aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/80-wahrscheinlichkeit/parrondo.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/80-wahrscheinlichkeit/parrondo.tex')
-rw-r--r--buch/chapters/80-wahrscheinlichkeit/parrondo.tex725
1 files changed, 725 insertions, 0 deletions
diff --git a/buch/chapters/80-wahrscheinlichkeit/parrondo.tex b/buch/chapters/80-wahrscheinlichkeit/parrondo.tex
index ac4163e..d1a38ca 100644
--- a/buch/chapters/80-wahrscheinlichkeit/parrondo.tex
+++ b/buch/chapters/80-wahrscheinlichkeit/parrondo.tex
@@ -6,3 +6,728 @@
\section{Das Paradoxon von Parrondo
\label{buch:section:paradoxon-von-parrondo}}
\rhead{Das Paradoxon von Parrondo}
+Das Paradoxon von Parrondo ist ein der Intuition widersprechendes
+Beispiel für eine Kombination von Spielen mit negativer Gewinnerwartung,
+deren Kombination zu einem Spiel mit positiver Gewinnerwartung führt.
+Die Theorie der Markov-Ketten und der zugehörigen Matrizen ermöglicht
+eine sehr einfache Analyse.
+
+%
+% Parrondo Teilspiele
+%
+\subsection{Die beiden Teilspiele
+\label{buch:subsection:teilspiele}}
+
+\subsubsection{Das Spiel $A$}
+Das Spiel $A$ besteht darin, eine Münze zu werfen.
+Je nach Ausgang gewinnt oder verliert der Spieler eine Einheit.
+Sei $X$ die Zufallsvariable, die den gewonnen Betrag beschreibt.
+Für eine faire Münze ist die Gewinnerwartung in diesem Spiel natürlich
+$E(X)=0$.
+Wenn die Wahrscheinlichkeit für einen Gewinn $1+e$ ist, dann muss
+die Wahrscheinlichkeit für einen Verlust $1-e$ sein, und die
+Gewinnerwartung ist
+\(
+E(X)
+=
+1\cdot P(X=1) + (-1)\cdot P(X=-1)
+=
+1+e + (-1)(1-e)
+=
+2e.
+\)
+Die Gewinnerwartung ist also genau dann negativ, wenn $e<0$ ist.
+
+\subsubsection{Das Spiel $B$}
+Das zweite Spiel $B$ ist etwas komplizierter, da der Spielablauf vom
+aktuellen Kapital $K$ des Spielers abhängt.
+Wieder gewinnt oder verliert der Spieler eine Einheit,
+die Gewinnwahrscheinlichkeit hängt aber vom Dreierrest des Kapitals ab.
+Sei $Y$ die Zufallsvariable, die den Gewinn beschreibt.
+Ist $K$ durch drei teilbar, ist die Gewinnwahrscheinlichkeit $\frac1{10}$,
+andernfalls ist sie $\frac34$.
+Formell ist
+\begin{equation}
+\begin{aligned}
+P(Y=1|\text{$K$ durch $3$ teilbar}) &= \frac{1}{10}
+\\
+P(Y=1|\text{$K$ nicht durch $3$ teilbar}) &= \frac{3}{4}
+\end{aligned}
+\label{buch:wahrscheinlichkeit:eqn:Bwahrscheinlichkeiten}
+\end{equation}
+Insbesondere ist die Wahrscheinlichkeit für einen Gewinn in zwei der
+Fälle recht gross, in einem Fall aber sehr klein.
