aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/multiplikation
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/papers/multiplikation/code/MM.py23
-rw-r--r--buch/papers/multiplikation/code/meas_1024.pdfbin17660 -> 17653 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_1024.txt10
-rw-r--r--buch/papers/multiplikation/code/meas_128.pdfbin17961 -> 18120 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_128.txt10
-rw-r--r--buch/papers/multiplikation/code/meas_256.pdfbin18067 -> 19428 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_256.txt10
-rw-r--r--buch/papers/multiplikation/code/meas_32.pdfbin17078 -> 17964 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_32.txt10
-rw-r--r--buch/papers/multiplikation/code/meas_64.pdfbin17678 -> 17747 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_64.txt10
-rwxr-xr-xbuch/papers/multiplikation/einlteung.tex20
-rw-r--r--buch/papers/multiplikation/images/bigo.pdfbin24288 -> 27173 bytes
-rw-r--r--buch/papers/multiplikation/images/bigo.tex34
-rw-r--r--buch/papers/multiplikation/images/strassen.pdfbin15850 -> 19970 bytes
-rw-r--r--buch/papers/multiplikation/images/strassen.tex14
-rwxr-xr-xbuch/papers/multiplikation/loesungsmethoden.tex151
-rwxr-xr-xbuch/papers/multiplikation/main.tex22
-rwxr-xr-xbuch/papers/multiplikation/problemstellung.tex27
-rwxr-xr-xbuch/papers/multiplikation/references.bib37
20 files changed, 256 insertions, 122 deletions
diff --git a/buch/papers/multiplikation/code/MM.py b/buch/papers/multiplikation/code/MM.py
index 626b82d..352771f 100644
--- a/buch/papers/multiplikation/code/MM.py
+++ b/buch/papers/multiplikation/code/MM.py
@@ -174,10 +174,11 @@ def test_perfomance(n):
plt.plot(n, t_mm_strassen, label='Strassen', lw=5)
plt.plot(n, t_wino, label='Winograd', lw=5)
plt.plot(n, t_np, label='NumPy A@B', lw=5)
+ plt.xscale('log', base=2)
plt.legend()
plt.xlabel("n")
plt.ylabel("time (s)")
- plt.grid(True)
+ plt.grid(True, which="both", ls="-")
plt.tight_layout()
# plt.yscale('log')
plt.legend(fontsize=19)
@@ -198,7 +199,7 @@ def plot(num):
plt.plot(n, t_mm, label='3 For Loops', lw=5)
plt.plot(n, t_mm_dc, label='Divide and Conquer', lw=5)
plt.plot(n, t_mm_strassen, label='Strassen', lw=5)
- # plt.plot(n, t_wino, label='Winograd', lw=5)
+ plt.plot(n, t_wino, label='Winograd', lw=5)
plt.plot(n, t_np, label='NumPy A@B', lw=5)
plt.legend()
plt.xlabel("n")
@@ -275,22 +276,22 @@ def plot_c_res(ave, num):
# test%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if __name__ == '__main__':
- plot_c_res(1, 4096)
+ # plot_c_res(1, 4096)
# plot(8)
- # n = np.logspace(1,10,10,base=2,dtype=(np.int))
+ n = np.logspace(1,8,8,base=2,dtype=(np.int))
# n = np.arange(1,50,2)
- A = np.random.randint(-10, 10, (5,3))
- B = np.random.randint(-10, 10, (3,5))
+ # A = np.random.randint(-10, 6, (5,3))
+ # B = np.random.randint(-10, 6, (3,5))
- C = winograd2(A, B)
- C_test = A@B
- print(C)
- print(C_test)
+ # C = winograd2(A, B)
+ # C_test = A@B
+ # print(C)
+ # print(C_test)
# print(np.equal(C, C_test))
- # t_np = test_perfomance(n)
+ t_np = test_perfomance(n)
# C = strassen(A, B)
# C_test = A@B
diff --git a/buch/papers/multiplikation/code/meas_1024.pdf b/buch/papers/multiplikation/code/meas_1024.pdf
index fd0a108..7b7a133 100644
--- a/buch/papers/multiplikation/code/meas_1024.pdf
