist.
-Dies ist aber aus der expliziten Formel
-\begin{equation}
-F_i(t)
-=
-\sum_{j=1}^n \langle f_j,e_i\rangle e^{-\kappa \lambda_i t} f_j
-=
-\sum_{j=1}^n \overline{f}_{ji} e^{-\kappa \lambda_i t},
-\label{buch:graphen:eqn:fundamentalgraph}
-\end{equation}
-nicht unmittelbar erkennbar.
-
-Man kann aber aus~\eqref{buch:graphen:eqn:fundamentalgraph} ablesen,
-dass für zunehmende Zeit die hohen Frequenzen sehr schnell gedämpft
-werden.
-Die hohen Frequenzen erzeugen also den scharfen Peak für Zeiten nahe
-beim Knoten $i$, die zu kleineren $\lambda_i$ beschreiben die Ausbreitung
-über grössere Distanzen.
-Die Fundamentallösung interpoliert also in einem gewissen Sinne zwischen
-den Extremen der Standardbasis und der Eigenbasis.
-Die ``Interpolation'' geht von der Differentialgleichung aus,
-sie ist nicht einfach nur ein Filter, der die verschiedenen Frequenzen
-auf die gleiche Art bearbeitet.
-
-Gesucht ist eine Methode, eine Familie von Vektoren zu finden,
-aus der sich alle Vektoren linear kombinieren lassen, in der aber
-auch auf die für die Anwendung interessante Längenskala angepasste
-Funktionen gefunden werden können.
-
-\subsection{Wavelets und Frequenzspektrum}
-Eine Wavelet-Basis der Funktionen auf $\mathbb{R}$ zerlegt
-
-
-\subsection{Frequenzspektrum
-\label{buch:subsection:frequenzspektrum}}
-Die Fundamentallösung der Wärmeleitunsgleichung haben ein Spektrum, welches
-wie $e^{-k^2}$ gegen $0$ geht.
-
-Die Fundamentallösung entsteht dadurch, dass die hohen Frequenzen
-schneller dämpft als die tiefen Frequenzen.
-
-
-\subsection{Wavelet-Basen
-\label{buch:subsection:}}
-
-
-
-
-
+%
+% wavelets.tex -- Wavelets auf Graphen
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Wavelets auf Graphen
+\label{buch:section:wavelets-auf-graphen}}
+\rhead{Wavelets auf Graphen}
+In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis} wurde
+gezeigt dass die Standardbasis den Zusammenhang zwischen den einzelnen
+Teilen des Graphen völlig ignoriert, während die Eigenbasis Wellen
+beschreibt, die mit vergleichbarer Amplitude sich über den ganzen
+Graphen entsprechen.
+Die Eigenbasis unterdrückt also die ``Individualität'' der einzelnen
+Knoten fast vollständig.
+
+Wenn man einen Standardbasisvektor in einem Knoten $i$
+als Anfangstemperaturverteilung verwendet, erwartet man eine Lösung,
+die für kleine Zeiten $t$ die Energie immer in der Nähe des Knotens $i$
+konzentriert hat.
+Weder die Standardbasis noch die Eigenbasis haben diese Eigenschaft.
+
+\subsection{Vergleich mit der Wärmeleitung auf $\mathbb{R}$}
+Ein ähnliches Phänomen findet man bei der Wärmeausbreitung gemäss
+der partiellen Differentialgleichung
+\[
+\frac{\partial T}{\partial t} = -\kappa \frac{\partial^2 T}{\partial x^2}.
+\]
+Die von Fourier erfundene Methode, die Fourier-Theorie, verwendet die
+Funktionen $e^{ik x}$, die Eigenvektoren der zweiten Ableitung
+$\partial^2/\partial x^2$ sind.
+Diese haben das gleiche Problem, der Betrag von $e^{ikx}$ ist $1$, die
+Entfernung von einem Punkt spielt überhaupt keine Rolle.