+
+\subsubsection{Übergangsmatrix im Spiel $B$}
+\begin{figure}
+\centering
+\begin{tikzpicture}[>=latex,thick]
+\def\R{2}
+\def\r{0.5}
+\coordinate (A) at (0,\R);
+\coordinate (B) at ({\R*sqrt(3)/2},{-0.5*\R});
+\coordinate (C) at ({-\R*sqrt(3)/2},{-0.5*\R});
+
+\draw[->,shorten >= 0.5cm,shorten <= 0.5cm] (A) -- (B);
+\draw[->,shorten >= 0.5cm,shorten <= 0.5cm] (A) -- (C);
+\draw[->,shorten >= 0.5cm,shorten <= 0.5cm] (C) -- (B);
+
+\draw[->,shorten >= 0.5cm,shorten <= 0.5cm] (B) to[out=90,in=-30] (A);
+\draw[->,shorten >= 0.5cm,shorten <= 0.5cm] (C) to[out=90,in=-150] (A);
+\draw[->,shorten >= 0.5cm,shorten <= 0.5cm] (B) to[out=-150,in=-30] (C);
+
+\pgfmathparse{0.93*\R}
+\xdef\Rgross{\pgfmathresult}
+
+\node at (30:\Rgross) {$\frac34$};
+\node at (150:\Rgross) {$\frac14$};
+\node at (-90:\Rgross) {$\frac14$};
+
+\pgfmathparse{0.33*\R}
+\xdef\Rklein{\pgfmathresult}
+
+\node at (-90:\Rklein) {$\frac34$};
+\node at (30:\Rklein) {$\frac9{10}$};
+\node at (150:\Rklein) {$\frac1{10}$};
+
+\fill[color=white] (A) circle[radius=\r];
+\draw (A) circle[radius=\r];
+\node at (A) {$0$};
+
+\fill[color=white] (B) circle[radius=\r];
+\draw (B) circle[radius=\r];
+\node at (B) {$2$};
+
+\fill[color=white] (C) circle[radius=\r];
+\draw (C) circle[radius=\r];
+\node at (C) {$1$};
+
+\end{tikzpicture}
+\caption{Zustandsdiagramm für das Spiel $B$, Zustände sind die
+Dreierreste des Kapitals.
+\label{buch:wahrscheinlichkeit:fig:spielB}}
+\end{figure}%
+Für den Verlauf des Spiels spielt nur der Dreierrest des Kapitals
+eine Rolle.
+Es gibt daher drei mögliche Zustände $0$, $1$ und $2$.
+In einem Spielzug finde ein Übergang in einen anderen Zustand
+statt, der Eintrag $b_{ij}$ ist die Wahrscheinlichkeit
+\[
+b_{ij}
+=
+P(K\equiv i|K\equiv j),
+\]
+dass ein Übergang vom Zustand $j$ in den Zustand $i$ stattfindet.
+Die Matrix ist
+\[
+B=
+\begin{pmatrix}
+0 &\frac14 &\frac34\\
+\frac1{10} &0 &\frac14\\
+\frac9{10} &\frac34 &0
+\end{pmatrix}.
+\]
+
+\subsubsection{Gewinnerwartung in einem Einzelspiel $B$}
+Die Gewinnerwartung einer einzelnen Runde des Spiels $B$ hängt natürlich
+ebenfalls vom Ausgangskapital ab.
+Mit den Wahrscheinlichkeiten von
+\eqref{buch:wahrscheinlichkeit:eqn:Bwahrscheinlichkeiten}
+findet man die Gewinnerwartung
+\begin{equation}
+\begin{aligned}
+E(Y| \text{$K$ durch $3$ teilbar})
+&=
+1\cdot P(Y=1|K\equiv 0\mod 3)
++
+(-1)\cdot P(Y=-1|K\equiv 0\mod 3)
+\\
+&=
+\frac1{10}
+-
+\frac{9}{10}
+=
+-\frac{8}{10}
+\\
+E(Y| \text{$K$ nicht durch $3$ teilbar})
+&=
+1\cdot P(Y=1|K\not\equiv 0\mod 3)
++
+(-1)\cdot P(Y=-1|K\not\equiv 0\mod 3)
+\\
+&=
+\frac34-\frac14
+=
+\frac12.
+\end{aligned}
+\label{buch:wahrscheinlichkeit:eqn:Berwartungen}
+\end{equation}
+Falls $K$ durch drei teilbar ist, muss der Spieler
+also mit einem grossen Verlust rechnen, andernfalls mit einem
+moderaten Gewinn.
+
+Ohne weiteres Wissen über das Anfangskapital ist es zulässig anzunehmen,
+dass die drei möglichen Reste die gleiche Wahrscheinlichkeit haben.
+Die Gewinnerwartung in diesem Fall ist dann
+\begin{align}
+E(Y)
+&=
+E(Y|\text{$K$ durch $3$ teilbar}) \cdot \frac13
++
+E(Y|\text{$K$ nicht durch $3$ teilbar}) \cdot \frac23
+\notag
+\\
+&=
+-\frac{8}{10}\cdot\frac{1}{3}
++
+\frac{1}{2}\cdot\frac{2}{3}
+=
+-\frac{8}{30}+\frac{10}{30}
+=
+\frac{2}{30}
+=
+\frac{1}{15}.
