diff options
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/95-homologie/homologie.tex | 321 |
1 files changed, 4 insertions, 317 deletions
diff --git a/buch/chapters/95-homologie/homologie.tex b/buch/chapters/95-homologie/homologie.tex index 905ecc3..747c00f 100644 --- a/buch/chapters/95-homologie/homologie.tex +++ b/buch/chapters/95-homologie/homologie.tex @@ -34,321 +34,8 @@ Es soll möglich werden, kompliziertere Fragen des Zusammenhangs, zum Beispiel das Vorhandensein von Löchern mit algebraischen Mitteln zu analysieren. -\subsection{Homologie eines Kettenkomplexes -\label{buch:subsection:homologie-eines-kettenkomplexes}} -Wegzusammenhang lässt sich untersuchen, indem man in der Triangulation -nach Linearkombinationen von Kanten sucht, die als Rand die beiden Punkte -haben. -Zwei Punkte sind also nicht verbindbar und liegen damit in verschiedenen -Komponenten, wenn die beiden Punkte nicht Rand irgend einer -Linearkombination von Kanten sind. -Komponenten können also identifiziert werden, indem man unter allen -Linearkombinationen von Punkten, also $C_0$ all diejenigen ignoriert, -die Rand einer Linearkombinationv on Kanten sind, also $\partial_1C_1$. -Der Quotientenraum $H_0=C_0/\partial_1C_1$ enthält also für jede Komponente -eine Dimension. - -Eine Dimension höher könnten wir danach fragen, ob sich ein geschlossener -Weg zusammenziehen lässt. -In der Triangulation zeichnet sich ein geschlossener Weg dadurch aus, -dass jedes Ende einer Kante auch Anfang einer Folgekante ist, dass also -der Rand der Linearkombination von Kanten 0 ist. -Algebraisch bedeutet dies, dass wir uns für diejenigen Linearkombinationen -$z\in C_1$ interessieren, die keinen Rand haben, für die also $\partial_1z=0$ -gilt. - -\begin{definition} -Die Elemente von -\[ -Z_k -= -Z_k^C -= -\{z\in C_k\;|\; \partial_k z = 0\} -= -\ker \partial_k -\] -heissen die {\em ($k$-dimensionalen) Zyklen} von $C_*$. -\end{definition} - -In einem Dreieck ist der Rand ein geschlossener Weg, der sich zusammenziehen -lässt, indem man ihn durch die Dreiecksfläche deformiert. -Entfernt man aber die Dreiecksfläche, ist diese Deformation nicht mehr -möglich. -Einen zusammenziehbaren Weg kann man sich also als den Rand eines Dreiecks -einer vorstellen. -``Löcher'' sind durch geschlossene Wege erkennbar, die nicht Rand eines -Dreiecks sein können. -Wir müssen also ``Ränder'' ignorieren. - -\begin{definition} -Die Elemente von -\[ -B_k -= -B_k^C -= -\{\partial_{k+1}z\;|\; C_{k+1}\} -= -\operatorname{im} \partial_{k+1} -\] -heissen die {\em ($k$-dimensionalen) Ränder} von $C_*$. -\end{definition} - -Algebraisch ausgedrückt interessieren uns also nur Zyklen, die selbst -keine Ränder sind. -Der Quotientenraum $Z_1/B_1$ ignoriert unter den Zyklen diejenigen, die -Ränder sind, drückt also algebraisch die Idee des eindimensionalen -Zusammenhangs aus. -Wir definieren daher - -\begin{definition} -Die $k$-dimensionale Homologiegruppe des Kettenkomplexes $C_*$ ist -\[ -H_k(C) = Z_k/B_k = \ker \partial_k / \operatorname{im} \partial_{k+1}. -\] -Wenn nur von einem Kettenkomplex die Rede ist, kann auch $H_k(C)=H_k$ -abgekürzt werden. -\end{definition} - -Die folgenden zwei ausführlichen Beispiele sollen zeigen, wie die -Homologiegruppe $H_2$ die Anwesenheit eines Hohlraumes