diff options
Diffstat (limited to '')
-rwxr-xr-x[-rw-r--r--] | buch/chapters/10-vektorenmatrizen/linear.tex | 91 | ||||
-rw-r--r-- | buch/chapters/95-homologie/Makefile.inc | 1 | ||||
-rw-r--r-- | buch/chapters/95-homologie/chapter.tex | 2 | ||||
-rw-r--r-- | buch/chapters/95-homologie/homologie.tex | 340 | ||||
-rw-r--r-- | buch/chapters/95-homologie/komplex.tex | 104 | ||||
-rw-r--r-- | buch/chapters/95-homologie/simplex.tex | 2 |
6 files changed, 483 insertions, 57 deletions
diff --git a/buch/chapters/10-vektorenmatrizen/linear.tex b/buch/chapters/10-vektorenmatrizen/linear.tex index e368364..3ad51f1 100644..100755 --- a/buch/chapters/10-vektorenmatrizen/linear.tex +++ b/buch/chapters/10-vektorenmatrizen/linear.tex @@ -33,7 +33,7 @@ aber mit Punkten kann man trotzdem noch nicht rechnen. Ein Vektor fasst die Koordinaten eines Punktes in einem Objekt zusammen, mit dem man auch rechnen und zum Beispiel Parallelverschiebungen algebraisieren kann. -Um auch Streckungen ausdrücken zu können, wird auch eine Menge von +Um auch Streckungen ausdrücken zu können, wird auch eine Menge von Streckungsfaktoren benötigt, mit denen alle Komponenten eines Vektors multipliziert werden können. Sie heissen auch {\em Skalare} und liegen in $\Bbbk$. @@ -73,7 +73,7 @@ a+b = \begin{pmatrix}\lambda a_1\\\vdots\\\lambda a_n\end{pmatrix}. \] -Die üblichen Rechenregeln sind erfüllt, nämlich +Die üblichen Rechenregeln sind erfüllt, nämlich \begin{equation} \begin{aligned} &\text{Kommutativität:} @@ -149,7 +149,7 @@ kann als (abstrakter) Vektor betrachtet werden. \begin{definition} Eine Menge $V$ von Objekten, auf der zwei Operationen definiert, nämlich die Addition, geschrieben $a+b$ für $a,b\in V$ und die -Multiplikation mit Skalaren, geschrieben $\lambda a$ für $a\in V$ und +Multiplikation mit Skalaren, geschrieben $\lambda a$ für $a\in V$ und $\lambda\in \Bbbk$, heisst ein {\em $\Bbbk$-Vektorraum} oder {\em Vektorraum über $\Bbbk$} (oder einfach nur {\em Vektorraum}, wenn $\Bbbk$ aus dem Kontext klar sind), @@ -172,7 +172,7 @@ $\mathbb{C}$ ein Vektorraum über $\mathbb{R}$. \end{beispiel} \begin{beispiel} -Die Menge $C([a,b])$ der stetigen Funktionen $[a,b]\to\mathbb{Re}$ +Die Menge $C([a,b])$ der stetigen Funktionen $[a,b]\to\mathbb{Re}$ bildet ein Vektorraum. Funktionen können addiert und mit reellen Zahlen multipliziert werden: \[ @@ -188,7 +188,7 @@ Die Vektorraum-Rechenregeln \end{beispiel} Die Beispiele zeigen, dass der Begriff des Vektorraums die algebraischen -Eigenschaften eine grosse Zahl sehr verschiedenartiger mathematischer +Eigenschaften eine grosse Zahl sehr verschiedenartiger mathematischer Objekte beschreiben kann. Alle Erkenntnisse, die man ausschliesslich aus Vekotorraumeigenschaften gewonnen hat, sind auf alle diese Objekte übertragbar. @@ -300,7 +300,7 @@ folgt, dass alle $\lambda_1,\dots,\lambda_n=0$ sind. Lineare Abhängigkeit der Vektoren $a_1,\dots,a_n$ bedeutet auch, dass man einzelne der Vektoren durch andere ausdrücken kann. Hat man nämlich eine -Linearkombination~\eqref{buch:vektoren-und-matrizen:eqn:linabhdef} und +Linearkombination~\eqref{buch:vektoren-und-matrizen:eqn:linabhdef} und ist der Koeffizient $\lambda_k\ne 0$, dann kann man nach $a_k$ auflösen: \[ a_k = -\frac{1}{\lambda_k}(\lambda_1a_1+\dots+\widehat{\lambda_ka_k}+\dots+\lambda_na_n). @@ -323,7 +323,7 @@ offenbar eine besondere Bedeutung. Eine linear unabhängig Menge von Vektoren $\mathcal{B}=\{a_1,\dots,a_n\}\subset V$ heisst {\em Basis} von $V$. -Die maximale Anzahl linear unabhängiger Vektoren in $V$ heisst +Die maximale Anzahl linear unabhängiger Vektoren in $V$ heisst {\em Dimension} von $V$. \end{definition} @@ -331,7 +331,7 @@ Die Standardbasisvektoren bilden eine Basis von $V=\Bbbk^n$. \subsubsection{Unterräume} Die Mengen $\langle a_1,\dots,a_n\rangle$ sind Teilmengen -von $V$, in denen die Addition von