+\label{buch:wahrscheinlichkeit:eqn:Beinzelerwartung}
+\end{align}
+Unter der Annahme, dass alle Reste die gleiche Wahrscheinlichkeit haben,
+ist das Spiel also ein Gewinnspiel.
+
+Die Berechnung der Gewinnerwartung in einem Einzelspiel kann man
+wie folgt formalisieren.
+Die Matrix $B$ gibt die Übergangswahrscheinlichkeiten zwischen
+verschiedenen Zuständen.
+Die Matrix
+\[
+G=\begin{pmatrix}
+ 0&-1& 1\\
+ 1& 0&-1\\
+-1& 1& 0
+\end{pmatrix}
+\]
+gibt die Gewinne an, die bei einem Übergang anfallen.
+Die Matrixelemente $g_{ij}b_{ij}$ des elementweisen Produktes
+$G\odot B$
+von $G$ mit $B$ enthält in den Spalten die Gewinnerwartungen
+für die einzelnen Übergänge aus einem Zustand.
+Die Summe der Elemente der Spalte $j$ enthält die Gewinnerwartung
+\[
+E(Y|K\equiv j)
+=
+\sum_{i=0}^2 g_{ij}b_{ij}
+\]
+für einen Übergang aus dem Zustand $j$.
+Man kann dies auch als einen Zeilenvektor schreiben, der durch Multiplikation
+der Matrix $G\odot B$ mit dem Zeilenvektor
+$\begin{pmatrix}1&1&1\end{pmatrix}$
+entsteht:
+\[
+\begin{pmatrix}
+E(Y|K\equiv 0)&
+E(Y|K\equiv 1)&
+E(Y|K\equiv 2)
+\end{pmatrix}
+=
+\begin{pmatrix}1&1&1\end{pmatrix}
+G\odot B.
+\]
+Die Gewinnerwartung ist dann das Produkt
+\[
+E(Y)
+=
+\sum_{i=0}^2
+E(Y|K\equiv i) p_i
+=
+\begin{pmatrix}1&1&1\end{pmatrix}
+(G\odot B)p.
+\]
+Tatsächlich ist
+\[
+G\odot B
+=
+\begin{pmatrix}
+ 0 &-\frac14 & \frac34\\
+ \frac1{10} & 0 &-\frac14\\
+-\frac9{10} & \frac34 & 0
+\end{pmatrix}
+\quad\text{und}\quad
+\begin{pmatrix}1&1&1\end{pmatrix} G\odot B
+=
+\begin{pmatrix}-\frac{8}{10}&\frac12&\frac12\end{pmatrix}.
+\]
+Dies stimmt mit den Erwartungswerten in
+\eqref{buch:wahrscheinlichkeit:eqn:Berwartungen}
+überein.
+Die gesamte Geinnerwartung ist dann
+\begin{equation}
+(G\odot B)
+\begin{pmatrix}\frac13&\frac13&\frac13\end{pmatrix}
+=
+\begin{pmatrix}-\frac{8}{10}&\frac12&\frac12\end{pmatrix}
+\begin{pmatrix}\frac13&\frac13&\frac13\end{pmatrix}
+=
+\frac13\biggl(-\frac{8}{10}+\frac12+\frac12\biggr)
+=
+\frac13\cdot\frac{2}{10}
+=
+\frac{1}{15},
+\label{buch:wahrscheinlichkeit:eqn:BodotEinzelerwartung}
+\end{equation}
+dies stimmt mit \eqref{buch:wahrscheinlichkeit:eqn:Beinzelerwartung}
+überrein.
+
+\subsubsection{Das wiederholte Spiel $B$}
+Natürlich spielt man das Spiel nicht nur einmal, sondern man wiederholt es.
+Es ist verlockend anzunehmen, dass die Dreierreste $0$, $1$ und $2$ des
+Kapitals immer noch gleich wahrscheinlich sind.
+Dies braucht jedoch nicht so zu sein.
+Wir prüfen die Hypothese daher, indem wir die Wahrscheinlichkeit
+für die verschiedenen Dreierreste des Kapitals in einem interierten
+Spiels ausrechnen.
