aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/40-eigenwerte/images/Makefile4
-rw-r--r--buch/chapters/40-eigenwerte/images/minmax.pdfbin0 -> 53375 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/minmax.tex134
-rw-r--r--buch/chapters/40-eigenwerte/images/sp.pdfbin24022 -> 24019 bytes
-rw-r--r--buch/chapters/40-eigenwerte/images/wurzelapprox.pdfbin33171 -> 33171 bytes
-rw-r--r--buch/chapters/40-eigenwerte/spektraltheorie.tex25
6 files changed, 159 insertions, 4 deletions
diff --git a/buch/chapters/40-eigenwerte/images/Makefile b/buch/chapters/40-eigenwerte/images/Makefile
index bec12d5..54b36d5 100644
--- a/buch/chapters/40-eigenwerte/images/Makefile
+++ b/buch/chapters/40-eigenwerte/images/Makefile
@@ -5,7 +5,7 @@
#
all: sp.pdf nilpotent.pdf kernbild.pdf kombiniert.pdf \
wurzelapprox.pdf wurzel.pdf dimjk.pdf jknilp.pdf \
- normalform.pdf
+ normalform.pdf minmax.pdf
sp.pdf: sp.tex sppaths.tex
pdflatex sp.tex
@@ -40,3 +40,5 @@ jknilp.pdf: jknilp.tex
normalform.pdf: normalform.tex
pdflatex normalform.tex
+minmax.pdf: minmax.tex
+ pdflatex minmax.tex
diff --git a/buch/chapters/40-eigenwerte/images/minmax.pdf b/buch/chapters/40-eigenwerte/images/minmax.pdf
new file mode 100644
index 0000000..46ed28a
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/minmax.pdf
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/minmax.tex b/buch/chapters/40-eigenwerte/images/minmax.tex
new file mode 100644
index 0000000..f661d5b
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/images/minmax.tex
@@ -0,0 +1,134 @@
+%
+% minmax.tex -- minimum und maximum
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.5,0}
+
+\def\mittellinie{
+ plot[domain=0:6.2832,samples=400]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159))})
+}
+
+\begin{scope}
+ \fill[color=darkgreen!20]
+ plot[domain=0:6.2832,samples=360]
+ ({\x},{sin(180*\x/3.1415)})
+ --
+ plot[domain=6.2832:0,samples=360]
+ ({\x},{cos(180*\x/3.1415)})
+ -- cycle;
+ \foreach \x in {0.5,1,...,6}{
+ \draw[color=darkgreen]
+ ({\x},{sin(180*\x/3.1415)})
+ --
+ ({\x},{cos(180*\x/3.1415)});
+ }
+
+ \node[color=darkgreen] at (2,-0.8) [left] {$|f(x)-g(x)|$};
+ \draw[color=darkgreen,line width=0.3pt] (2,-0.8) -- (2.5,-0.7);
+
+ \draw[color=blue,line width=1.4pt] plot[domain=0:6.29,samples=360]
+ ({\x},{sin(180*\x/3.1415)});
+ \draw[color=red,line width=1.4pt] plot[domain=0:6.29,samples=360]
+ ({\x},{cos(180*\x/3.1415)});
+ \draw[color=purple!50,line width=1.4pt] \mittellinie;
+ \node[color=purple!50] at (6.2832,0.5) [right] {$\frac12(f(x)+g(x))$};
+
+ \draw[->] (-0.1,0) -- (6.5,0) coordinate[label={below:$x$}];
+ \draw[->] (0,-1.1) -- (0,1.3) coordinate[label={right:$y$}];
+
+
+ \xdef\x{2}
+ \node[color=blue] at (\x,{sin(180*\x/3.1415)}) [above right] {$f(x)$};
+ \pgfmathparse{2.5*3.14159-\x}
+ \xdef\x{\pgfmathresult}
+ \node[color=red] at (\x,{cos(180*\x/3.1415)}) [above left] {$g(x)$};
+
+\end{scope}
+
+\draw[->,line width=4pt,color=gray!40] ({3.1415-1},-1.3) -- ({3.1415-2.3},-3);
+\draw[->,line width=4pt,color=gray!40] ({3.1415+1},-1.3) -- ({3.1415+2.3},-3);
+
+\node at ({3.1415-1.75},-2.15) [left] {$\frac12(f(x)+g(x))+\frac12|f(x)-g(x)|$};
+\node at ({3.1415+1.75},-2.15) [right] {$\frac12(f(x)+g(x))-\frac12|f(x)-g(x)|$};
+
+\def\s{(-0.1)}
+
+\begin{scope}[xshift=-3.4cm,yshift=-4.6cm]
+ \fill[color=darkgreen!20]
+ \mittellinie
+ --
+ plot[domain=6.2832:0,samples=400]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)+abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))})
+ -- cycle;
+ \foreach \x in {0.5,1,...,6}{
+ \draw[color=darkgreen]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)+abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))})
+ --
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159))});
+ }
+ \draw[color=darkgreen,line width=1.4pt]
+ plot[domain=6.2832:0,samples=400]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)+abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))});
+
+ \node[color=darkgreen] at (2,-0.3) [left] {$|f(x)-g(x)|$};
+ \draw[color=darkgreen,line width=0.3pt] (2,-0.3) -- (2.5,0.2);
+