Vektoren und die Multiplikation mit +von $V$, in denen die Addition von Vektoren und die Multiplikation mit Skalaren immer noch möglich ist. \begin{definition} @@ -352,7 +352,7 @@ gilt. % \subsection{Matrizen \label{buch:grundlagen:subsection:matrizen}} -Die Koeffizienten eines linearen Gleichungssystems finden in einem +Die Koeffizienten eines linearen Gleichungssystems finden in einem Zeilen- oder Spaltenvektor nicht Platz. Wir erweitern das Konzept daher in einer Art, dass Zeilen- und Spaltenvektoren Spezialfälle sind. @@ -378,14 +378,14 @@ M_{m\times n}(\Bbbk) = \{ A\;|\; \text{$A$ ist eine $m\times n$-Matrix}\}. \] Falls $m=n$ gilt, heisst die Matrix $A$ auch {\em quadratisch} \index{quadratische Matrix}% -Man kürzt die Menge der quadratischen Matrizen als +Man kürzt die Menge der quadratischen Matrizen als $M_n(\Bbbk) = M_{n\times n}(\Bbbk)$ ab. \end{definition} -Die $m$-dimensionalen Spaltenvektoren $v\in \Bbbk^m$ sind $m\times 1$-Matrizen +Die $m$-dimensionalen Spaltenvektoren $v\in \Bbbk^m$ sind $m\times 1$-Matrizen $v\in M_{n\times 1}(\Bbbk)$, die $n$-dimensionalen Zeilenvetoren $u\in\Bbbk^n$ sind $1\times n$-Matrizen $v\in M_{1\times n}(\Bbbk)$. -Eine $m\times n$-Matrix $A$ mit den Koeffizienten $a_{ij}$ besteht aus +Eine $m\times n$-Matrix $A$ mit den Koeffizienten $a_{ij}$ besteht aus den $n$ Spaltenvektoren \[ a_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix},\quad @@ -435,7 +435,7 @@ werden kann. \begin{definition} Eine $m\times n$-Matrix $A\in M_{m\times n}(\Bbbk)$ und eine $n\times l$-Matrix $B\in M_{n\times l}(\Bbbk)$ haben als Produkt -eine $n\times l$-Matrix $C=AB\in M_{n\times l}(\Bbbk)$ mit den +eine $m\times l$-Matrix $C=AB\in M_{m\times l}(\Bbbk)$ mit den Koeffizienten \begin{equation} c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}. @@ -483,7 +483,7 @@ I 1 &0 &\dots &0 \\ 0 &1 &\dots &0 \\[-2pt] \vdots&\vdots&\ddots&\vdots\\ -0 &0 &\dots &1 +0 &0 &\dots &1 \end{pmatrix}. \] @@ -521,10 +521,10 @@ Ein Gleichungssystem mit $0$ auf der rechten Seite ist also bereits ausreichend um zu entscheiden, ob die Lösung eindeutig ist. Ein Gleichungssystem mit rechter Seite $0$ heisst {\em homogen}. \index{homogenes Gleichungssystem}% -Zu jedem {\em inhomogenen} Gleichungssystem $Ax=b$ mit $b\ne 0$ +Zu jedem {\em inhomogenen} Gleichungssystem $Ax=b$ mit $b\ne 0$ ist $Ax=0$ das zugehörige homogene Gleichungssystem. -Ein homogenes Gleichungssytem $Ax=0$ hat immer mindestens die +Ein homogenes Gleichungssytem $Ax=0$ hat immer mindestens die Lösung $x=0$, man nennt sie auch die {\em triviale} Lösung. Eine Lösung $x\ne 0$ heisst auch eine nichttriviale Lösung. Die Lösungen eines inhomgenen Gleichungssystem $Ax=b$ ist also nur dann @@ -535,7 +535,7 @@ Lösung hat. Der Gauss-Algorithmus oder genauer Gausssche Eliminations-Algorithmus löst ein lineare Gleichungssystem der Form~\eqref{buch:vektoren-und-matrizen:eqn:vektorform}. -Die Koeffizienten werden dazu in das Tableau +Die Koeffizienten werden dazu in das Tableau \[ \begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}|} \hline @@ -552,7 +552,7 @@ Der Algorithmus is so gestaltet, dass er nicht mehr Speicher als das Tableau benötigt, alle Schritte operieren direkt auf den Daten des Tableaus. -In jedem Schritt des Algorithmus wird zunächst eine Zeile $i$ und +In jedem Schritt des Algorithmus wird zunächst eine Zeile $i$ und Spalte $j$ ausgewählt, das Elemente $a_{ij}$ heisst das Pivotelement. \index{Pivotelement}% Die {\em Pivotdivision} @@ -646,7 +646,7 @@ In der Phase der {\em Vorwärtsreduktion} werden Pivotelemente von links nach rechts möglichst auf der Diagonale gewählt und mit Zeilensubtraktionen die darunterliegenden Spalten freigeräumt. \index{Vorwärtsreduktion}% -Während des Rückwärtseinsetzens werden die gleichen Pivotelemente von +Während des Rückwärtseinsetzens werden die gleichen Pivotelemente von