+
+Das Spiel kennt die Dreierreste als die drei für das Spiel ausschlaggebenden
+Zuständen.
+Das Zustandsdiagramm~\ref{buch:wahrscheinlichkeit:fig:spielB} zeigt
+die möglichen Übergänge und ihre Wahrscheinlichkeiten, die zugehörige
+Matrix ist
+\[
+B
+=
+\begin{pmatrix}
+0 &\frac14 &\frac34\\
+\frac1{10} &0 &\frac14\\
+\frac9{10} &\frac34 &0
+\end{pmatrix}
+\]
+Die Matrix $B$ ist nicht negativ und man kann nachrechnen, dass $B^2>0$ ist.
+Damit ist die Perron-Frobenius-Theorie von
+Abschnitt~\ref{buch:section:positive-vektoren-und-matrizen}
+anwendbar.
+
+Ein Eigenvektor zum Eigenwert $1$ kann mit Hilfe des Gauss-Algorithmus
+gefunden werden:
+\begin{align*}
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+-1 &\frac14 &\frac34 \\
+\frac1{10} &-1 &\frac14 \\
+\frac9{10} &\frac34 &-1 \\
+\hline
+\end{tabular}
+&\rightarrow
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+1 &-\frac14 &-\frac34 \\
+0 &-\frac{39}{40} & \frac{13}{40} \\
+0 & \frac{39}{40} &-\frac{13}{40} \\
+\hline
+\end{tabular}
+\rightarrow
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+1 &-\frac14 &-\frac34 \\
+0 & 1 &-\frac13 \\
+0 & 0 & 0 \\
+\hline
+\end{tabular}
+\rightarrow
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+1 & 0 &-\frac56 \\
+0 & 1 &-\frac13 \\
+0 & 0 & 0 \\
+\hline
+\end{tabular}
+\end{align*}
+Daraus liest man einen möglichen Lösungsvektor mit den Komponenten
+$5$, $2$ und $6$ ab.
+Wir suchen aber einen Eigenvektor, der als Wahrscheinlichkeitsverteilung
+dienen kann.
+Dazu müssen sich die Komponente zu $1$ summieren, was man durch normieren
+in der $l^1$-Norm erreichen kann:
+\begin{equation}
+p
+=
+\begin{pmatrix}
+P(K\equiv 0)\\
+P(K\equiv 1)\\
+P(K\equiv 2)
+\end{pmatrix}
+=
+\frac{1}{5+2+6}
+\begin{pmatrix}
+5\\2\\6
+\end{pmatrix}
+=
+\frac{1}{13}
+\begin{pmatrix}
+5\\2\\6
+\end{pmatrix}
+\approx
+\begin{pmatrix}
+ 0.3846 \\
+ 0.1538 \\
+ 0.4615
+\end{pmatrix}.
+\label{buch:wahrscheinlichkeit:spielBP}
+\end{equation}
+Die Hypothese, dass die drei Reste gleich wahrscheinlich sind, ist
+also nicht zutreffend.
+
+Die Perron-Frobenius-Theorie sagt, dass sich die
+Verteilung~\ref{buch:wahrscheinlichkeit:spielBP} nach einiger Zeit
+einstellt.
+Wir können jetzt auch die Gewinnerwartung in einer einzelnen
+Runde des Spiels ausgehend von dieser Verteilung der Reste des Kapitals
+berechnen.
+Dazu brauchen wir zunächst die Wahrscheinlichkeiten für Gewinn oder
+Verlust, die wir mit dem Satz über die totale Wahrscheinlichkeit
+nach
+\begin{align*}
+P(Y=+1)
+&=
+P(Y=+1|K\equiv 0) \cdot P(K\equiv 0)
++
+P(Y=+1|K\equiv 1) \cdot P(K\equiv 1)
++
+P(Y=+1|K\equiv 2) \cdot P(K\equiv 2)
+\\
+&=
+\frac{1}{10}\cdot\frac{5}{13}
++
+\frac{3}{4} \cdot\frac{2}{13}
++
+\frac{3}{4} \cdot\frac{6}{13}
+\\
+&=
+\frac1{13}\biggl(
+\frac{1}{2}+\frac{3}{2}+\frac{9}{2}
+\biggr)
+=
+\frac{13}{26}
+=
+\frac12
+\\
+P(Y=-1)
+&=
+P(Y=-1|K\equiv 0) \cdot P(K\equiv 0)
++
+P(Y=-1|K\equiv 1) \cdot P(K\equiv 1)
++
+P(Y=-1|K\equiv 2) \cdot P(K\equiv 2)
+\\
+&=
+\frac{9}{10}\cdot\frac{5}{13}
++
+\frac{1}{4} \cdot\frac{2}{13}
++
+\frac{1}{4} \cdot\frac{6}{13}
+\\
+&=
+\frac{1}{13}\biggl(
+\frac{9}{2} + \frac{1}{2} + \frac{3}{2}
+\biggr)
+=
+\frac{1}{2}
+\end{align*}
+berechnen können.