+Die Funktion
+\[
+F(x,t)
+=
+\frac{1}{\sqrt{4\pi\kappa t}}e^{-x^2/4\kappa t}
+\]
+ist eine Lösung der Wärmeleitungsgleichung mit einem Maximum an
+der Stelle $0$.
+Sie heisst die Fundamentallösung der Wärmeleitungsgleichung.
+Durch Überlagerung von Translaten in eine Funktion
+\begin{equation}
+f(x,t)
+=
+\int_{-\infty}^\infty f(\xi) F(x-\xi,t)\,d\xi
+\label{buch:graphen:eqn:fundamentalueberlagerung}
+\end{equation}
+kann man die allgemeine Lösung aus Fundamentallösungen zusammensetzen.
+Die Fundamentallösungen $f(x-\xi,t)$ sind für kleine Zeiten immer noch
+deutlich in einer Umgebung von $\xi$ konzentriert.
+
+% XXX Ausbreitung der Fundamentallösung illustrieren
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/fundamental.pdf}
+\caption{Vergleich der verschiedenen Funktionenfamilien, mit denen
+Lösungenfunktionen durch Linearkombination erzeugt werden können.
+In der Standarbasis (links) ist es am einfachsten, die Funktionswerte
+abzulesen, in der Eigenbasis (Mitte) kann die zeitliche Entwicklung
+besonders leicht berechnet werden.
+Dazuwischen liegen die Fundamentallösungen (rechts), die eine einigermassen
+übersichtliche Zeitentwicklung haben, die Berechnung der Temperatur an
+einer Stelle $x$ zur Zeit $t$ ist aber erst durch das Integral
+\eqref{buch:graphen:eqn:fundamentalueberlagerung} gegeben.
+\label{buch:graphen:fig:fundamental}}
+\end{figure}
+
+\subsection{Fundamentallösungen auf einem Graphen}
+Die Wärmeleitungsgleichung auf einem Graphen kann für einen
+Standardbasisvektor mit Hilfe der
+Lösungsformel~\eqref{buch:graphen:eqn:eigloesung}
+gefunden werden.
+Aus physikalischen Gründen ist aber offensichtlich, dass die
+Wärmeenergie Fundamentallösungen $F_i(t)$ für kurze Zeiten $t$
+in der Nähe des Knoten $i$ konzentriert ist.
+Dies ist aber aus der expliziten Formel
+\begin{equation}
+F_i(t)
+=
+\sum_{j=1}^n \langle f_j,e_i\rangle e^{-\kappa \lambda_i t} f_j
+=
+\sum_{j=1}^n \overline{f}_{ji} e^{-\kappa \lambda_i t},
+\label{buch:graphen:eqn:fundamentalgraph}
+\end{equation}
+nicht unmittelbar erkennbar.
+
+Man kann aber aus~\eqref{buch:graphen:eqn:fundamentalgraph} ablesen,
+dass für zunehmende Zeit die hohen Frequenzen sehr schnell gedämpft
+werden.
+Die hohen Frequenzen erzeugen also den scharfen Peak für Zeiten nahe
+beim Knoten $i$, die zu kleineren $\lambda_i$ beschreiben die Ausbreitung
+über grössere Distanzen.
+Die Fundamentallösung interpoliert also in einem gewissen Sinne zwischen
+den Extremen der Standardbasis und der Eigenbasis.
+Die ``Interpolation'' geht von der Differentialgleichung aus,
+sie ist nicht einfach nur ein Filter, der die verschiedenen Frequenzen
+auf die gleiche Art bearbeitet.
+
+Gesucht ist eine Methode, eine Familie von Vektoren zu finden,
+aus der sich alle Vektoren linear kombinieren lassen, in der aber
+auch auf die für die Anwendung interessante Längenskala angepasste
+Funktionen gefunden werden können.
+
+\subsection{Wavelets auf einem Graphen}
+Die Fourier-Theorie analysiert Funktionen nach Frequenzen, wobei die
+zeitliche Position von interessanten Stellen der Funktion in der Phase
+der einzelnen Komponenten verschwindet.