rechts nach links genutzt, um mit Zeilensubtraktionen auch die Spalten über den Pivotelemnten frei zu räumen. \index{Rückwärtseinsetzen}% @@ -800,7 +800,7 @@ $x = b_1c_1+b_2c_2+\dots+b_nc_n$ konstruieren. Tatsächlich gilt \begin{align*} Ax -&= +&= A( b_1c_1+b_2c_2+\dots+b_nc_n) \\ &= @@ -851,10 +851,10 @@ für eine Gleichungssystem mit quadratischer Koeffizientenmatrix $A$ heisst die Determinante $\det(A)$ der Matrix $A$. \end{definition} -Aus den Regeln für die Durchführung des Gauss-Algorithmus kann man die +Aus den Regeln für die Durchführung des Gauss-Algorithmus kann man die folgenden Regeln für die Determinante ableiten. Wir stellen die Eigenschaften hier nur zusammen, detaillierte Herleitungen -kann man in jedem Kurs zur linearen Algebra finden, zum Beispiel im +kann man in jedem Kurs zur linearen Algebra finden, zum Beispiel im Kapitel~2 des Skripts \cite{buch:linalg}. \begin{enumerate} \item @@ -877,11 +877,11 @@ wird auch der Wert der Determinanten mit $\lambda$ multipliziert. \item \label{buch:linear:determinante:asymetrisch} Die Determinante ist eine lineare Funktion der Zeilen von $A$. -Zusammen mit der Eigeschaft~\ref{buch:linear:determinante:vorzeichen} +Zusammen mit der Eigeschaft~\ref{buch:linear:determinante:vorzeichen} folgt, dass die Determinante eine antisymmetrische lineare Funktion der Zeilen ist. \item -Die Determinante ist durch die Eigenschaften +Die Determinante ist durch die Eigenschaften \ref{buch:linear:determinante:einheitsmatrix} und \ref{buch:linear:determinante:asymetrisch} @@ -895,7 +895,7 @@ Die Determinante der $n\times n$-Matrix $A$ kann mit der Formel = \sum_{i=1}^n (-1)^{i+j} a_{ij} \cdot \det(A_{ij}) \end{equation} -wobei die $(n-1)\times(n-1)$-Matrix $A_{ij}$ die Matrix $A$ ist, aus der +wobei die $(n-1)\times(n-1)$-Matrix $A_{ij}$ die Matrix $A$ ist, aus der man Zeile $i$ und Spalte $j$ entfernt hat. $A_{ij}$ heisst ein {\em Minor} der Matrix $A$. \index{Minor einer Matrix}% @@ -949,7 +949,7 @@ der rechten Seiten ersetzt worden ist. \end{satz} Die Cramersche Formel ist besonders nützlich, wenn die Abhängigkeit -einer Lösungsvariablen von den Einträgen der Koeffizientenmatrix +einer Lösungsvariablen von den Einträgen der Koeffizientenmatrix untersucht werden soll. Für die Details der Herleitung sei wieder auf \cite{buch:linalg} verwiesen. @@ -993,7 +993,7 @@ heisst die {\em Adjunkte} $\operatorname{adj}A$ von $A$. \end{satz} Der Satz~\ref{buch:linalg:inverse:adjoint} liefert eine algebraische -Formel für die Elemente der inversen Matrix. +Formel für die Elemente der inversen Matrix. Für kleine Matrizen wie im nachfolgenden Beispiel ist die Formel~\eqref{buch:linalg:inverse:formel} oft einfachter anzuwenden. Besonders einfach wird die Formel für eine $2\times 2$-Matrix, @@ -1035,7 +1035,7 @@ Die Adjunkte ist \begin{pmatrix*}[r] \det A_{11} & -\det A_{21} & \det A_{31} \\ -\det A_{12} & \det A_{22} & -\det A_{32} \\ - \det A_{13} & -\det A_{23} & \det A_{33} + \det A_{13} & -\det A_{23} & \det A_{33} \end{pmatrix*} \intertext{und damit ist die inverse Matrix} A^{-1} @@ -1084,7 +1084,7 @@ A^{-1} \end{pmatrix}. \label{buch:vektoren-und-matrizen:abeispiel:eqn2} \end{equation} -für die Inverse einer Matrix der Form +für die Inverse einer Matrix der Form \eqref{buch:vektoren-und-matrizen:abeispiel:eqn1}. \end{beispiel} @@ -1118,7 +1118,7 @@ Eine Abbildung $f\colon V\to U$ zwischen Vektorräumen $V$ und $U$ heisst linear, wenn \[ \begin{aligned} -f(v+w) &= f(v) + f(w)&&\forall v,w\in V +f(v+w) &= f(v) + f(w)&&\forall v,w\in V \\ f(\lambda v) &= \lambda f(v) &&\forall v\in V,\lambda \in \Bbbk \end{aligned} @@ -1129,16 +1129,16 @@ gilt. Lineare Abbildungen sind in der Mathematik sehr verbreitet. \begin{beispiel} -Sie $V=C^1([a,b])$ die Menge der stetig differenzierbaren Funktionen +Sie $V=C^1([a,b])$ die Menge der stetig differenzierbaren Funktionen auf