+++ b/buch/papers/multiplikation/code/meas_1024.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_1024.txt b/buch/papers/multiplikation/code/meas_1024.txt
index c5ce619..ab507a2 100644
--- a/buch/papers/multiplikation/code/meas_1024.txt
+++ b/buch/papers/multiplikation/code/meas_1024.txt
@@ -1,6 +1,6 @@
2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02 2.560000000000000000e+02 5.120000000000000000e+02 1.024000000000000000e+03
-1.502037048339843750e-05 6.628036499023437500e-05 4.780292510986328125e-04 2.713203430175781250e-03 2.115225791931152344e-02 1.758832931518554688e-01 1.338865518569946289e+00 1.009106445312500000e+01 8.192077994346618652e+01 7.835870332717895508e+02
-6.675720214843750000e-06 7.200241088867187500e-05 5.540847778320312500e-04 3.144979476928710938e-03 2.545046806335449219e-02 2.083067893981933594e-01 1.659256219863891602e+00 1.319160294532775879e+01 1.046767003536224365e+02 9.679818902015686035e+02
-1.668930053710937500e-05 1.628398895263671875e-04 7.648468017578125000e-04 4.426956176757812500e-03 2.922415733337402344e-02 1.800994873046875000e-01 1.286747694015502930e+00 9.412034273147583008e+00 6.263725924491882324e+01 4.427414393424987793e+02
-2.408027648925781250e-05 8.463859558105468750e-05 4.761219024658203125e-04 2.339839935302734375e-03 1.682758331298828125e-02 1.299476623535156250e-01 1.048770904541015625e+00 8.114667415618896484e+00 6.373566389083862305e+01 6.489995403289794922e+02
-1.573562622070312500e-05 7.152557373046875000e-06 7.152557373046875000e-06 2.074241638183593750e-05 5.388259887695312500e-05 6.365776062011718750e-05 3.257751464843750000e-03 1.396179199218750000e-03 3.274917602539062500e-03 2.186250686645507812e-02
+1.859664916992187500e-05 8.296966552734375000e-05 5.471706390380859375e-04 3.053665161132812500e-03 2.407431602478027344e-02 1.868948936462402344e-01 1.563691616058349609e+00 1.100623321533203125e+01 8.547679090499877930e+01 7.507572824954986572e+02
+8.106231689453125000e-06 9.012222290039062500e-05 7.290840148925781250e-04 4.970788955688476562e-03 2.718997001647949219e-02 2.652802467346191406e-01 1.777865171432495117e+00 1.327002429962158203e+01 1.053971357345581055e+02 8.473208103179931641e+02
+2.098083496093750000e-05 1.742839813232421875e-04 9.438991546630859375e-04 4.754066467285156250e-03 4.852557182312011719e-02 2.204136848449707031e-01 1.447179555892944336e+00 9.938656568527221680e+00 6.396102952957153320e+01 4.614939928054809570e+02
+2.789497375488281250e-05 1.049041748046875000e-04 5.528926849365234375e-04 4.555702209472656250e-03 1.871442794799804688e-02 1.530685424804687500e-01 1.194762229919433594e+00 8.298985958099365234e+00 6.836994743347167969e+01 5.373736469745635986e+02
+1.835823059082031250e-05 7.867813110351562500e-06 1.001358032226562500e-05 5.412101745605468750e-05 4.267692565917968750e-05 1.184940338134765625e-04 2.441406250000000000e-04 6.957054138183593750e-04 2.217054367065429688e-03 1.880884170532226562e-02
diff --git a/buch/papers/multiplikation/code/meas_128.pdf b/buch/papers/multiplikation/code/meas_128.pdf
index ed1ec63..c54648f 100644
--- a/buch/papers/multiplikation/code/meas_128.pdf
+++ b/buch/papers/multiplikation/code/meas_128.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_128.txt b/buch/papers/multiplikation/code/meas_128.txt
index 976bbdf..f3a5beb 100644
--- a/buch/papers/multiplikation/code/meas_128.txt
