aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/multiplikation/problemstellung.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/multiplikation/problemstellung.tex')
-rwxr-xr-xbuch/papers/multiplikation/problemstellung.tex164
1 files changed, 91 insertions, 73 deletions
diff --git a/buch/papers/multiplikation/problemstellung.tex b/buch/papers/multiplikation/problemstellung.tex
index b20a791..e53b0de 100755
--- a/buch/papers/multiplikation/problemstellung.tex
+++ b/buch/papers/multiplikation/problemstellung.tex
@@ -5,100 +5,118 @@
%
\section{Problemstellung}
\rhead{Problemstellung}
-Dank der breiten Anwendung der Matrizenmultiplikation ist eine effiziente L\"osung dieser Operation von grosser Bedeutung.
-Das Ziel dieses Papers ist verschiedenen Algorithmen der Matrizenmultiplikation vorzustellen.
-Wobei gezielt auf Algorithmen, welche das Problem schneller als der Standard Algorithmus L\"osen eingegangen wird.
+Wegen der breiten Anwendung der Matrizenmultiplikation ist eine effiziente L\"osung dieser Operation von grosser Bedeutung.
+Das Ziel dieses Papers ist, verschiedenen Algorithmen der Matrizenmultiplikation vorzustellen.
+Gezielt wird auf Algorithmen eingegangen, welche das Problem schneller als der Standard Algorithmus l\"osen.
\subsection{Big $\mathcal{O}$ Notation}
-Die Big $\mathcal{O}$ Notation beschreibt die Laufzeitkomplexit\"at eines Algorithmus \cite{multiplikation:bigo}.
-$f(x) \in \mathcal{O}(g(x))$ besagt das die Funktion $f$ nicht wesentlich schneller w\"achst als $g$ wenn $x \rightarrow \infty$.
+\label{muliplikation:sec:bigo}
+Die Big $\mathcal{O}$ Notation beschreibt die Laufzeitkomplexit\"at eines Algorithmus in Abhängigkeit zur Inputgrösse \cite{multiplikation:bigo}.
+$f(x) \in \mathcal{O}(g(x))$ besagt, dass die Funktion $f$ nicht wesentlich schneller w\"achst als $g$ wenn $x \rightarrow \infty$.
+% Es gibt eine Konstante $K$ derart, dass $f(x) \le K g(x)$ für $x\to\infty$
+Als Beispiel: benötigt eine Funktion $g$ $\mathcal{O}\left(n^2 \right)$ Multiplikationen, so wächst $f$ mit $\mathcal{O}\left(n+ n^2 \right)$ nicht wesentlich schneller falls $x\to\infty$.
Vereinfacht werden f\"ur Algorithmen die folgende Notation verwendet:
\begin{itemize}
\item $f \in \mathcal{O}(1) \rightarrow f$ ist beschr\"ankt
\item $f \in \mathcal{O}(n) \rightarrow f$ w\"achst linear
- \item $f \in \mathcal{O}(n^2) \rightarrow f$ w\"achst quadratisch
+ \item $f \in \mathcal{O}\left (n^2 \right ) \rightarrow f$ w\"achst quadratisch
\item $f \in \mathcal{O}(\log n) \rightarrow f$ w\"achst logarithmisch
\item $f \in \mathcal{O}(n \log n) \rightarrow f$ hat super-lineares Wachstum
- \item $f \in \mathcal{O}(e^n) \rightarrow f$ w\"achst exponentiell
+ \item $f \in \mathcal{O}\left (e^n \right ) \rightarrow f$ w\"achst exponentiell
\item usw.
\end{itemize}
-In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die Verschiedenen Laufzeiten miteinander verglichen werden.
+In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die verschiedenen Laufzeiten miteinander verglichen werden.
+Bei einer logarithmischen Darstellung werden Polynome der Form $f(x) = x^k$ als Gerade und Exponentialfunktionen der Form $f(x) = a^x$ als nach oben gekr\"ummte Kurven dargestellt.
+Sch\"on zu erkennen ist, dass Logarithmische Kurven beschr\"ankt sind.
-\begin{figure}
- \center
- \includegraphics[]{papers/multiplikation/images/bigo}
- \caption{Verschiedene Laufzeiten}
- \label{multiplikation:fig:bigo}
-\end{figure}
\subsubsection{Beispiel Algorithmen}
+
+Es folgen einige Beispiele von Algorithmen welche zu einer bestimmten Zeitkomplexit\"atsklasse zugeteilt werden k\"onnen.