dem Intervall $[a,b]$ und $U=C([a,b])$ die Menge der -stetigen Funktion aif $[a,b]$. +stetigen Funktion aif $[a,b]$. Die Ableitung $\frac{d}{dx}$ macht aus einer Funktion $f(x)$ die Ableitung $f'(x)$. -Die Rechenregeln für die Ableitung stellen sicher, dass +Die Rechenregeln für die Ableitung stellen sicher, dass \[ \frac{d}{dx} \colon -C^1([a,b]) \to C([a,b]) +C^1([a,b]) \to C([a,b]) : f \mapsto f' \] @@ -1157,7 +1157,7 @@ eine lineare Abbildung. \end{beispiel} \subsubsection{Matrix} -Um mit linearen Abbildungen rechnen zu können, ist eine Darstellung +Um mit linearen Abbildungen rechnen zu können, ist eine Darstellung mit Hilfe von Matrizen nötig. Sei also $\mathcal{B}=\{b_1,\dots,b_n\}$ eine Basis von $V$ und $\mathcal{C} = \{ c_1,\dots,c_m\}$ eine Basis von $U$. @@ -1165,12 +1165,12 @@ Das Bild des Basisvektors $b_i$ kann als Linearkombination der Vektoren $c_1,\dots,c_m$ dargestellt werden. Wir verwenden die Bezeichnung \[ -f(b_i) +f(b_i) = a_{1i} c_1 + \dots + a_{mi} c_m. \] Die lineare Abbildung $f$ bildet den Vektor $x$ mit Koordinaten -$x_1,\dots,x_n$ ab auf +$x_1,\dots,x_n$ ab auf \begin{align*} f(x) &= @@ -1193,7 +1193,7 @@ x_n(a_{1n} c_1 + \dots + a_{mn} c_m) + ( a_{m1} x_1 + \dots + a_{mn} x_n ) c_m \end{align*} -Die Koordinaten von $f(x)$ in der Basis $\mathcal{C}$ in $U$ sind +Die Koordinaten von $f(x)$ in der Basis $\mathcal{C}$ in $U$ sind also gegeben durch das Matrizenprodukt $Ax$, wenn $x$ der Spaltenvektor aus den Koordinaten in der Basis $\mathcal{B}$ in $V$ ist. @@ -1231,7 +1231,7 @@ b_{m1}x_1&+& \dots &+&b_{mn}x_n&=&b_{m1}'x_1'&+& \dots &+&b_{mn}'x_n' \end{linsys} \] Dieses Gleichungssystem kann man mit Hilfe eines Gauss-Tableaus lösen. -Wir schreiben die zugehörigen Variablen +Wir schreiben die zugehörigen Variablen \[ \renewcommand{\arraystretch}{1.1} \begin{tabular}{|>{$}c<{$} >{$}c<{$} >{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}|} @@ -1277,7 +1277,7 @@ Für zwei Vektoren $u$ und $w$ in $U$ gibt es daher Vektoren $a=g(u)$ und $b=g(w)$ in $V$ derart, dass $f(a)=u$ und $f(b)=w$. Weil $f$ linear ist, folgt daraus $f(a+b)=u+w$ und $f(\lambda a)=\lambda a$ für jedes $\lambda\in\Bbbk$. -Damit kann man jetzt +Damit kann man jetzt \begin{align*} g(u+w)&=g(f(a)+f(b)) = g(f(a+b)) = a+b = g(u)+g(w) \\ @@ -1315,7 +1315,7 @@ Der Kern oder Nullraum der Matrix $A$ ist die Menge \] \end{definition} -Der Kern ist ein Unterraum, denn für zwei Vektoren $u,w\in \ker f$ +Der Kern ist ein Unterraum, denn für zwei Vektoren $u,w\in \ker f$ \[ \begin{aligned} f(u+v)&=f(u) + f(v) = 0+0 = 0 &&\Rightarrow& u+v&\in\ker f\\ @@ -1331,7 +1331,7 @@ Wir definieren daher das Bild einer linearen Abbildung oder Matrix. \begin{definition} Ist $f\colon V\to U$ eine lineare Abbildung dann ist das Bild von $f$ -der Unterraum +der Unterraum \[ \operatorname{im}f = \{ f(v)\;|\;v\in V\} \subset U \] @@ -1375,7 +1375,7 @@ $\operatorname{def}A=\dim\ker A$. \end{definition} Da der Kern mit Hilfe des Gauss-Algorithmus bestimmt werden kann, -können Rang und Defekt aus dem Schlusstableau +können Rang und Defekt aus dem Schlusstableau eines homogenen Gleichungssystems mit $A$ als Koeffizientenmatrix abgelesen werden. @@ -1391,8 +1391,3 @@ n-\operatorname{def}A. \subsubsection{Quotient} TODO: $\operatorname{im} A \simeq \Bbbk^m/\ker A$ - - - - - diff --git a/buch/chapters/95-homologie/Makefile.inc b/buch/chapters/95-homologie/Makefile.inc index 7e6f1e7..41b1569 100644 --- a/buch/chapters/95-homologie/Makefile.inc +++ b/buch/chapters/95-homologie/Makefile.inc @@ -8,7 +8,6 @@ CHAPTERFILES = $(CHAPTERFILES) \ chapters/95-homologie/simplex.tex \ chapters/95-homologie/komplex.tex \ chapters/95-homologie/homologie.tex \ - chapters/95-homologie/mayervietoris.tex \ chapters/95-homologie/fixpunkte.tex \ chapters/95-homologie/chapter.tex diff --git a/buch/chapters/95-homologie/chapter.tex