+++ b/buch/papers/multiplikation/code/meas_128.txt
@@ -1,6 +1,6 @@
2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02
-1.978874206542968750e-05 1.134872436523437500e-04 4.298686981201171875e-04 2.815246582031250000e-03 2.616596221923828125e-02 1.767718791961669922e-01 1.293319463729858398e+00
-6.675720214843750000e-06 1.251697540283203125e-04 4.818439483642578125e-04 3.490447998046875000e-03 2.465796470642089844e-02 2.014584541320800781e-01 1.630620479583740234e+00
-2.408027648925781250e-05 2.126693725585937500e-04 1.172780990600585938e-03 4.364490509033203125e-03 3.148293495178222656e-02 2.010228633880615234e-01 1.429297924041748047e+00
-2.932548522949218750e-05 1.466274261474609375e-04 4.270076751708984375e-04 2.837419509887695312e-03 1.723575592041015625e-02 1.308519840240478516e-01 1.015527009963989258e+00
-3.337860107421875000e-05 1.096725463867187500e-05 9.536743164062500000e-06 3.600120544433593750e-05 2.837181091308593750e-05 5.912780761718750000e-05 1.981019973754882812e-03
+1.239776611328125000e-05 5.507469177246093750e-05 3.888607025146484375e-04 2.762079238891601562e-03 2.097773551940917969e-02 1.672370433807373047e-01 1.410297393798828125e+00
+5.483627319335937500e-06 5.888938903808593750e-05 3.871917724609375000e-04 3.364324569702148438e-03 2.481031417846679688e-02 2.047052383422851562e-01 1.712310314178466797e+00
+1.358985900878906250e-05 1.189708709716796875e-04 6.430149078369140625e-04 5.586385726928710938e-03 3.101944923400878906e-02 1.874091625213623047e-01 1.327976465225219727e+00
+1.978874206542968750e-05 7.224082946777343750e-05 4.618167877197265625e-04 3.294944763183593750e-03 1.755571365356445312e-02 1.360688209533691406e-01 1.028253555297851562e+00
+1.215934753417968750e-05 5.722045898437500000e-06 2.074241638183593750e-05 4.339218139648437500e-05 2.813339233398437500e-05 5.292892456054687500e-05 1.921653747558593750e-04
diff --git a/buch/papers/multiplikation/code/meas_256.pdf b/buch/papers/multiplikation/code/meas_256.pdf
index 5f049dc..4ca7102 100644
--- a/buch/papers/multiplikation/code/meas_256.pdf
+++ b/buch/papers/multiplikation/code/meas_256.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_256.txt b/buch/papers/multiplikation/code/meas_256.txt
index 15035c6..2ca4447 100644
--- a/buch/papers/multiplikation/code/meas_256.txt
+++ b/buch/papers/multiplikation/code/meas_256.txt
@@ -1,6 +1,6 @@
2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02 2.560000000000000000e+02
-1.049041748046875000e-05 5.340576171875000000e-05 5.936622619628906250e-04 2.707719802856445312e-03 2.246093750000000000e-02 1.631326675415039062e-01 1.335460901260375977e+00 1.052024245262145996e+01
-4.768371582031250000e-06 5.531311035156250000e-05 8.208751678466796875e-04 3.099203109741210938e-03 2.490711212158203125e-02 2.070860862731933594e-01 1.739669799804687500e+00 1.384817218780517578e+01
-1.478195190429687500e-05 1.132488250732421875e-04 5.970001220703125000e-04 3.906726837158203125e-03 3.041696548461914062e-02 2.000186443328857422e-01 1.392681598663330078e+00 9.388872385025024414e+00
-1.716613769531250000e-05 6.866455078125000000e-05 5.314350128173828125e-04 2.688407897949218750e-03 1.695108413696289062e-02 1.297233104705810547e-01 1.087257385253906250e+00 8.699601650238037109e+00
-2.336502075195312500e-05 4.529953002929687500e-06 8.106231689453125000e-06 4.291534423828125000e-05 6.008148193359375000e-05 8.988380432128906250e-05 1.647472381591796875e-04 4.460811614990234375e-04