+Gewinn und Verlust sind also gleich wahrscheinlich, das Spiel $B$ ist also
+ebenfalls fair.
+
+\subsubsection{Das modifizierte Spiel $B$}
+\begin{figure}
+\centering
+\begin{tikzpicture}[>=latex,thick]
+\def\R{2.5}
+\def\r{0.5}
+\coordinate (A) at (0,\R);
+\coordinate (B) at ({\R*sqrt(3)/2},{-0.5*\R});
+\coordinate (C) at ({-\R*sqrt(3)/2},{-0.5*\R});
+
+\draw[->,shorten >= 0.5cm,shorten <= 0.5cm] (A) -- (B);
+\draw[->,shorten >= 0.5cm,shorten <= 0.5cm] (A) -- (C);
+\draw[->,shorten >= 0.5cm,shorten <= 0.5cm] (C) -- (B);
+
+\draw[->,shorten >= 0.5cm,shorten <= 0.5cm] (B) to[out=90,in=-30] (A);
+\draw[->,shorten >= 0.5cm,shorten <= 0.5cm] (C) to[out=90,in=-150] (A);
+\draw[->,shorten >= 0.5cm,shorten <= 0.5cm] (B) to[out=-150,in=-30] (C);
+
+\pgfmathparse{0.93*\R}
+\xdef\Rgross{\pgfmathresult}
+
+\node at (30:\Rgross) {$\frac34-\varepsilon$};
+\node at (150:\Rgross) {$\frac14+\varepsilon$};
+\node at (-90:\Rgross) {$\frac14+\varepsilon$};
+
+\pgfmathparse{0.32*\R}
+\xdef\Rklein{\pgfmathresult}
+
+\node at (-90:\Rklein) {$\frac34-\varepsilon$};
+\node at (30:\Rklein) {$\frac9{10}+\varepsilon$};
+\node at (150:\Rklein) {$\frac1{10}-\varepsilon$};
+
+\fill[color=white] (A) circle[radius=\r];
+\draw (A) circle[radius=\r];
+\node at (A) {$0$};
+
+\fill[color=white] (B) circle[radius=\r];
+\draw (B) circle[radius=\r];
+\node at (B) {$2$};
+
+\fill[color=white] (C) circle[radius=\r];
+\draw (C) circle[radius=\r];
+\node at (C) {$1$};
+
+\end{tikzpicture}
+\caption{Zustandsdiagramm für das modifizerte Spiel $\tilde{B}$,
+Zustände sind die Dreierreste des Kapitals.
+Gegenüber dem Spiel $B$
+(Abbildung~\ref{buch:wahrscheinlichkeit:fig:spielB})
+sind die Wahrscheinlichkeiten für Verlust
+um $\varepsilon$ vergrössert und die Wahrscheinlichkeiten für Gewinn um
+$\varepsilon$ verkleinert worden.
+\label{buch:wahrscheinlichkeit:fig:spielBtile}}
+\end{figure}
+%
+Wir modifizieren jetzt das Spiel $B$ derart, dass die Wahrscheinlichkeiten
+für Gewinn um $\varepsilon$ verringert werden und die Wahrscheinlichkeiten
+für Verlust um $\varepsilon$ vergrössert werden.