b/buch/chapters/95-homologie/chapter.tex index eaa56c4..994c400 100644 --- a/buch/chapters/95-homologie/chapter.tex +++ b/buch/chapters/95-homologie/chapter.tex @@ -38,7 +38,7 @@ Damit wird es möglich, das Dreieck vom Rand des Dreiecks zu unterschieden. \input{chapters/95-homologie/simplex.tex} \input{chapters/95-homologie/komplex.tex} \input{chapters/95-homologie/homologie.tex} -\input{chapters/95-homologie/mayervietoris.tex} +%\input{chapters/95-homologie/mayervietoris.tex} \input{chapters/95-homologie/fixpunkte.tex} diff --git a/buch/chapters/95-homologie/homologie.tex b/buch/chapters/95-homologie/homologie.tex index 2b80a17..905ecc3 100644 --- a/buch/chapters/95-homologie/homologie.tex +++ b/buch/chapters/95-homologie/homologie.tex @@ -6,13 +6,349 @@ \section{Homologie \label{buch:section:homologie}} \rhead{Homologie} +Die Idee der Trangulation ermöglicht, komplizierte geometrische +Objekte mit einem einfachen ``Gerüst'' auszustatten und so zu +analysieren. +Projiziert man ein mit einer Kugel konzentrisches Tetraeder auf die +Kugel, entsteht eine Triangulation der Kugeloberfläche. +Statt eine Kugel zu studieren, kann man also auch ein Tetraeder untersuchen. + +Das Gerüst kann natürlich nicht mehr alle Eigenschaften des ursprünglichen +Objektes wiedergeben. +Im Beispiel der Kugel geht die Information darüber, dass es sich um eine +glatte Mannigfaltigkeit handelt, verloren. +Was aber bleibt, sind Eigenschaften des Zusammenhangs. +Wenn sich zwei Punkte mit Wegen verbinden lassen, dann gibt es auch eine +Triangulation mit eindimensionalen Simplices, die diese Punkte als Ecken +enthalten, die sich in der Triangulation mit einer Folge von Kanten +verbinden lassen. +Algebraisch bedeutet dies, dass die beiden Punkte der Rand eines +Weges sind. +Fragen der Verbindbarkeit von Punkten mit Wegen lassen sich also +dadurch studieren, dass man das geometrische Objekt auf einen Graphen +reduziert. + +In diesem Abschnitt soll gezeigt werden, wie diese Idee auf höhere +Dimensionen ausgedehnt werden. +Es soll möglich werden, kompliziertere Fragen des Zusammenhangs, zum +Beispiel das Vorhandensein von Löchern mit algebraischen Mitteln +zu analysieren. \subsection{Homologie eines Kettenkomplexes \label{buch:subsection:homologie-eines-kettenkomplexes}} +Wegzusammenhang lässt sich untersuchen, indem man in der Triangulation +nach Linearkombinationen von Kanten sucht, die als Rand die beiden Punkte +haben. +Zwei Punkte sind also nicht verbindbar und liegen damit in verschiedenen +Komponenten, wenn die beiden Punkte nicht Rand irgend einer +Linearkombination von Kanten sind. +Komponenten können also identifiziert werden, indem man unter allen +Linearkombinationen von Punkten, also $C_0$ all diejenigen ignoriert, +die Rand einer Linearkombinationv on Kanten sind, also $\partial_1C_1$. +Der Quotientenraum $H_0=C_0/\partial_1C_1$ enthält also für jede Komponente +eine Dimension. + +Eine Dimension höher könnten wir danach fragen, ob sich ein geschlossener +Weg zusammenziehen lässt. +In der Triangulation zeichnet sich ein geschlossener Weg dadurch aus, +dass jedes Ende einer Kante auch Anfang einer Folgekante ist, dass also +der Rand der Linearkombination von Kanten 0 ist. +Algebraisch bedeutet dies, dass wir uns für diejenigen Linearkombinationen +$z\in C_1$ interessieren, die keinen Rand haben, für die also $\partial_1z=0$ +gilt. + +\begin{definition} +Die Elemente von +\[ +Z_k += +Z_k^C += +\{z\in C_k\;|\; \partial_k z = 0\} += +\ker \partial_k +\] +heissen die {\em ($k$-dimensionalen) Zyklen} von $C_*$. +\end{definition} + +In einem Dreieck ist der Rand ein geschlossener Weg, der sich zusammenziehen +lässt, indem man ihn durch die Dreiecksfläche deformiert. +Entfernt man aber die Dreiecksfläche, ist diese Deformation nicht mehr +möglich. +Einen zusammenziehbaren Weg kann man sich also als den Rand eines Dreiecks +einer