+Die Lokalisierung geht also für viele praktische Zwecke verloren.
+Umgekehrt haben einzelne Ereignisse wie eine $\delta$-Funktion keine
+charakteristische Frequenz, sie sind daher im Frequenzraum überhaupt
+nicht lokalisierbar.
+Die Darstellung im Frequenzraum und in der Zeit sind also extreme
+Darstellungen, entweder Frequenzlokalisierung oder zeitliche Lokalisierung
+ermöglichen, sich aber gegenseitig ausschliessen.
+
+\subsubsection{Dilatation}
+Eine Wavelet-Basis für die $L^2$-Funktionen auf $\mathbb{R}$ erlaubt
+eine Funktion auf $\mathbb{R}$ auf eine Art zu analysieren, die eine
+ungenaue zeitliche Lokalisierung bei entsprechend ungenauer
+Frequenzbestimmung ermöglicht.
+Ausserdem entstehen die Wavelet-Funktionen aus einer einzigen Funktion
+$\psi(t)$ durch Translation um $b$ und Dilatation mit dem Faktor $a$:
+\[
+\psi_{a,b}(t)
+=
+\frac{1}{\sqrt{|a|}} \psi\biggl(\frac{t-b}a\biggr)
+=
+T_bD_a\psi(t)
+\]
+in der Notation von \cite{buch:mathsem-wavelets}.
+Auf einem Graphen ist so eine Konstruktion grundsätzlich nicht möglich,
+da es darauf weder eine Translations- noch eine Streckungsoperation gibt.
+
+In der Theorie der diskreten Wavelet-Transformation ist es üblich, sich
+auf Zweierpotenzen als Streckungsfaktoren zu beschränken.
+Ein Gitter wird dadurch auf sich selbst abgebildet, aber auf einem
+Graphen gibt es keine Rechtfertigung für diese spezielle Wahl von
+Streckungsfaktoren mehr.
+Es stellt sich daher die Frage, ob man für eine beliebige Menge
+\(
+T= \{ t_1,t_2,\dots\} \}
+\)
+von Streckungsfaktoren eine Familie von Funktionen $\chi_j$ zu finden
+derart, dass man sich die $\chi_j$ in einem gewissen Sinn als aus
+$\chi_0$ durch Dilatation entstanden vorstellen kann.
+
+Die Dilatation kann natürlich nicht von einer echten
+Dilatation im Ortsraum herstammen, aber man kann wenigstens versuchen, die
+Dilatation im Frequenzraum nachzubilden.
+Für Funktionen in $L^2(\mathbb{R})$ entspricht die Dilatation mit dem
+Faktor $a$ im Ortsraum der Dilatation mit dem Faktor $1/a$ im Frequenzraum:
+\[
+\widehat{D_af}(\omega) = D_{1/a}\hat{f}(\omega).
+\]
+\cite[Satz~3.14]{buch:mathsem-wavelets}.
+Es bleibt aber das Problem, dass sich auch die Skalierung im Frequenzraum
+nicht durchführen lässt, da auch das Frequenzspektrum des Graphen nur eine
+Menge von reellen Zahlen ohne innere algebraische Struktur ist.
+
+\subsubsection{Mutterwavelets}
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/gh.pdf}
+\caption{Lokalisierungsfunktion $g(\lambda)$ für die Dilatation (links).
+Die Dilatierten Funktionen $g_i=\tilde{D}_{1/a_i}g$ lokalisieren
+die Frequenzen jeweils um die Frequenzen $a_i$ im Frequenzraum.
+Der Konstante Vektor ist vollständig delokalisiert, die Funktion $h$
+in der rechten Abbildung entfernt die hohen Frequenzen und liefert Funktionen,
+die in der Umgebung eines Knotens wie die Konstante Funktion aussehen.
+\label{buch:graphs:fig:lokalisierung}}
+\end{figure}
+Das Mutter-Wavelet einer Wavelet-Analyse zeichnet definiert, in welchem Mass
+sich Funktionen im Orts- und im Frequenzraum lokalisieren lassen.
