diff options
Diffstat (limited to 'buch/chapters')
-rw-r--r-- | buch/chapters/60-gruppen/images/Makefile | 19 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/images/karten.pdf | bin | 0 -> 486440 bytes | |||
-rw-r--r-- | buch/chapters/60-gruppen/images/karten.tex | 111 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/images/kartenkreis.pdf | bin | 0 -> 26310 bytes | |||
-rw-r--r-- | buch/chapters/60-gruppen/images/kartenkreis.tex | 179 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/images/phasenraum.pdf | bin | 24581 -> 72789 bytes | |||
-rw-r--r-- | buch/chapters/60-gruppen/images/phasenraum.tex | 72 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/images/torus.png | bin | 0 -> 456476 bytes | |||
-rw-r--r-- | buch/chapters/60-gruppen/images/torus.pov | 189 | ||||
-rw-r--r-- | buch/chapters/60-gruppen/symmetrien.tex | 264 |
10 files changed, 812 insertions, 22 deletions
diff --git a/buch/chapters/60-gruppen/images/Makefile b/buch/chapters/60-gruppen/images/Makefile new file mode 100644 index 0000000..bc65a71 --- /dev/null +++ b/buch/chapters/60-gruppen/images/Makefile @@ -0,0 +1,19 @@ +# +# Makefile +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +all: phasenraum.pdf kartenkreis.pdf karten.pdf + +phasenraum.pdf: phasenraum.tex + pdflatex phasenraum.tex + +kartenkreis.pdf: kartenkreis.tex + pdflatex kartenkreis.tex + +torus.png: torus.pov + povray +A0.1 -W1920 -H1080 -Otorus.png torus.pov + +karten.pdf: karten.tex torus.png + pdflatex karten.tex + diff --git a/buch/chapters/60-gruppen/images/karten.pdf b/buch/chapters/60-gruppen/images/karten.pdf Binary files differnew file mode 100644 index 0000000..f0a9879 --- /dev/null +++ b/buch/chapters/60-gruppen/images/karten.pdf diff --git a/buch/chapters/60-gruppen/images/karten.tex b/buch/chapters/60-gruppen/images/karten.tex new file mode 100644 index 0000000..a13d7c7 --- /dev/null +++ b/buch/chapters/60-gruppen/images/karten.tex @@ -0,0 +1,111 @@ +% +% karten.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\node at (0,0) {\includegraphics[width=10cm]{torus.png}}; + +\def\s{3} + +\node at (-3.5,-0.4) {$U_\alpha$}; +\node at (2.0,-0.4) {$U_\beta$}; + +\draw[->] (-2,-2.2) -- (-3,-4.3); +\node at (-2.5,-3.25) [left] {$\varphi_\alpha$}; + +\draw[->] (1.4,-1.7) -- (3,-4.3); +\node at (2.5,-3.25) [right] {$\varphi_\beta$}; + +\begin{scope}[xshift=-4.5cm,yshift=-8cm] + \begin{scope} + \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s}); + \begin{scope}[xshift=1.8cm,yshift=0.6cm,rotate=30] + \fill[color=gray!20] + (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s}); + \foreach \x in {0,0.2,...,1}{ + \draw[color=darkgreen] + ({\x*\s},{-0.2*\s}) + -- + ({\x*\s},{1.2*\s}); + } + \foreach \y in {-0.2,0,...,1.2}{ + \draw[color=orange] + (0,{\y*\s}) + -- + ({1*\s},{\y*\s}); + } + \end{scope} + \end{scope} + + \foreach \x in {0,0.2,...,1}{ + \draw[color=blue,line width=1.4pt] + ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s}); + } + \foreach \y in {-0.2,0,...,1.2}{ + \draw[color=red,line width=1.4pt] + (0,{\y*\s}) -- ({1*\s},{\y*\s}); + } + + \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}]; + \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}]; + + \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$}; + +\end{scope} + +\begin{scope}[xshift=1.5cm,yshift=-8cm] + \begin{scope} + \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s}); + % x = - [ (sqrt(3)/2)*0.6+(1/2)*0.2 ] = -0.6196 + % y = - [ (-1/2)*0.6 + (sqrt(3)/2)*0.2 ] = + \begin{scope}[xshift=-1.8588cm,yshift=0.3804cm,rotate=-30] + \fill[color=gray!20] + (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s}); + \foreach \x in {0,0.2,...,1}{ + \draw[color=blue] + ({\x*\s},{-0.2*\s}) + -- + ({\x*\s},{1.2*\s}); + } + \foreach \y in {-0.2,0,...,1.2}{ + \draw[color=red] + (0,{\y*\s}) + -- + ({1*\s},{\y*\s}); + } + \end{scope} + \end{scope} + + \foreach \x in {0,0.2,...,1}{ + \draw[color=darkgreen,line width=1.4pt] + ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s}); + } + \foreach \y in {-0.2,0,...,1.2}{ + \draw[color=orange,line width=1.4pt] (0,{\y*\s}) -- ({1*\s},{\y*\s}); + } + \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}]; + \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}]; + \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$}; +\end{scope} + +\draw[<-,color=white,opacity=0.8,line width=5pt] (2.5,-6.5) arc (55:100:6.5); +\draw[<-,shorten >= 0.1cm,shorten <= 0.3cm] (2.5,-6.5) arc (55:100:6.5); + +\node at (0,-5.8) {$\varphi_\beta\circ\varphi_\alpha^{-1}$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/60-gruppen/images/kartenkreis.pdf b/buch/chapters/60-gruppen/images/kartenkreis.pdf Binary files differnew file mode 100644 index 0000000..3235779 --- /dev/null +++ b/buch/chapters/60-gruppen/images/kartenkreis.pdf diff --git a/buch/chapters/60-gruppen/images/kartenkreis.tex b/buch/chapters/60-gruppen/images/kartenkreis.tex new file mode 100644 index 0000000..be6d6b3 --- /dev/null +++ b/buch/chapters/60-gruppen/images/kartenkreis.tex @@ -0,0 +1,179 @@ +% +% kartenkreis.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{3} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\fill[color=red!20] (0,-1) rectangle (1.5,1); +\fill[color=blue!20] (-1.5,-1) rectangle (0,1); +\fill[color=darkgreen!40,opacity=0.5] (-1,0) rectangle (1,1.5); +\fill[color=orange!40,opacity=0.5] (-1,-1.5) rectangle (1,0); +\fill[color=white] (0,0) circle[radius=1]; + +\fill[color=gray!20] + (0,-1.5) -- (0.02,-1.6) -- (0.5,-1.8) -- (0.98,-1.6) -- (1,-1.5) + -- cycle; +\fill[color=gray!20] + (0,1.5) -- (0.02,1.6) -- (0.5,1.8) -- (0.98,1.6) -- (1,1.5) + -- cycle; +\fill[color=gray!20] + (0,-1.5) -- (-0.02,-1.6) -- (-0.5,-1.8) -- (-0.98,-1.6) -- (-1,-1.5) + -- cycle; +\fill[color=gray!20] + (0,1.5) -- (-0.02,1.6) -- (-0.5,1.8) -- (-0.98,1.6) -- (-1,1.5) + -- cycle; + +\fill[color=gray!20] + (1.5,0) -- (1.6,0.02) -- (1.8,0.5) -- (1.6,0.98) -- (1.5,1) + -- cycle; +\fill[color=gray!20] + (-1.5,0) -- (-1.6,0.02) -- (-1.8,0.5) -- (-1.6,0.98) -- (-1.5,1) + -- cycle; +\fill[color=gray!20] + (1.5,0) -- (1.6,-0.02) -- (1.8,-0.5) -- (1.6,-0.98) -- (1.5,-1) + -- cycle; +\fill[color=gray!20] + (-1.5,0) -- (-1.6,-0.02) -- (-1.8,-0.5) -- (-1.6,-0.98) -- (-1.5,-1) + -- cycle; + +\draw[->] (0.5,-1.8) arc (-180:-90:0.1) arc (-90:0:1.3) arc (0:90:0.1); +\draw[->] (1.8,0.5) arc (-90:0:0.1) arc (0:90:1.3) arc (90:180:0.1); +\draw[->] (-0.5,1.8) arc (0:90:0.1) arc (90:180:1.3) arc (180:270:0.1); +\draw[->] (-1.8,-0.5) arc (90:180:0.1) arc (180:270:1.3) arc (270:360:0.1); + +\node at (1.01,1.32) + [right] {$\varphi_3\circ \varphi_1^{-1}(y)=\sqrt{1-y^2}$}; +\node at (1.01,-1.28) + [right] {$\varphi_1\circ \varphi_4^{-1}(x)=-\sqrt{1-x^2}$}; +\node at (-1.24,1.32) + [left] {$\varphi_2\circ\varphi_4^{-1}(x)=\sqrt{1-x^2}$}; +\node at (-1.18,-1.28) + [left] {$\varphi_4\circ\varphi_2^{-1}(y)=-\sqrt{1-y^2}$}; + +\foreach \y in {0.1,0.3,...,0.9}{ + \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm] + ({sqrt(1-\y*\y)},{\y}) -- (1.5,\y); + \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm] + ({sqrt(1-\y*\y)},{-\y}) -- (1.5,-\y); + \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm] + ({-sqrt(1-\y*\y)},{\y}) -- (-1.5,\y); + \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm] + ({-sqrt(1-\y*\y)},{-\y}) -- (-1.5,-\y); +} +\foreach \x in {0.1,0.3,...,0.9}{ + \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm] + ({\x},{sqrt(1-\x*\x)}) -- ({\x},1.5); + \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm] + ({-\x},{sqrt(1-\x*\x)}) -- ({-\x},1.5); + \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm] + ({\x},{-sqrt(1-\x*\x)}) -- ({\x},-1.5); + \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm] + ({-\x},{-sqrt(1-\x*\x)}) -- ({-\x},-1.5); +} + +\draw[color=gray!20,line width=3pt] (0,0) circle[radius=1]; + +\def\r{1.02} + +\begin{scope} + \clip (0,-1.1) rectangle (1.1,1.1); + \draw[color=red,line width=1.4pt] (-89:\r) arc (-89:89:\r); + \draw[color=red,line width=1.4pt] (0,-\r) circle[radius=0.02]; + \draw[color=red,line width=1.4pt] (0,\r) circle[radius=0.02]; +\end{scope} + +\begin{scope} + \clip (-1.1,-1.1) rectangle (0,1.1); + \draw[color=blue,line width=1.4pt] (91:\r) arc (91:269:\r); + \draw[color=blue,line width=1.4pt] (0,-\r) circle[radius=0.02]; + \draw[color=blue,line width=1.4pt] (0,\r) circle[radius=0.02]; +\end{scope} + +\xdef\r{0.98} + +\begin{scope} + \clip (-1.1,0) rectangle (1.1,1.1); + \draw[color=darkgreen,line width=1.4pt] (1:\r) arc (1:179:\r); + \draw[color=darkgreen,line width=1.4pt] (\r,0) circle[radius=0.02]; + \draw[color=darkgreen,line width=1.4pt] (-\r,0) circle[radius=0.02]; +\end{scope} + +\begin{scope} + \clip (-1.1,-1.1) rectangle (1.1,0); + \draw[color=orange,line width=1.4pt] (181:\r) arc (181:359:\r); + \draw[color=orange,line width=1.4pt] (\r,0) circle[radius=0.02]; + \draw[color=orange,line width=1.4pt] (-\r,0) circle[radius=0.02]; +\end{scope} + +\begin{scope}[yshift=1.5cm] + \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$\mathbb{R}$}]; + \begin{scope} + \clip (-1,-0.1) rectangle (1,0.1); + \draw[color=darkgreen,line width=1.4pt] (-0.98,0) -- (0.98,0); + \draw[color=darkgreen,line width=1.4pt] (-1,0) + circle[radius=0.02]; + \draw[color=darkgreen,line width=1.4pt] (1,0) + circle[radius=0.02]; + \end{scope} +\end{scope} + +\begin{scope}[yshift=-1.5cm] + \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={below:$\mathbb{R}$}]; + \begin{scope} + \clip (-1,-0.1) rectangle (1,0.1); + \draw[color=orange,line width=1.4pt] (-0.98,0) -- (0.98,0); + \draw[color=orange,line width=1.4pt] (-1,0) circle[radius=0.02]; + \draw[color=orange,line width=1.4pt] (1,0) circle[radius=0.02]; + \end{scope} +\end{scope} + +\begin{scope}[xshift=1.5cm] + \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$\mathbb{R}$}]; + \begin{scope} + \clip (-0.1,-1) rectangle (0.1,1); + \draw[color=red,line width=1.4pt] (0,-0.98) -- (0,0.98); + \draw[color=red,line width=1.4pt] (0,-1) circle[radius=0.02]; + \draw[color=red,line width=1.4pt] (0,1) circle[radius=0.02]; + \end{scope} +\end{scope} + +\begin{scope}[xshift=-1.5cm] + \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={left:$\mathbb{R}$}]; + \begin{scope} + \clip (-0.1,-1) rectangle (0.1,1); + \draw[color=blue,line width=1.4pt] (0,-0.98) -- (0,0.98); + \draw[color=blue,line width=1.4pt] (0,-1) circle[radius=0.02]; + \draw[color=blue,line width=1.4pt] (0,1) circle[radius=0.02]; + \end{scope} +\end{scope} + +\node[color=red] at (23:1) [right] {$U_{x>0}$}; +\node[color=red] at (1.25,0) [right] {$\varphi_1$}; + +\node[color=blue] at (157:1) [left] {$U_{x<0}$}; +\node[color=blue] at (-1.25,0) [left] {$\varphi_2$}; + +\node[color=darkgreen] at (115:1) [below right] {$U_{y>0}$}; +\node[color=darkgreen] at (0,1.25) [above] {$\varphi_4$}; + +\node[color=orange] at (-115:1) [above right] {$U_{y<0}$}; +\node[color=orange] at (0,-1.25) [below] {$\varphi_4$}; + +\draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$x$}]; +\draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$y$}]; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/60-gruppen/images/phasenraum.pdf b/buch/chapters/60-gruppen/images/phasenraum.pdf