vorstellen. +``Löcher'' sind durch geschlossene Wege erkennbar, die nicht Rand eines +Dreiecks sein können. +Wir müssen also ``Ränder'' ignorieren. + +\begin{definition} +Die Elemente von +\[ +B_k += +B_k^C += +\{\partial_{k+1}z\;|\; C_{k+1}\} += +\operatorname{im} \partial_{k+1} +\] +heissen die {\em ($k$-dimensionalen) Ränder} von $C_*$. +\end{definition} + +Algebraisch ausgedrückt interessieren uns also nur Zyklen, die selbst +keine Ränder sind. +Der Quotientenraum $Z_1/B_1$ ignoriert unter den Zyklen diejenigen, die +Ränder sind, drückt also algebraisch die Idee des eindimensionalen +Zusammenhangs aus. +Wir definieren daher + +\begin{definition} +Die $k$-dimensionale Homologiegruppe des Kettenkomplexes $C_*$ ist +\[ +H_k(C) = Z_k/B_k = \ker \partial_k / \operatorname{im} \partial_{k+1}. +\] +Wenn nur von einem Kettenkomplex die Rede ist, kann auch $H_k(C)=H_k$ +abgekürzt werden. +\end{definition} + +Die folgenden zwei ausführlichen Beispiele sollen zeigen, wie die +Homologiegruppe $H_2$ die Anwesenheit eines Hohlraumes detektieren kann, +der entsteht, wenn man aus einem Tetraeder das innere entfernt. + +\begin{beispiel} +\begin{figure} +\centering +XXX Bild eines Tetraeders mit Bezeichnung der Ecken und Kanten +\caption{Triangulation eines Tetraeders, die Orientierung von Kanten +und Seitenflächen ist immer so gewählt, dass die Nummern der Ecken +aufsteigend sind. +\label{buch:homologie:tetraeder:fig}} +\end{figure} +Ein Tetraeder ist ein zweidmensionales Simplex, wir untersuchen seinen +Kettenkomplex und bestimmen die zugehörigen Homologiegruppen. +Zunächst müssen wir die einzelnen Mengen $C_k$ beschreiben und verwenden +dazu die Bezeichnungen gemäss Abbildung~\ref{buch:homologie:tetraeder:fig}. +$C_0$ ist der vierdimensionale Raum aufgespannt von den vier Ecken +$0$, $1$, $2$ und $3$ des Tetraeders. +$C_1$ ist der sechsdimensionale Vektorraum der Kanten +\[ +k_0 = [0,1],\quad +k_1 = [0,2],\quad +k_2 = [0,3],\quad +k_3 = [1,2],\quad +k_4 = [1,3],\quad +k_5 = [2,3] +\] +Der Randoperator $\partial_1$ hat die Matrix +\[ +\partial_1 += +\begin{pmatrix*}[r] +-1&-1&-1& 0& 0& 0\\ + 1& 0& 0&-1&-1& 0\\ + 0& 1& 0& 1& 0&-1\\ + 0& 0& 1& 0& 1& 1 +\end{pmatrix*}. +\] + +Wir erwarten natürlich, dass sich zwei beliebige Ecken verbinden lassen, +dass es also nur eine Komponente gibt und dass damit $H_1=\Bbbk$ ist. +Dazu beachten wir, dass das Bild von $\partial_1$ genau aus den Vektoren +besteht, deren Komponentensumme $0$ ist. +Das Bild $B_0$ von $\partial_1$ ist daher die Lösungsmenge der einen +Gleichung +\( +x_0+x_1+x_2+x_3=0. +\) +Der Quotientenraum $H_0=Z_0/B_0 = C_0/\operatorname{im}\partial_1$ +ist daher wie erwartet eindimensional. + +Wir bestimmen jetzt die Homologiegruppe $H_1$. +Da sich im Tetraeder jeder geschlossene Weg zusammenziehen lässt, +erwarten wir $H_1=0$. + +Die Menge der Zyklen $Z_1$ wird bestimmt, indem man die Lösungsmenge +des Gleichungssystems $\partial_1z=0$ bestimmt. +Der Gauss-Algorithmus für die Matrix $\partial_1$ liefert das +Schlusstableau +\[ +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|} +\hline +k_0&k_1&k_2&k_3&k_4&k_5\\ +\hline + 1& 0& 0& -1& -1& 0\\ + 0& 1& 0& 1& 0& -1\\ + 0& 0& 1& 0& 1& 1\\ + 0& 0& 0& 0& 0& 0\\ +\hline +\end{tabular} +\] +Daraus lassen sich drei linear unabhängig eindimensionale Zyklen ablesen, +die zu den Lösungsvektoren +\[ +z_1 += +\begin{pmatrix*}[r] +1\\ +-1\\ +0\\ +1\\ +0\\ +0 +\end{pmatrix*}, +\qquad +z_2 += +\begin{pmatrix*}[r] +1\\ +0\\ +-1\\ +0\\ +1\\ +0 +\end{pmatrix*}, +\qquad +z_3 += +\begin{pmatrix*}[r] +0\\ +1\\ +-1\\ +0\\ +0\\ +1 +\end{pmatrix*} +\] +gehören. + +$C_2$ hat die vier Seitenflächen +\[ +f_0=[0,1,2],\quad +f_1=[0,1,3],\quad +f_2=[0,2,3],\quad +f_3=[1,2,3] +\] +als Basis. +Der zweidimensionale Randoperator ist die $6\times 4$-Matrix +\[ +\partial_2 += +\begin{pmatrix*}[r] + 1& 1& 0& 0\\ +-1& 0& 1& 0\\ + 0&-1&-1& 0\\ + 1& 0& 0& 1\\ + 0& 1& 0&-1\\ + 0& 0& 1& 1 +\end{pmatrix*}. +\] +Man kann leicht nachrechnen, dass $\partial_1\partial_2=0$ ist, wie es +für einen Kettenkomplex sein muss. + +Um nachzurechnen, dass die Homologiegruppe $H_1=0$ ist, müssen wir jetzt +nachprüfen, ob jeder Zyklus in $Z_1$ auch Bild der Randabbildung $\partial_2$ +ist. +Die ersten drei Spalten von $\partial_2$ sind genau die drei Zyklen +$z_1$, $z_2$ und $z_3$. +Insbesondere lassen sich alle Zyklen als Ränder darstellen, die +Homologiegruppe $H_1=0$ verschwindet. + +Die Zyklen in $C_2$ sind die Lösungen von $\partial_2z=0$. +Der Gauss-Algorithmus für $\partial_2$ liefert das -Tableau +\[ +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|} +\hline +f_0&f_1&f_2&f_3\\ +\hline +1&0&0& 1\\ +0&1&0&-1\\ +0&0&1& 1\\ +0&0&0& 0\\ +0&0&0& 0\\ +0&0&0& 0\\ +\hline +\end{tabular} +\] +Daraus liest man ab, dass es genau einen Zyklus nämlich +\[ +z += +\begin{pmatrix} +-1\\1\\-1\\1 +\end{pmatrix} +\] +$Z_2$ besteht also aus Vielfachen des Vektors $z$. + +Da es nur ein zweidimensionales Simplex gibt, ist $C_3$ eindimensional. +Die Randabbildung $\partial_3$ hat die Matrix +\[ +\partial_3 += +\begin{pmatrix} +1\\ +-1\\ +1\\ +-1 +\end{pmatrix}. +\] +Die Zyklen $Z_2$ und die Ränder $B_2$ bilden also dieselbe Menge, auch +die Homologie-Gruppe $H_2$ ist $0$. + +Da es keine vierdimensionalen Simplizes gibt, ist $B_3=0$. +Die Zyklen $Z_3$ bestehen aus den Lösungen von $\partial_3w=0$, da +aber $\partial_3$ injektiv ist, ist $Z_3=0$. +Daher ist auch $H_3=0$. +\end{beispiel} + +\begin{beispiel} +Für dieses Beispiel entfernen wir das Innere des Tetraeders, es entsteht +ein Hohlraum. +Am Kettenkomplex der Triangulation ändert sich nur, dass $C_3$ jetzt +nur noch den $0$-Vektor enthält. +Das Bild $B_2=\operatorname{im}\partial_3$ wird damit auch $0$-dimensional, +während es im vorigen Beispiel eindimensional war. +Die einzige Änderung ist also in der Homologiegruppe +$H_2 = Z_2/B_2 = Z_2 / \{0\} \simeq \Bbbk$. +Die Homologiegruppe $H_2$ hat jetzt Dimension $1$ und zeigt damit den +Hohlraum an. +\end{beispiel} \subsection{Induzierte Abbildung \label{buch:subsection:induzierte-abbildung}} +Früher haben wurde eine Abbildung $f_*$ zwischen Kettenkomplexen $C_*$ und +$D_*$ so definiert, +dass sie mit den Randoperatoren verträglich sein muss. +Diese Forderung bewirkt, dass sich auch eine lineare Abbildung +\[ +H_k(f) \colon H_k(C) \to H_k(D) +\] +zwischen den Homologiegruppen ergibt, wie wir nun zeigen wollen. + +Um eine Abbildung von $H_k(C)$ nach $H_k(D)$ zu definieren, müssen wir +zu einem Element von $H_k(C)$ ein Bildelement konstruieren. +Ein Element in $H_k(C)$ ist eine Menge von Zyklen in $Z^C_k$, die sich +nur um einen Rand in $B_k$ unterscheiden. +Wir wählen also einen Zyklus $z\in Z_k$ und bilden ihn auf $f_k(z)$ ab. +Wegen $\partial^D_kf(z)=f\partial^C_kz = f(0) =0 $ ist auch $f_k(z)$ +ein Zyklus. +Wir müssen jetzt aber noch zeigen, dass eine andere Wahl des Zyklus +das gleiche Element in $H_k(D)$ ergibt. +Dazu genügt es zu sehen, dass sich $f(z)$ höchstens um einen Rand +ändert, wenn man $z$ um einen Rand ändert. +Sei also $b\in B^C_k$ ein Rand, es gibt also ein $w\in C_{k+1}$ mit +$\partial^C_{k+1}w=b$. +Dann gilt aber auch +\[ +f_k(z+b) += +f_k(z) + f_k(b) += +f_k(z) + f_k(\partial^C_{k+1}w) += +f_k(z) + \partial^D_{k+1}(f_k(w)). +\] +Der letzte Term ist ein Rand in $D_k$, somit ändert sich $f_k(z)$ nur +um diesen Rand, wenn man $z$ um einen Rand ändert. +$f_k(z)$ und $f_k(z+b)$ führen auf die selbe Homologieklasse. -\subsection{Homologie eines simplizialen Komplexes -\label{buch:subsection:simplizialekomplexe}} diff --git a/buch/chapters/95-homologie/komplex.tex b/buch/chapters/95-homologie/komplex.tex index 6dd8efb..fa2d8e1 100644 --- a/buch/chapters/95-homologie/komplex.tex +++ b/buch/chapters/95-homologie/komplex.tex @@ -6,9 +6,105 @@ \section{Kettenkomplexe \label{buch:section:komplex}} \rhead{Kettenkomplexe} +Die algebraische Struktur, die in Abschnitt~\ref{buch:subsection:triangulation} +konstruiert wurde, kann noch etwas abstrakter konstruiert werden. +Es ergibt sich das Konzept eines Kettenkomplexes. +Die Triangulation gibt also Anlass zu einem Kettenkomplex. +So lässt sich zu einem geometrischen Objekt ein algebraisches +Vergleichsobjekt konstruieren. +Im Idealfall lassens ich anschliessend geometrische Eigenschaften mit +algebraischen Rechnungen zum Beispiel in Vektorräumen mit Matrizen +beantworten. -\subsection{Randoperator von Simplexen -\label{buch:subsection:randoperator-von-simplexen}} +\subsection{Definition +\label{buch:subsection:kettenkomplex-definition}} +Die Operation $\partial$, die für Simplizes konstruiert worden ist, +war linear und hat die Eigenschaft $\partial^2$ gehabt. +Diese Eigenschaften reichen bereits für Definition eines Kettenkomplexes. + +\begin{definition} +Eine Folge $C_0,C_1,C_2,\dots$ von Vektorräumen über dem Körper $\Bbbk$ +mit einer Folge von linearen Abbildungen +$\partial_k\colon C_k \to C_{k-1}$, dem {\em Randoperator}, +heisst ein Kettenkomplex, wenn $\partial_{k-1}\partial_k=0$ gilt +für alle $k>0$. +\end{definition} + +Die aus den Triangulationen konstruieren Vektorräme von +Abschnitt~\ref{buch:subsection:triangulation} bilden einen +Kettenkomplex. + +XXX nachrechnen: $\partial^2 = 0$ ? + +\subsection{Abbildungen +\label{buch:subsection:abbildungen}} +Wenn man verschiedene geometrische Objekte mit Hilfe von Triangulationen +vergleichen will, dann muss man auch das Konzept der Abbildungen zwischen +den geometrischen Objekten in die Kettenkomplexe transportieren. + +Eine Abbildung zwischen Kettenkomplexen muss einerseits eine lineare +Abbildung der Vektorräume $C_k$ sein, andererseits muss sich eine +solche Abbildung mit dem Randoperator vertragen. +Wir definieren daher + +\begin{definition} +Eine Abbildung $f_*$ zwischen zwei Kettenkomplexe $(C_*,\partial^C_*)$ und +$(D_*,\partial^D_*)$ heisst eine Abbildung von Kettenkomplexen, wenn +für jedes $k$ +\begin{equation} +\partial^D_k +\circ +f_{k} += +f_{k+1} +\circ +\partial^C_k +\label{buch:komplex:abbildung} +\end{equation} +gilt. +\end{definition} + +Die Beziehung~\eqref{buch:komplex:abbildung} kann übersichtlich als +kommutatives Diagramm dargestellt werden. +\begin{equation} +\begin{tikzcd} +0 + & C_0 \arrow[l, "\partial_0^C"] + \arrow[d, "f_0"] + & C_1 \arrow[l,"\partial_1^C"] + \arrow[d, "f_1"] + & C_2 \arrow[l,"\partial_2^C"] + \arrow[d, "f_2"] + & \dots \arrow[l] + \arrow[l, "\partial_{k-1}^C"] + & C_k + \arrow[l, "\partial_k^C"] + \arrow[d, "f_k"] + & C_{k+1}\arrow[l, "\partial_{k+1}^C"] + \arrow[d, "f_{k+1}"] + & \dots +\\ +0 + & D_0 \arrow[l, "\partial_0^D"] + & D_1 \arrow[l,"\partial_1^D"] + & D_2 \arrow[l,"\partial_2^D"] + & \dots \arrow[l] + \arrow[l, "\partial_{k-1}^D"] + & D_k + \arrow[l, "\partial_k^D"] + & D_{k+1}\arrow[l, "\partial_{k+1}^D"] + & \dots +\end{tikzcd} +\label{buch:komplex:abbcd} +\end{equation} +Die Relation~\eqref{buch:komplex:abbildung} drückt aus, dass man jeden +den Pfeilen im Diagram~\eqref{buch:komplex:abbcd} folgen kann und +dabei zwischen zwei Vektorräumen unabhängig vom Weg die gleiche Abbildung +resultiert. + +Die Verfeinerung einer Triangulation erzeugt eine solche Abbildung von +Komplexen. + + +% XXX simpliziale Approximation -\subsection{Kettenkomplexe und Morphismen -\label{buch:subsection:kettenkomplex}} diff --git a/buch/chapters/95-homologie/simplex.tex b/buch/chapters/95-homologie/simplex.tex index 5ca2ca8..397ba07 100644 --- a/buch/chapters/95-homologie/simplex.tex +++ b/buch/chapters/95-homologie/simplex.tex @@ -233,6 +233,6 @@ Vorzeichen zu, die Matrix ist \subsection{Triangulation -\label{buch:subsection:}} +\label{buch:subsection:triangulation}} |