+Die Standardbasis der Funktionen auf einem Graphen repräsentieren die
+perfekte örtliche Lokalisierung, Eigenbasis der Laplace-Matrix $L$ repräsentiert
+die perfekte Lokalisierung im Frequenzraum.
+Sei $g(\lambda)\ge 0$ eine Funktion im Frequenzraum, die für $\lambda\to0$ und
+$\lambda\to\infty$ rasch abfällt mit einem Maximum irgendwo dazwischen
+(Abbildung~\ref{buch:graphs:fig:lokalisierung}).
+Sie kann als eine Lokalisierungsfunktion im Frequenzraum betrachtet werden.
+
+Die Matrix $g(L)$ bildet entfernt aus einer Funktion die ganz hohen und
+die ganz tiefen Frequenz, lokalisiert also die Funktionen im Frequenzraum.
+Die Standardbasisvektoren werden dabei zu Funktionen, die nicht mehr nur
+auf einem Knoten von $0$ verschieden sind, aber immer noch einigermassen
+auf dem Graphen lokalisiert sind.
+Natürlich sind vor allem die Werte auf den Eigenwerten
+$\lambda_0 < \lambda_1\le \dots\le \lambda_n$ der Laplace-Matrix
+von Interesse.
+
+Die Matrix $g(L)$ kann mit Hilfe der Spektraltheorie berechnet werden,
+was im vorliegenden Fall naheliegend ist, weil ja die Eigenvektoren von
+der Laplace-Matrix bereits bekannt sind.
+Die Matrix $\chi^t$ bildet die Standardbasisvektoren in die
+Eigenbasis-Vektoren ab, also in eine Zerlegung im Frequenzraum ab,
+$\chi$ vermittelt die Umkehrabbildung.
+Mit der Spektraltheorie findet man für die Abbildung $g(L)$ die Matrix
+\begin{equation}
+g(L)
+=
+\chi
+\begin{pmatrix}
+g(\lambda_0)&0&\dots&0\\
+0&g(\lambda_1)&\dots&0\\
+\vdots&\vdots&\ddots&\vdots\\
+0&0&\dots&g(\lambda_n)
+\end{pmatrix}
+\chi^t.
+\label{buch:graphen:eqn:mutterwavelet}
+\end{equation}
+
+\subsubsection{Dilatation}
+Die Dilatation um $a$ im Ortsraum wird zu einer Dilatation um $1/a$ im
+Frequenzraum.
+Statt also nach einer echten Dilatation der Spaltenvektoren in $g(L)$
+zu suchen, kann man sich darauf verlegen, Funktionen zu finden, deren
+Spektrum von einer Funktionen lokalisiert worden ist, die eine Dilatation
+von $g$ ist.
+Man wählt daher eine ansteigende Folge $A=(a_1,\dots)$ von Streckungsfaktoren
+und betrachtet anstelle von $g$ die dilatierten Funktionen
+$g_i=\tilde{D}_{1/a_i}g$.
+Die zugehörigen Wavelet-Funktionen auf dem Graphen können wieder mit
+der Formel~\eqref{buch:graphen:eqn:mutterwavelet} berechnet werden,
+man erhält
+\begin{equation}
+\tilde{D}_{1/a_i}g(L)
+=
+g_i(L)
+=
+\chi
+\begin{pmatrix}
+g(a_i\lambda_0)&0&\dots&0\\
+0&g(a_i\lambda_1)&\dots&0\\
+\vdots&\vdots&\ddots&\vdots\\
+0&0&\dots&g(a_i\lambda_n)
+\end{pmatrix}
+\chi^t .
+\end{equation}
+Die Spalten von $g_i(L)$ bilden wieder eine Menge von Funktionen, die
+eine gemäss $g_i$ lokalisiertes Spektrum haben.
+
+\subsubsection{Vater-Wavelet}
+Wegen $g(0)=0$ wird die konstante Funktion, die Eigenvektor zum Eigenwert
+$\lambda_0=0$ ist, von den Abbildungen $g_i(L)$ auf $0$ abgebildet.