+ \draw[color=purple!50,line width=1.4pt] \mittellinie;
+ \pgfmathparse{0.75*3.1415+\s}
+ \xdef\x{\pgfmathresult}
+ \node[color=darkgreen] at (\x,{sin(180*\x/3.1415)}) [above right]
+ {$\max(f(x),g(x))$};
+ \node[color=purple!50] at ({1.25*3.1415},-0.7) [below]
+ {$\frac12(f(x)+g(x))$};
+ \draw[->] (-0.1,0) -- (6.5,0) coordinate[label={$x$}];
+ \draw[->] (0,-1.1) -- (0,1.3) coordinate[label={right:$y$}];
+\end{scope}
+
+
+\begin{scope}[xshift=+3.4cm,yshift=-4.6cm]
+ \fill[color=darkgreen!20]
+ \mittellinie
+ --
+ plot[domain=6.2832:0,samples=400]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)-abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))})
+ -- cycle;
+ \foreach \x in {0.5,1,...,6}{
+ \draw[color=darkgreen]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)-abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))})
+ --
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159))});
+ }
+ \draw[color=darkgreen,line width=1.4pt]
+ plot[domain=6.2832:0,samples=400]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)-abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))});
+
+ \node[color=darkgreen] at (3,0.3) [right] {$|f(x)-g(x)|$};
+ \draw[color=darkgreen,line width=0.3pt] (3,0.3) -- (2.5,-0.4);
+
+ \draw[color=purple!50,line width=1.4pt] \mittellinie;
+ \pgfmathparse{0.75*3.1415-\s}
+ \xdef\x{\pgfmathresult}
+ \node[color=darkgreen] at (\x,{cos(180*\x/3.1415)}) [below left]
+ {$\min(f(x),g(x))$};
+ \node[color=purple!50] at ({0.25*3.1415},0.7) [above right]
+ {$\frac12(f(x)+g(x))$};
+ \draw[->] (-0.1,0) -- (6.5,0) coordinate[label={$x$}];
+ \draw[->] (0,-1.1) -- (0,1.3) coordinate[label={right:$y$}];
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/40-eigenwerte/images/sp.pdf b/buch/chapters/40-eigenwerte/images/sp.pdf
index d4de984..b93b890 100644
--- a/buch/chapters/40-eigenwerte/images/sp.pdf
+++ b/buch/chapters/40-eigenwerte/images/sp.pdf
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/images/wurzelapprox.pdf b/buch/chapters/40-eigenwerte/images/wurzelapprox.pdf
index aeb5e5d..01fa714 100644
--- a/buch/chapters/40-eigenwerte/images/wurzelapprox.pdf
+++ b/buch/chapters/40-eigenwerte/images/wurzelapprox.pdf
Binary files differ
diff --git a/buch/chapters/40-eigenwerte/spektraltheorie.tex b/buch/chapters/40-eigenwerte/spektraltheorie.tex
index 4bf5c42..466b99e 100644
--- a/buch/chapters/40-eigenwerte/spektraltheorie.tex
+++ b/buch/chapters/40-eigenwerte/spektraltheorie.tex
@@ -327,6 +327,20 @@ ist monoton wachsend und approximiert die Wurzelfunktion $t\mapsto\sqrt{t}$
gleichmässig auf dem Intervall $[0,1]$.
\end{satz}
+\begin{figure}
+\centering
+\includegraphics{chapters/40-eigenwerte/images/minmax.pdf}
+\caption{Graphische Erklärung der
+Identitäten~\eqref{buch:eigenwerte:eqn:minmax} für
+$\max(f(x),g(x))$ und $\min(f(x),g(x))$.
+Die purpurrote Kurve stellt den Mittelwert von $f(x)$ und $g(x)$ dar,
+die vertikalen grünen Linien haben die Länge der Differenz $|f(x)-g(x)|$.
+Das Maximum erhält man, indem man den halben Betrag der Differenz zum
+Mittelwert hinzuaddiert, das Minimum erhält man durch Subtraktion
+der selben Grösse.
+\label{buch:eigenwerte:fig:minmax}}
+\end{figure}
+
\begin{proof}[Beweis]
Wer konstruieren zunächst das in
Abbildung~\ref{buch:eigenwerte:fig:wurzelverfahren}
@@ -368,13 +382,18 @@ Folge, die $\max(f,g)$ gleichmässig beliebig genau approximiert
und eine monoton fallende Folge, die $\min(f,g)$ gleichmässig beliebig
genau approximiert.
+
Diese Folgen können aus der Approximationsfolge für den Betrag einer
Funktion und den Identitäten
-\begin{align*}
+\begin{equation}
+\begin{aligned}
\max(f,g) &= \frac12(f+g+|f-g|) \\
\min(f,g) &= \frac12(f+g-|f-g|)
-\end{align*}
-gefunden werden.
+\end{aligned}
+\label{buch:eigenwerte:eqn:minmax}
+\end{equation}
+gefunden werden, die in Abbildung~\ref{buch:eigenwerte:fig:minmax}
+graphisch erklärt werden.
\item Schritt: Zu zwei beliebigen Punkten $x,y\in K$ und Werten
$\alpha,\beta\in\mathbb{R}$ gibt es immer eine Funktion in $A$,
die in den Punkten $x,y$ die vorgegebenen Werte $\alpha$ bzw.~$\beta$