Binary files differindex 2ab46e4..adfb0c6 100644 --- a/buch/chapters/60-gruppen/images/phasenraum.pdf +++ b/buch/chapters/60-gruppen/images/phasenraum.pdf diff --git a/buch/chapters/60-gruppen/images/phasenraum.tex b/buch/chapters/60-gruppen/images/phasenraum.tex index 136d91d..2bccc27 100644 --- a/buch/chapters/60-gruppen/images/phasenraum.tex +++ b/buch/chapters/60-gruppen/images/phasenraum.tex @@ -14,32 +14,80 @@ \def\skala{1} \begin{tikzpicture}[>=latex,thick,scale=\skala] -\pgfmathparse{1/sqrt(2)} +\def\m{1} +\def\K{0.444} + +\pgfmathparse{sqrt(\K/\m)} \xdef\o{\pgfmathresult} \def\punkt#1#2{ ({#2*cos(#1)},{\o*#2*sin(#1)}) } -\foreach \r in {1,2,...,6}{ - \draw[line width=0.5pt] - plot[domain=0:359,samples=360] +\foreach \r in {0.5,1,...,6}{ + \draw plot[domain=0:359,samples=360] ({\r*cos(\x)},{\o*\r*sin(\x)}) -- cycle; } -\draw[color=red,line width=1.4pt] - plot[domain=0:359,samples=360] - ({4*cos(\x)},{\o*4*sin(\x)}) -- cycle; -\draw[->] (-6.1,0) -- (6.3,0) coordinate[label={$x$}]; -\draw[->] (0,-4.4) -- (0,4.7) coordinate[label={right:$p$}]; +\def\tangente#1#2{ + \pgfmathparse{#2/\m} + \xdef\u{\pgfmathresult} + + \pgfmathparse{-#1*\K} + \xdef\v{\pgfmathresult} + + \pgfmathparse{sqrt(\u*\u+\v*\v)} + \xdef\l{\pgfmathresult} -\node at \punkt{0}{4} [below right] {$x_0$}; -\node at \punkt{90}{4} [above left] {$\omega x_0$}; + \fill[color=blue] (#1,#2) circle[radius=0.03]; + \draw[color=blue,line width=0.5pt] + ({#1-0.2*\u/\l},{#2-0.2*\v/\l}) + -- + ({#1+0.2*\u/\l},{#2+0.2*\v/\l}); +} + +\foreach \x in {-6.25,-5.75,...,6.3}{ + \foreach \y in {-4.25,-3.75,...,4.3}{ + \tangente{\x}{\y} + } +} -\fill[color=white] \punkt{60}{4} rectangle \punkt{58}{5.9}; +%\foreach \x in {0.5,1,...,5.5,6}{ +% \tangente{\x}{0} +% \tangente{-\x}{0} +% \foreach \y in {0.5,1,...,4}{ +% \tangente{\x}{\y} +% \tangente{-\x}{\y} +% \tangente{\x}{-\y} +% \tangente{-\x}{-\y} +% } +%} +%\foreach \y in {0.5,1,...,4}{ +% \tangente{0}{\y} +% \tangente{0}{-\y} +%} + +\fill[color=white,opacity=0.7] \punkt{60}{4} rectangle \punkt{59}{5.8}; +\fill[color=white,opacity=0.7] \punkt{0}{4} rectangle \punkt{18}{4.9}; + +\draw[->,color=red,line width=1.4pt] + plot[domain=0:60,samples=360] + ({4*cos(\x)},{\o*4*sin(\x)}); + +\draw[->] (-6.5,0) -- (6.7,0) coordinate[label={$x$}]; +\draw[->] (0,-4.5) -- (0,4.7) coordinate[label={right:$p$}]; \fill[color=red] \punkt{60}{4} circle[radius=0.08]; \node[color=red] at \punkt{60}{4} [above right] {$\begin{pmatrix}x(t)\\p(t)\end{pmatrix}$}; +\fill[color=red] \punkt{0}{4} circle[radius=0.08]; +\node[color=red] at \punkt{0}{4} [above right] + {$\begin{pmatrix}x_0\\0\end{pmatrix}$}; + +\fill[color=white] (4,0) circle[radius=0.05]; +\node at (3.9,0) [below right] {$x_0$}; +\fill (0,{\o*4}) circle[radius=0.05]; +\node at (0.1,{\o*4+0.05}) [below left] {$\omega x_0$}; + \end{tikzpicture} \end{document} diff --git a/buch/chapters/60-gruppen/images/torus.png b/buch/chapters/60-gruppen/images/torus.png Binary files differnew file mode 100644 index 0000000..c42440f --- /dev/null +++ b/buch/chapters/60-gruppen/images/torus.png diff --git a/buch/chapters/60-gruppen/images/torus.pov b/buch/chapters/60-gruppen/images/torus.pov new file mode 100644 index 0000000..3a8e327 --- /dev/null +++ b/buch/chapters/60-gruppen/images/torus.pov @@ -0,0 +1,189 @@ +// +// diffusion.pov +// +// (c) 2021 Prof Dr Andreas Müller, OST Ostscheizer Fachhochschule +// +#version 3.7; +#include "colors.inc" + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.034; +#declare N = 100; +#declare r = 0.43; +#declare R = 1; + +camera { + location <43, 25, -20> + look_at <0, -0.01, 0> + right 16/9 * x * imagescale + up y * imagescale +} + +light_source { + <10, 