+Andererseits ist diese Funktion nicht lokalisiert, man möchte Sie also
+für die Analyse nicht unbedingt verwenden.
+Man wählt daher eine Funktion $h(\lambda)$ mit $h(0)=1$ so, dass
+für $\lambda\to \infty$ der Wert $h(\lambda)$ genügend rasch gegen $0$
+geht.
+Die Matrix $h(L)$ bildet daher den konstanten Vektor nicht auf $0$ ab,
+sondern lokalisiert ihn im Ortsraum.
+Wir erhalten daher in den Spalten von $h(L)$ Vektoren, die um die
+einzelnen Knoten lokalisiert sind.
+
+\subsubsection{Rekonstruktion}
+Die Operatoren $h(L)$ und $g_i(L)$ erzeugen analysieren eine Funktion
+nach den verschiedenen Frequenzen mit den Skalierungsfaktoren $a_i$,
+aber die Rekonstruktion ist noch nicht klar.
+Diese wäre einfacher, wenn die Operatoren zusammen die identische
+Abbildung ergäben, wenn also
+\[
+h(L) + \sum_{i}g_i(L)=I
+\]
+gelten würde.
+Nach der Spektraltheorie gilt das nur, wenn für alle Eigenwerte
+$\lambda_k$, $k=1,\dots,n$
+\[
+h(\lambda_k) + \sum_ig(a_i\lambda_k)=1
+\]
+gilt.
+Für beleibige Funktionen $g$ und $h$ kann man nicht davon ausgehen,
+aber man kann erwarten.
+Man muss daher zusätzlich verlangen, dass
+\[
+h(\lambda_k) + \sum_{i} g(a_i\lambda_k) > 0
+\]
+ist für alle Eigenwerte $\lambda_k$.
+
+\subsubsection{Frame}
+Die Menge von Vektoren, die in der vorangegangenen Konstruktion gefunden
+wurden, ist zu gross, um eine Basis zu sein.
+Vektoren lassen sich darin auf verschiedene Art darstellen.
+Wir verlangen aber auch keine eindeutige Darstellung, nur eine
+Darstellung, in der wir die ``dominierenden'' Komponenten in jeder
+Frequenzskala identifizieren können.
+
+\begin{definition}
+\label{buch:graphen:def:frame}
+Ein Frame des Vektorraumes $\mathbb{R}^n$ ist eine Menge
+$F=\{e_k\;|\; k=1,\dots,N\}$ von Vektoren mit der Eigenschaft
+\begin{equation}
+A\|v\|^2
+\le
+\sum_{k=1}^N |\langle v,e_k\rangle|^2
+\le
+B\|v\|^2
+\label{buch:graphen:eqn:frame}
+\end{equation}
+Die Zahlen $A$ und $B$ heissen die {\em Frame-Konstanten} des Frames.
+\end{definition}
+
+Die oben gefundenen Vektoren, die Spalten Vektoren von $h(L)$ und $g_i(L)$
+bilden daher ein Frame.
+Die Frame-Konstanten kann man unmittelbar ausrechnen.
+Der mittlere Term von \eqref{buch:graphen:eqn:frame} ist
+\[
+\|h(L) v\|^2
++
+\sum_{i} \|g_i(L)v\|^2,
+\]
+die durch die Funktion
+\[
+f(\lambda)
+=
+h(\lambda)^2 + \sum_i g_i(\lambda)^2
+\]
+abgeschätzt werden kann.
+Die Frame-Konstanten sind daher
+\begin{align*}
+A&=\min_{k} f(\lambda_k)
+&
+&\text{und}&
+B&=\max_{k} f(\lambda_k).
+\end{align*}
+Die Konstruktion hat also ein Frame für die Funktionen auf dem Graphen
+etabliert, die viele Eigenschaften einer Multiskalenanalyse in diese
+wesentlich weniger symmetrische Situation rettet.
+
+
+
+