+Die Übergangsmatrix des modifzierten Spiels $\tilde{B}$ ist
+\[
+\tilde{B}
+=
+\begin{pmatrix}
+ 0 & \frac{1}{4}+\varepsilon & \frac{3}{4}-\varepsilon \\
+\frac{1}{10}-\varepsilon & 0 & \frac{1}{4}+\varepsilon \\
+\frac{9}{10}+\varepsilon & \frac{3}{4}-\varepsilon & 0
+\end{pmatrix}
+=
+B
++
+\varepsilon
+\underbrace{
+\begin{pmatrix}
+ 0& 1&-1\\
+-1& 0& 1\\
+ 1&-1& 0
+\end{pmatrix}
+}_{\displaystyle F}
+\]
+Wir wissen bereits, dass der Vektor $p$
+von \eqref{buch:wahrscheinlichkeit:spielBP}
+als stationäre Verteilung
+Eigenvektor zum Eigenwert
+$B$ ist, wir versuchen jetzt in erster Näherung die modifizierte
+stationäre Verteilung $p_{\varepsilon}=p+\varepsilon p_1$ des modifizierten
+Spiels zu bestimmen.
+
+\subsubsection{Gewinnerwartung im modifizierten Einzelspiel}
+Die Gewinnerwartung aus den verschiedenen Ausgangszuständen kann mit Hilfe
+des Hadamard-Produktes berechnet werden.
+Wir berechnen dazu zunächst
+\[
+G\odot \tilde{B}
+=
+G\odot (B+\varepsilon F)
+=
+G\odot B + \varepsilon G\odot F
+\quad\text{mit}\quad
+G\odot F = \begin{pmatrix}
+0&1&1\\
+1&0&1\\
+1&1&0
+\end{pmatrix}.
+\]
+Nach der früher dafür gefundenen Formel ist
+\begin{align*}
+\begin{pmatrix}
+E(Y|K\equiv 0)&
+E(Y|K\equiv 1)&
+E(Y|K\equiv 2)
+\end{pmatrix}
+&=
+\begin{pmatrix}1&1&1\end{pmatrix} G\odot \tilde{B}
+\\
+&=
+\begin{pmatrix}1&1&1\end{pmatrix} G\odot B
++
+\varepsilon
+\begin{pmatrix}1&1&1\end{pmatrix} G\odot F
+\\
+&=
+\begin{pmatrix} -\frac{8}{10}&\frac12&\frac12 \end{pmatrix}
++
+\varepsilon\begin{pmatrix}2&2&2\end{pmatrix}
+\\
+&=
+\begin{pmatrix} -\frac{8}{10}+2\varepsilon&\frac12+2\varepsilon&\frac12+2\varepsilon \end{pmatrix}.
+\end{align*}
+Unter der Annahme gleicher Wahrscheinlichkeiten für die Ausgangszustände,
+erhält man die Gewinnerwartung
+\begin{align*}
+E(Y)
+&=
+\begin{pmatrix}1&1&1\end{pmatrix} G\odot \tilde{B}
+\begin{pmatrix}
+\frac13&
+\frac13&
+\frac13
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}1&1&1\end{pmatrix} G\odot B
+\begin{pmatrix} \frac13& \frac13& \frac13 \end{pmatrix}
++
+\varepsilon
+\begin{pmatrix}1&1&1\end{pmatrix} G\odot F
+\begin{pmatrix} \frac13& \frac13& \frac13 \end{pmatrix}
+\\
+&=
+\frac1{15}
++
+2\varepsilon
+\end{align*}
+unter Verwendung der in
+\eqref{buch:wahrscheinlichkeit:eqn:BodotEinzelerwartung}
+berechneten Gewinnerwartung für das Spiel $B$.