+
+\begin{minipage}{0.4\textwidth}
+ \begin{algorithm}[H]\footnotesize\caption{}
+ \label{multiplikation:alg:b1}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \Function{B1}{$a, b$}
+ \State \textbf{return} $a+b$
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+
+ \begin{algorithm}[H]\footnotesize\caption{}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \label{multiplikation:alg:linear}
+ \Function{L}{$\mathbf{a}, \mathbf{b}$,n}
+ \State $ sum \gets 0$
+ \For{$i = 0,1,2 \dots,n$}
+ \State $ sum \gets sum + A[i] \cdot B[i] $
+ \EndFor
+
+ \State \textbf{return} $sum$
+
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+\end{minipage}
+\hspace{2cm}
+\begin{minipage}{0.4\textwidth}
+
+ \begin{algorithm}[H]\footnotesize\caption{}
+ \label{multiplikation:alg:b2}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \Function{B2}{$a, b$}
+ \State $ x \gets a+b $
+ \State $ y \gets a \cdot b $
+ \State \textbf{return} $x+y$
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+
+
+ \begin{algorithm}[H]\footnotesize\caption{}
+ \label{multiplikation:alg:q1}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \Function{Q}{$\mathbf{A}, \mathbf{B}$,n}
+ \State $ sum \gets 0$
+ \For{$i = 0,1,2 \dots,n$}
+ \For{$j = 0,1,2 \dots,n$}
+ \State $ sum \gets sum + A[i] \cdot B[j] $
+ \EndFor
+ \EndFor
+ \State \textbf{return} $sum$
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+
+\end{minipage}
+
\paragraph{Beschr\"ankter Algorithmus}
-Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden.
-
-\begin{algorithm}\caption{}
- \label{multiplikation:alg:b1}
- \setlength{\lineskip}{7pt}
- \begin{algorithmic}
- \Function{B1}{$a, b$}
- \State \textbf{return} $a+b$
- \EndFunction
- \end{algorithmic}
-\end{algorithm}
-
-Wobei Konstanten nicht beachtet werden, der Algorithmus \ref{multiplikation:alg:b2} f\"uhrt ebenso zu $\mathcal{O}(1)$ und nicht zu $\mathcal{O}(2)$.
-
-\begin{algorithm}\caption{}
- \label{multiplikation:alg:b2}
- \setlength{\lineskip}{7pt}
- \begin{algorithmic}
- \Function{B2}{$a, b$}
- \State $ x \gets a+b $
- \State $ y \gets a \cdot b $
- \State \textbf{return} $x+y$
- \EndFunction
- \end{algorithmic}
-\end{algorithm}
+Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden. Da $a$ und $b$ Skalare sind, hat keine Gr\"osse $n$ einen Einfluss auf die Laufzeit.
+
+Konstanten werden nicht beachtet, der Algorithmus \ref{multiplikation:alg:b2} f\"uhrt ebenso zu $\mathcal{O}(1)$ und nicht zu $\mathcal{O}(2)$.
+
\paragraph{Linearer Algorithmus}
-Folgender Algorithmus \ref{multiplikation:alg:l1} hat ein lineares $\mathcal{O}(n)$ Verhalten.
-
-\begin{algorithm}\caption{}
- \setlength{\lineskip}{7pt}
- \begin{algorithmic}
- \label{multiplikation:alg:l1}
- \Function{L}{$\mathbf{A}, \mathbf{B}$,n}
- \State $ sum \gets 0$
- \For{$i = 0,1,2 \dots,n$}
- \State $ sum \gets sum + A[i] \cdot B[i] $
- \EndFor
-
- \State \textbf{return} $sum$
-
- \EndFunction
- \end{algorithmic}
-\end{algorithm}
+Der Algorithmus \ref{multiplikation:alg:linear} hat ein lineares Verhalten.
+Die \texttt{for}-Schleife wird $n$-mal durchlaufen und f\"uhrt deshalb zu $\mathcal{O}(n)$.
\paragraph{Quadratischer Algorithmus}
-Folgender Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches $\mathcal{O}(n^2)$ Verhalten.
-
-\begin{algorithm}[H]\caption{}
- \label{multiplikation:alg:q1}
- \setlength{\lineskip}{7pt}
- \begin{algorithmic}
- \Function{Q}{$\mathbf{A}, \mathbf{B}$,n}
- \State $ sum \gets 0$
- \For{$i = 0,1,2 \dots,n$}
- \For{$j = 0,1,2 \dots,n$}
- \State $ sum \gets sum + A[i] \cdot B[j] $
- \EndFor
- \EndFor
- \State \textbf{return} $sum$
- \EndFunction
- \end{algorithmic}
-\end{algorithm}
+Der Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches Verhalten.
+Die beiden \texttt{for}-Schleifen werden jeweils $n$-mal durchlaufen und f\"uhrt deshalb zu $\mathcal{O}\left(n^2\right)$.
+\begin{figure}
+ \center
+ \includegraphics[]{papers/multiplikation/images/bigo}
+ \caption{Verschiedene Laufzeiten}
+ \label{multiplikation:fig:bigo}
+\end{figure}