20, -40> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + +#macro rotiere(phi, vv) + < cos(phi) * vv.x - sin(phi) * vv.z, vv.y, sin(phi) * vv.x + cos(phi) * vv.z > +#end + +#macro punkt(phi,theta) + rotiere(phi, < R + r * cos(theta), r * sin(theta), 0 >) +#end + +mesh { + #declare phistep = 2 * pi / N; + #declare thetastep = 2 * 2 * pi / N; + #declare phi = 0; + #while (phi < 2 * pi - phistep/2) + #declare theta = 0; + #while (theta < 2 * pi - thetastep/2) + triangle { + punkt(phi , theta ), + punkt(phi + phistep, theta ), + punkt(phi + phistep, theta + thetastep) + } + triangle { + punkt(phi , theta ), + punkt(phi + phistep, theta + thetastep), + punkt(phi , theta + thetastep) + } + #declare theta = theta + thetastep; + #end + #declare phi = phi + phistep; + #end + pigment { + color Gray + } + finish { + specular 0.9 + metallic + } +} + +#declare thetastart = -0.2; +#declare thetaend = 1.2; +#declare phistart = 5; +#declare phiend = 6; + +union { + #declare thetastep = 0.2; + #declare theta = thetastart; + #while (theta < thetaend + thetastep/2) + #declare phistep = (phiend-phistart)/N; + #declare phi = phistart; + #while (phi < phiend - phistep/2) + sphere { punkt(phi,theta), 0.01 } + cylinder { + punkt(phi,theta), + punkt(phi+phistep,theta), + 0.01 + } + #declare phi = phi + phistep; + #end + sphere { punkt(phi,theta), 0.01 } + #declare theta = theta + thetastep; + #end + + pigment { + color Red + } + finish { + specular 0.9 + metallic + } +} + +union { + #declare phistep = 0.2; + #declare phi = phistart; + #while (phi < phiend + phistep/2) + #declare thetastep = (thetaend-thetastart)/N; + #declare theta = thetastart; + #while (theta < thetaend - thetastep/2) + sphere { punkt(phi,theta), 0.01 } + cylinder { + punkt(phi,theta), + punkt(phi,theta+thetastep), + 0.01 + } + #declare theta = theta + thetastep; + #end + sphere { punkt(phi,theta), 0.01 } + #declare phi = phi + phistep; + #end + pigment { + color Blue + } + finish { + specular 0.9 + metallic + } +} + +#macro punkt2(a,b) + punkt(5.6+a*sqrt(3)/2-b/2,0.2+a/2 + b*sqrt(3)/2) +#end + +#declare darkgreen = rgb<0,0.6,0>; + +#declare astart = 0; +#declare aend = 1; +#declare bstart = -0.2; +#declare bend = 1.2; +union { + #declare a = astart; + #declare astep = 0.2; + #while (a < aend + astep/2) + #declare b = bstart; + #declare bstep = (bend - bstart)/N; + #while (b < bend - bstep/2) + sphere { punkt2(a,b), 0.01 } + cylinder { punkt2(a,b), punkt2(a,b+bstep), 0.01 } + #declare b = b + bstep; + #end + sphere { punkt2(a,b), 0.01 } + #declare a = a + astep; + #end + pigment { + color darkgreen + } + finish { + specular 0.9 + metallic + } +} +union { + #declare b = bstart; + #declare bstep = 0.2; + #while (b < bend + bstep/2) + #declare a = astart; + #declare astep = (aend - astart)/N; + #while (a < aend - astep/2) + sphere { punkt2(a,b), 0.01 } + cylinder { punkt2(a,b), punkt2(a+astep,b), 0.01 } + #declare a = a + astep; + #end + sphere { punkt2(a,b), 0.01 } + #declare b = b + bstep; + #end + pigment { + color Orange + } + finish { + specular 0.9 + metallic + } +} diff --git a/buch/chapters/60-gruppen/symmetrien.tex b/buch/chapters/60-gruppen/symmetrien.tex index 80f6534..b686791 100644 --- a/buch/chapters/60-gruppen/symmetrien.tex +++ b/buch/chapters/60-gruppen/symmetrien.tex @@ -156,6 +156,14 @@ D_{\alpha} ist also eine Einparameter-Untergruppe von $\operatorname{GL}_2(\mathbb{R})$. \subsubsection{Der harmonische Oszillator} +\begin{figure} +\centering +\includegraphics{chapters/60-gruppen/images/phasenraum.pdf} +\caption{Die Lösungen der +Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl} +im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$. +\label{chapter:gruppen:fig:phasenraum}} +\end{figure} Eine