detektieren kann, -der entsteht, wenn man aus einem Tetraeder das innere entfernt. - -\begin{beispiel} -\begin{figure} -\centering -XXX Bild eines Tetraeders mit Bezeichnung der Ecken und Kanten -\caption{Triangulation eines Tetraeders, die Orientierung von Kanten -und Seitenflächen ist immer so gewählt, dass die Nummern der Ecken -aufsteigend sind. -\label{buch:homologie:tetraeder:fig}} -\end{figure} -Ein Tetraeder ist ein zweidmensionales Simplex, wir untersuchen seinen -Kettenkomplex und bestimmen die zugehörigen Homologiegruppen. -Zunächst müssen wir die einzelnen Mengen $C_k$ beschreiben und verwenden -dazu die Bezeichnungen gemäss Abbildung~\ref{buch:homologie:tetraeder:fig}. -$C_0$ ist der vierdimensionale Raum aufgespannt von den vier Ecken -$0$, $1$, $2$ und $3$ des Tetraeders. -$C_1$ ist der sechsdimensionale Vektorraum der Kanten -\[ -k_0 = [0,1],\quad -k_1 = [0,2],\quad -k_2 = [0,3],\quad -k_3 = [1,2],\quad -k_4 = [1,3],\quad -k_5 = [2,3] -\] -Der Randoperator $\partial_1$ hat die Matrix -\[ -\partial_1 -= -\begin{pmatrix*}[r] --1&-1&-1& 0& 0& 0\\ - 1& 0& 0&-1&-1& 0\\ - 0& 1& 0& 1& 0&-1\\ - 0& 0& 1& 0& 1& 1 -\end{pmatrix*}. -\] - -Wir erwarten natürlich, dass sich zwei beliebige Ecken verbinden lassen, -dass es also nur eine Komponente gibt und dass damit $H_1=\Bbbk$ ist. -Dazu beachten wir, dass das Bild von $\partial_1$ genau aus den Vektoren -besteht, deren Komponentensumme $0$ ist. -Das Bild $B_0$ von $\partial_1$ ist daher die Lösungsmenge der einen -Gleichung -\( -x_0+x_1+x_2+x_3=0. -\) -Der Quotientenraum $H_0=Z_0/B_0 = C_0/\operatorname{im}\partial_1$ -ist daher wie erwartet eindimensional. - -Wir bestimmen jetzt die Homologiegruppe $H_1$. -Da sich im Tetraeder jeder geschlossene Weg zusammenziehen lässt, -erwarten wir $H_1=0$. - -Die Menge der Zyklen $Z_1$ wird bestimmt, indem man die Lösungsmenge -des Gleichungssystems $\partial_1z=0$ bestimmt. -Der Gauss-Algorithmus für die Matrix $\partial_1$ liefert das -Schlusstableau -\[ -\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|} -\hline -k_0&k_1&k_2&k_3&k_4&k_5\\ -\hline - 1& 0& 0& -1& -1& 0\\ - 0& 1& 0& 1& 0& -1\\ - 0& 0& 1& 0& 1& 1\\ - 0& 0& 0& 0& 0& 0\\ -\hline -\end{tabular} -\] -Daraus lassen sich drei linear unabhängig eindimensionale Zyklen ablesen, -die zu den Lösungsvektoren -\[ -z_1 -= -\begin{pmatrix*}[r] -1\\ --1\\ -0\\ -1\\ -0\\ -0 -\end{pmatrix*}, -\qquad -z_2 -= -\begin{pmatrix*}[r] -1\\ -0\\ --1\\ -0\\ -1\\ -0 -\end{pmatrix*}, -\qquad -z_3 -= -\begin{pmatrix*}[r] -0\\ -1\\ --1\\ -0\\ -0\\ -1 -\end{pmatrix*} -\] -gehören. - -$C_2$ hat die vier Seitenflächen -\[ -f_0=[0,1,2],\quad -f_1=[0,1,3],\quad -f_2=[0,2,3],\quad -f_3=[1,2,3] -\] -als Basis. -Der zweidimensionale Randoperator ist die $6\times 4$-Matrix -\[ -\partial_2 -= -\begin{pmatrix*}[r] - 1& 1& 0& 0\\ --1& 0& 1& 0\\ - 0&-1&-1& 0\\ - 1& 0& 0& 1\\ - 0& 1& 0&-1\\ - 0& 0& 1& 1 -\end{pmatrix*}. -\] -Man kann leicht nachrechnen, dass $\partial_1\partial_2=0$ ist, wie es -für einen Kettenkomplex sein muss. - -Um nachzurechnen, dass die Homologiegruppe $H_1=0$ ist, müssen wir jetzt -nachprüfen, ob jeder Zyklus in $Z_1$ auch Bild der Randabbildung $\partial_2$ -ist. -Die ersten drei Spalten von $\partial_2$ sind genau die drei Zyklen -$z_1$, $z_2$ und $z_3$. -Insbesondere lassen