+
+\subsubsection{Iteration des modifizierten Spiels}
+Der Gaussalgorithmus liefert nach einiger Rechnung, die man am besten
+mit einem Computeralgebrasystem durchführt,
+\[
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+-1 & \frac{1}{4}+\varepsilon & \frac{3}{4}-\varepsilon \\
+\frac{1}{10}-\varepsilon & -1 & \frac{1}{4}+\varepsilon \\
+\frac{9}{10}+\varepsilon & \frac{3}{4}-\varepsilon & -1 \\
+\hline
+\end{tabular}
+\rightarrow
+% [ 2 ]
+% [ 80 epsilon + 12 epsilon + 78 ]
+%(%o15) Col 1 = [ ]
+% [ 0 ]
+% [ ]
+% [ 0 ]
+% [ 0 ]
+% [ ]
+% Col 2 = [ 2 ]
+% [ 80 epsilon + 12 epsilon + 78 ]
+% [ ]
+% [ 0 ]
+% [ 2 ]
+% [ (- 80 epsilon ) + 40 epsilon - 65 ]
+% [ ]
+% Col 3 = [ 2 ]
+% [ (- 80 epsilon ) - 12 epsilon - 26 ]
+% [ ]
+% [ 0 ]
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+1&0&-\frac{65-40\varepsilon+80\varepsilon^2}{78+12\varepsilon+80\varepsilon^2}\\
+0&0&-\frac{26+12\varepsilon+80\varepsilon^2}{78+12\varepsilon+80\varepsilon^2}\\
+0&0&0\\
+\hline
+\end{tabular},
+\]
+woraus man die Lösung
+\[
+p
+=
+\begin{pmatrix}
+65-40\varepsilon+80\varepsilon^2\\
+26+12\varepsilon+80\varepsilon^2\\
+78+12\varepsilon+80\varepsilon^2\\
+\end{pmatrix}
+\]
+ablesen kann.
+Allerdings ist dies keine Wahrscheinlichkeitsverteilung,
+wir müssen dazu wieder normieren.
+Die Summe der Komponenten ist
+\[
+\|p\|_1
+=
+169 - 16 \varepsilon + 240 \varepsilon^2.
+\]
+Damit bekommen wir für die Lösung bis zur ersten Ordnung
+\[
+p_\varepsilon
+=
+\frac{1}{ 169 - 16 \varepsilon + 240 \varepsilon^2}
+\begin{pmatrix}
+65-40\varepsilon+80\varepsilon^2\\
+26+12\varepsilon+80\varepsilon^2\\
+78+12\varepsilon+80\varepsilon^2\\
+\end{pmatrix}
+=
+% [ 2 3 ]
+% [ 5 440 epsilon 34080 epsilon 17301120 epsilon ]
+% [ -- - ----------- - -------------- + ----------------- + . . . ]
+% [ 13 2197 371293 62748517 ]
+% [ ]
+% [ 2 3 ]
+%(%o19)/T/ [ 2 188 epsilon 97648 epsilon 6062912 epsilon ]
+% [ -- + ----------- + -------------- - ---------------- + . . . ]
+% [ 13 2197 371293 62748517 ]
+% [ ]
+% [ 2 3 ]
+% [ 6 252 epsilon 63568 epsilon 11238208 epsilon ]
+% [ -- + ----------- - -------------- - ----------------- + . . . ]
+% [ 13 2197 371293 62748517 ]
+\frac{1}{13}
+\begin{pmatrix} 5\\2\\6 \end{pmatrix}
++
+\frac{\varepsilon}{2197}
+\begin{pmatrix}
+-440\\188\\252
+\end{pmatrix}
++
+O(\varepsilon^2).
+\]
+Man beachte, dass der konstante Vektor der ursprüngliche Vektor $p$
+für das Spiel $B$ ist.
+Der lineare Term ist ein Vektor, dessen Komponenten sich zu $1$ summieren,
+in erster Ordnung ist also die $l^1$-Norm des Vektors wieder
+$\|p_\varepsilon\|_1=0+O(\varepsilon^2)$.
+
+Mit den bekannten Wahrscheinlichkeiten kann man jetzt die
+Gewinnerwartung in einem einzeln Spiel ausgehend von der Verteilung
+$p_{\varepsilon}$ berechnen.
+Dazu braucht man das Hadamard-Produkt
+\[
+G\odot \tilde{B}
+=
+\]
+Wie früher ist
+\begin{align*}
+E(Y)
+&=
+e^t (G\odot \tilde{B}) p
+\\
+&=
+\begin{pmatrix}
+\end{pmatrix}
+p
+=
+\end{align*}
+
+%
+% Die Kombination
+%
+\subsection{Kombination der Spiele
+\label{buch:subsection:kombination}}
+
+%
+% Gewinn-Erwartung
+%
+\subsection{Gewinnerwartung
+\label{buch:subsection:gewinnerwartung}}
+
+%
+% Gleichgewichtszustand
+%
+\subsection{Gleichgewichtszustand
+\label{buch:subsection:gleichgewichtszustand}}
+
+
+
+