Masse $m$ verbunden mit einer Feder mit der Federkonstanten $K$ schwingt um die Ruhelage $x=0$ entsprechend der Differentialgleichung \[ @@ -206,7 +214,7 @@ p(t) = \cos \omega t. \] In Matrixform kann man die allgemeine Lösung zur Anfangsbedingun $x(0)=x_0$ und $p(0)=p_0$ -\[ +\begin{equation} \begin{pmatrix} x(t)\\ p(t) @@ -217,9 +225,10 @@ p(t) \cos \omega t & \frac{1}{\omega} \sin\omega t \\ -\omega \sin\omega t & \cos\omega t \end{pmatrix} -}_{\Phi_t} +}_{\displaystyle =\Phi_t} \begin{pmatrix}x_0\\p_0\end{pmatrix} -\] +\label{buch:gruppen:eqn:phi} +\end{equation} schreiben. Die Matrizen $\Phi_t$ bilden eine Einparameter-Untergruppe von $\operatorname{GL}_n(\mathbb{R})$, da @@ -260,17 +269,252 @@ Die Matrizen $\Phi_t$ beschreiben eine kontinuierliche Symmetrie des Differentialgleichungssystems, welches den harmonischen Oszillator beschreibt. -\begin{figure} -\centering -\includegraphics{chapters/60-gruppen/images/phasenraum.pdf} -\caption{Die Lösungen der +\subsubsection{Fluss einer Differentialgleichung} +Die Abbildungen $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} sind jeweils +Matrizen in $\operatorname{GL}_n(\mathbb{R})$. +Der Grund dafür ist, dass die Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl} -im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$. -\label{chapter:gruppen:fig:phasenraum}} -\end{figure} +linear ist. +Dies hat zur Folge, dass für zwei Anfangsbedingungen $x_1,x_2\in\mathbb{R}^2$ +die Lösung für Linearkombinationen $\lambda x_1+\mu x_2$ durch +Linearkombination der Lösungen erhalten werden kann, also +aus der Formel +\[ +\Phi_t (\lambda x_1 + \mu x_2) = \lambda \Phi_t x_1 + \mu \Phi_t x_2. +\] +Dies zeigt, dass $\Phi_t$ für jedes $t$ eine lineare Abbildung sein muss. + +Für eine beliebige Differentialgleichung kann man immer noch eine Abbildung +$\Phi$ konstruieren, die aber nicht mehr linear ist. +Sei dazu die Differentialgleichung erster Ordnung +\begin{equation} +\frac{dx}{dt} += +f(t,x) +\qquad\text{mit}\qquad +f\colon \mathbb{R}\times\mathbb{R}^n \to \mathbb{R}^n +\label{buch:gruppen:eqn:dgl} +\end{equation} +gegeben. +Für jeden Anfangswert $x_0\in\mathbb{R}^n$ kann man mindestens für eine +gewisse Zeit $t <\varepsilon$ eine Lösung $x(t,x_0)$ finden mit $x(t,x_0)=x_0$. +Aus der Theorie der gewöhnlichen Differentialgleichungen ist auch +bekannt, dass $x(t,x_0)$ mindestens in der Nähe von $x_0$ differenzierbar von +$x_0$ abhängt. +Dies erlaubt eine Abbildung +\[ +\Phi\colon \mathbb{R}\times \mathbb{R}^n \to \mathbb{R}^n +: +(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0) +\] +zu definieren, die sowohl von $t$ als auch von $x_0$ differenzierbar +abhängt. +Aus der Definition folgt unmittelbar, dass $\Phi_0(x_0)=x_0$ ist, dass +also $\Phi_0$ die identische Abbildung von $\mathbb{R}^n$ ist. + +Aus der Definition lässt sich auch ableiten, dass +$\Phi_{s+t}=\Phi_s\circ\Phi_t$ gilt. +$\Phi_t(x_0)=x(t,x_0)$ ist der Endpunkt der Bahn, die bei $x_0$ beginnt +und sich während der Zeit $t$ entwickelt. +$\Phi_s(x(t,x_0))$ ist dann der Endpunkt der Bahn, die bei $x(t,x_0)$ +beginnt und sich während der Zeit $s$ entwickelt. +Somit ist $\Phi_s\circ \Phi_t(x_0)$ der Endpunkt der Bahn, die bei +$x_0$ beginnt und sich über die Zeit $s+t$ entwickelt. +In Formeln bedeutet dies +\[ +\Phi_{s+t} = \Phi_s\circ \Phi_t. +\] +Die Abbildung $t\mapsto \Phi_t$ ist also wieder ein Homomorphismus +von der additiven Gruppe $\mathbb{R}$ in eine Gruppe von differenzierbaren +Abbildungen $\mathbb{R}^n\to\mathbb{R}^n$. + +\begin{definition} +Die Abbildung +\[ +\Phi\colon \mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n +: +(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0) +\] +heisst der {\em