sich alle Zyklen als Ränder darstellen, die -Homologiegruppe $H_1=0$ verschwindet. - -Die Zyklen in $C_2$ sind die Lösungen von $\partial_2z=0$. -Der Gauss-Algorithmus für $\partial_2$ liefert das -Tableau -\[ -\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|} -\hline -f_0&f_1&f_2&f_3\\ -\hline -1&0&0& 1\\ -0&1&0&-1\\ -0&0&1& 1\\ -0&0&0& 0\\ -0&0&0& 0\\ -0&0&0& 0\\ -\hline -\end{tabular} -\] -Daraus liest man ab, dass es genau einen Zyklus nämlich -\[ -z -= -\begin{pmatrix} --1\\1\\-1\\1 -\end{pmatrix} -\] -$Z_2$ besteht also aus Vielfachen des Vektors $z$. - -Da es nur ein zweidimensionales Simplex gibt, ist $C_3$ eindimensional. -Die Randabbildung $\partial_3$ hat die Matrix -\[ -\partial_3 -= -\begin{pmatrix} -1\\ --1\\ -1\\ --1 -\end{pmatrix}. -\] -Die Zyklen $Z_2$ und die Ränder $B_2$ bilden also dieselbe Menge, auch -die Homologie-Gruppe $H_2$ ist $0$. - -Da es keine vierdimensionalen Simplizes gibt, ist $B_3=0$. -Die Zyklen $Z_3$ bestehen aus den Lösungen von $\partial_3w=0$, da -aber $\partial_3$ injektiv ist, ist $Z_3=0$. -Daher ist auch $H_3=0$. -\end{beispiel} - -\begin{beispiel} -Für dieses Beispiel entfernen wir das Innere des Tetraeders, es entsteht -ein Hohlraum. -Am Kettenkomplex der Triangulation ändert sich nur, dass $C_3$ jetzt -nur noch den $0$-Vektor enthält. -Das Bild $B_2=\operatorname{im}\partial_3$ wird damit auch $0$-dimensional, -während es im vorigen Beispiel eindimensional war. -Die einzige Änderung ist also in der Homologiegruppe -$H_2 = Z_2/B_2 = Z_2 / \{0\} \simeq \Bbbk$. -Die Homologiegruppe $H_2$ hat jetzt Dimension $1$ und zeigt damit den -Hohlraum an. -\end{beispiel} - -\subsection{Induzierte Abbildung -\label{buch:subsection:induzierte-abbildung}} -Früher haben wurde eine Abbildung $f_*$ zwischen Kettenkomplexen $C_*$ und -$D_*$ so definiert, -dass sie mit den Randoperatoren verträglich sein muss. -Diese Forderung bewirkt, dass sich auch eine lineare Abbildung -\[ -H_k(f) \colon H_k(C) \to H_k(D) -\] -zwischen den Homologiegruppen ergibt, wie wir nun zeigen wollen. - -Um eine Abbildung von $H_k(C)$ nach $H_k(D)$ zu definieren, müssen wir -zu einem Element von $H_k(C)$ ein Bildelement konstruieren. -Ein Element in $H_k(C)$ ist eine Menge von Zyklen in $Z^C_k$, die sich -nur um einen Rand in $B_k$ unterscheiden. -Wir wählen also einen Zyklus $z\in Z_k$ und bilden ihn auf $f_k(z)$ ab. -Wegen $\partial^D_kf(z)=f\partial^C_kz = f(0) =0 $ ist auch $f_k(z)$ -ein Zyklus. -Wir müssen jetzt aber noch zeigen, dass eine andere Wahl des Zyklus -das gleiche Element in $H_k(D)$ ergibt. -Dazu genügt es zu sehen, dass sich $f(z)$ höchstens um einen Rand -ändert, wenn man $z$ um einen Rand ändert. -Sei also $b\in B^C_k$ ein Rand, es gibt also ein $w\in C_{k+1}$ mit -$\partial^C_{k+1}w=b$. -Dann gilt aber auch -\[ -f_k(z+b) -= -f_k(z) + f_k(b) -= -f_k(z) + f_k(\partial^C_{k+1}w) -= -f_k(z) + \partial^D_{k+1}(f_k(w)). -\] -Der letzte Term ist ein Rand in $D_k$, somit ändert sich $f_k(z)$ nur -um diesen Rand, wenn man $z$ um einen Rand ändert. -$f_k(z)$ und $f_k(z+b)$ führen auf die selbe Homologieklasse. - +\input{chapters/95-homologie/homologieketten.tex} +\input{chapters/95-homologie/basiswahl.tex} +\input{chapters/95-homologie/eulerchar.tex} +\input{chapters/95-homologie/induzierteabb.tex} |