Fluss} der Differentialgleichung +\eqref{buch:gruppen:eqn:dgl}, +wenn für jedes $x_0\in\mathbb{R}^n$ die Kurve $t\mapsto \Phi_t(x_0)$ +eine Lösung der Differentialgleichung ist mit Anfangsbedingung $x_0$. +\end{definition} + +Die Abbildung $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} ist also +der Fluss der Differentialgleichung des harmonischen Oszillators. \subsection{Mannigfaltigkeiten \label{buch:subsection:mannigfaltigkeit}} +Eine Differentialgleichung der Form~\eqref{buch:gruppen:eqn:dgl} +stellt einen Zusammenhang her zwischen einem Punkt $x$ und der +Tangentialrichtung einer Bahnkurve $f(t,x)$. +Die Ableitung liefert die lineare Näherung der Bahkurve +\[ +x(t_0+h) = x(t_0) + h f(t_0,x_0) + o(h) +\] +für $h$ in einer kleinen Umgebung von $0$. +Das funktioniert auch, weil $f(t_0,x_0)$ selbst ein Vektor von +$\mathbb{R}^n$ ist, in dem die Bahnkurve verläuft. + +Diese Idee funktioniert nicht mehr zum Beispiel für eine +Differentialgleichung auf einer Kugeloberfläche, weil alle Punkte +$x(t_0)+hf(t_0,x_0)$ für alle $h\ne 0$ nicht mehr auf der Kugeloberfläche +liegen. +Physikalisch äussert sich das ein einer zusätzlichen Kraft, die nötig +ist, die Bahn auf der Kugeloberfläche zu halten. +Diese Kraft stellt zum Beispiel sicher, dass die Vektoren $f(t,x)$ für +Punkte $x$ auf der Kugeloberfläche immer tangential an die Kugel sind. +Trotzdem ist der Tangentialvektor oder der Geschwindigkeitsvektor +nicht mehr ein Objekt, welches als Teil der Kugeloberfläche definiert +werden kann, er kann nur definiert werden, wenn man sich die Kugel als +in einen höherdimensionalen Raum eingebettet vorstellen kann. + +Um die Idee der Differentialgleichung auf einer beliebigen Fläche +konsistent zu machen ist daher notwendig, die Idee einer Tagentialrichtung +auf eine Art zu definieren, die nicht von der Einbettung der Fläche +in den $n$-dimensionalen Raum abhängig ist. +Das in diesem Abschnitt entwickelte Konzept der {\em Mannigfaltigkeit} +löst dieses Problem. + +\subsubsection{Karten} +Die Navigation auf der Erdoberfläche verwendet das Koordinatensystem +der geographischen Länge und Breite. +Dieses Koordinatensystem funktioniert gut, solange man sich nicht an +den geographischen Polen befindet, denn deren Koordinaten sind +nicht mehr eindeutig. +Alle Punkte mit geographischer Breite $90^\circ$ und beliebiger +geographischer Länge beschreiben den Nordpol. +Auch die Ableitung funktioniert dort nicht mehr. +Bewegt man sich mit konstanter Geschwindigkeit über den Nordpol, +springt die Ableitung der geographischen Breite von einem positiven +Wert auf einen negativen Wert, sie kann also nicht differenzierbar sein. +Diese Einschränkungen sind in der Praxis nur ein geringes Problem dar, +da die meisten Reisen nicht über die Pole erfolgen. + +Der Polarforscher, der in unmittelbarer Umgebung des Poles arbeitet, +kann das Problem lösen, indem er eine lokale Karte für das Gebiet +um den Pol erstellt. +Dafür kann er beliebige Koordinaten verwenden, zum Beispiel auch +ein kartesisches Koordinatensystem, er muss nur eine Methode haben, +wie er seine Koordinaten wieder auf geographische Länge und Breite +umrechnen will. +Und wenn er über Geschwindigkeiten kommunizieren will, dann muss +er auch Ableitungen von Kurven in seinem kartesischen Koordinatensystem +umrechnen können auf die Kugelkoordinaten. +Dazu muss seine Umrechnungsformel von kartesischen Koordinaten +auf Kugelkoordinaten differenzierbar sein. + +Diese Idee wird vom Konzept der Mannigfaltigkeit verallgemeinert. +Eine $n$-dimensionale {\em Mannigfaltigkeit} ist eine Menge $M$ von Punkten, +die lokal, also in der Umgebung eines Punktes, mit möglicherweise mehreren +verschiedenen Koordinatensystemen versehen werden kann. +Ein Koordinatensystem ist eine umkehrbare Abbildung einer offenen Teilmenge +$U\subset M$ in den Raum $\mathbb{R}^n$. +Die Komponenten dieser Abbildung heissen die {\em Koordinaten}. + +\begin{definition} +Eine Karte auf $M$ ist eine umkehrbare Abbildung +$\varphi\colon U\to \mathbb{R}^n$. +Ein differenzierbarer Atlas ist eine Familie von Karten $\varphi_\alpha$ +derart, dass die Definitionsgebiete $U_\alpha$ die ganze Menge $M$ +überdecken, und dass die Kartenwechsel Abbildungen +\[ +\varphi_\beta\circ\varphi_\alpha^{-1} +\colon +\varphi_\alpha(U_\alpha\cap U_\beta) +\to +\varphi_\beta(U_\alpha\cap U_\beta) +\] +als Abbildung von offenen Teilmengen von $\mathbb{R}^n$ differenzierbar +ist. +Eine {$n$-dimensionale differenzierbare Mannigfaltigkeit} ist eine +Menge $M$ mit einem differenzierbaren Atlas. +\end{definition} + +Karten und Atlanten regeln also nur, wie sich verschiedene lokale +Koordinatensysteme ineinander umrechnen lassen. + +\begin{beispiel} +$M=\mathbb{R}^n$ ist eine differenzierbare Mannigfaltigkeit denn +die identische Abbildung $M\to \mathbb{R}^n$ ist eine Karte und ein +Atlas von $M$. +\end{beispiel} + +\begin{beispiel} +\begin{figure} +\centering +\includegraphics{chapters/60-gruppen/images/kartenkreis.pdf} +\caption{Karten für die Kreislinie $S^1\subset\mathbb{R}^2$. +\label{buch:gruppen:fig:kartenkreis}} +\end{figure} +Die Kreislinie in in der Ebene ist eine $1$-dimensionale Mannigfaltigkeit. +Natürlich kann sie nicht mit einer einzigen Karte beschrieben werden, +da es keine umkehrbaren Abbildungen zwischen $\mathbb{R}$ und der Kreislinie +gibt. +Man kann aber die folgenden vier Karten verwenden: +\begin{align*} +\varphi_1&\colon U_{x>0}\{(x,y)\;|\;x^2+y^2=1\wedge x>0\} \to +: +(x,y) \mapsto y\\ +\varphi_2&\colon U_{x<0}\{(x,y)\;|\;x^2+y^2=1\wedge x<0\} \to +: +(x,y) \mapsto y\\ +\varphi_3&\colon U_{y>0}\{(x,y)\;|\;x^2+y^2=1\wedge y>0\} \to +: +(x,y) \mapsto x\\ +\varphi_4&\colon U_{y<0}\{(x,y)\;|\;x^2+y^2=1\wedge y<0\} \to +: +(x,y) \mapsto x +\end{align*} +Die Werte der Kartenabbildungen sind genau die $x$- und $y$-Koordinaten +auf der in den Raum $\mathbb{R}^2$ eingebetteten Kreislinie. + +Für $\varphi_1$ und $\varphi_2$ sind die Definitionsgebiete disjunkt, +hier gibt es also keine Notwendigkeit, Koordinatenumrechnungen vornehmen +zu können. +Dasselbe gilt für $\varphi_3$ und $\varphi_4$. + +Die nichtleeren Schnittmengen der verschiedenen Kartengebiete beschreiben +jeweils die Punkte der Kreislinie in einem Quadranten. +Die Umrechnung zwischen den Koordinaten erfolgt je nach Quadrant durch +\[ +x\mapsto y=\pm\sqrt{1-x^2\mathstrut} +\qquad\text{oder}\qquad +y\mapsto x=\pm\sqrt{1-y^2\mathstrut}, +\] +diese Abbildungen sind im offenen Intervall $(-1,1)$ differenzierbar, +Schwierigkeiten mit der Ableitungen ergeben sich nur an den Stellen +$x=\pm1$ und $y=\pm 1$, die in einem Überschneidungsgebiet von Karten +nicht vorkommen können. +Somit bilden die vier Karten einen differenzierbaren Atlas für +die Kreislinie (Abbildung~\ref{buch:gruppen:fig:kartenkreis}). +\end{beispiel} + +\begin{beispiel} +Ganz analog zum vorangegangenen Beispiel über die Kreisline lässt sich +für eine $n$-di\-men\-sio\-nale Sphäre +\[ +S^n = \{ (x_1,\dots,x_{n+1})\;|\; x_0^2+\dots+x_n^2=1\} +\] +immer ein Atlas aus $2^{n+1}$ Karten mit den Koordinatenabbildungen +\[ +\varphi_{i,\pm} +\colon +U_{i,\pm} += +\{p\in S^n\;|\; \pm x_i >0\} +\to +\mathbb{R}^n +: +p\mapsto (x_1,\dots,\hat{x}_i,\dots,x_{n+1}) +\] +konstruieren, der $S^n$ zu einer $n$-dimensionalen Mannigfaltigkeit macht. +\end{beispiel} + +\subsubsection{Tangentialraum} + +\subsubsection{Einbettung und Karten} \subsection{Der Satz von Noether \label{buch:subsection:noether}} |