+1.096725463867187500e-05 5.531311035156250000e-05 3.712177276611328125e-04 2.662897109985351562e-03 2.111244201660156250e-02 1.660463809967041016e-01 1.280746459960937500e+00 1.149287748336791992e+01
+5.483627319335937500e-06 5.745887756347656250e-05 4.055500030517578125e-04 3.203868865966796875e-03 2.503871917724609375e-02 2.148163318634033203e-01 1.655935287475585938e+00 1.472915720939636230e+01
+1.335144042968750000e-05 1.153945922851562500e-04 6.134510040283203125e-04 3.850460052490234375e-03 2.817606925964355469e-02 1.827111244201660156e-01 1.277473211288452148e+00 9.337273359298706055e+00
+1.907348632812500000e-05 9.274482727050781250e-05 3.526210784912109375e-04 2.403974533081054688e-03 1.725149154663085938e-02 1.314754486083984375e-01 1.121860027313232422e+00 8.884316682815551758e+00
+3.147125244140625000e-05 6.675720214843750000e-06 4.768371582031250000e-06 7.867813110351562500e-06 2.574920654296875000e-05 5.888938903808593750e-05 2.071857452392578125e-04 6.518363952636718750e-04
diff --git a/buch/papers/multiplikation/code/meas_32.pdf b/buch/papers/multiplikation/code/meas_32.pdf
index 94c3731..b926095 100644
--- a/buch/papers/multiplikation/code/meas_32.pdf
+++ b/buch/papers/multiplikation/code/meas_32.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_32.txt b/buch/papers/multiplikation/code/meas_32.txt
index afdb6d5..0fdc18d 100644
--- a/buch/papers/multiplikation/code/meas_32.txt
+++ b/buch/papers/multiplikation/code/meas_32.txt
@@ -1,6 +1,6 @@
2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01
-1.215934753417968750e-05 5.459785461425781250e-05 3.700256347656250000e-04 3.249406814575195312e-03 1.996850967407226562e-02
-4.529953002929687500e-06 5.650520324707031250e-05 4.577636718750000000e-04 4.029273986816406250e-03 2.444481849670410156e-02
-1.311302185058593750e-05 1.165866851806640625e-04 6.275177001953125000e-04 4.323244094848632812e-03 2.624726295471191406e-02
-1.835823059082031250e-05 6.890296936035156250e-05 3.914833068847656250e-04 2.423048019409179688e-03 1.761770248413085938e-02
-1.263618469238281250e-05 5.006790161132812500e-06 5.960464477539062500e-06 1.144409179687500000e-05 3.600120544433593750e-05
+1.239776611328125000e-05 5.507469177246093750e-05 3.802776336669921875e-04 2.795457839965820312e-03 2.073740959167480469e-02
+5.006790161132812500e-06 5.841255187988281250e-05 3.988742828369140625e-04 3.505229949951171875e-03 2.511668205261230469e-02
+1.335144042968750000e-05 1.149177551269531250e-04 6.387233734130859375e-04 4.088878631591796875e-03 2.969408035278320312e-02
+1.955032348632812500e-05 8.058547973632812500e-05 3.998279571533203125e-04 2.514839172363281250e-03 1.842117309570312500e-02
+1.215934753417968750e-05 8.583068847656250000e-06 6.675720214843750000e-06 2.694129943847656250e-05 2.789497375488281250e-05
diff --git a/buch/papers/multiplikation/code/meas_64.pdf b/buch/papers/multiplikation/code/meas_64.pdf
index 3a90949..92af29b 100644
--- a/buch/papers/multiplikation/code/meas_64.pdf
+++ b/buch/papers/multiplikation/code/meas_64.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_64.txt b/buch/papers/multiplikation/code/meas_64.txt
index ae6ff9b..b4fc7a1 100644
--- a/buch/papers/multiplikation/code/meas_64.txt
+++ b/buch/papers/multiplikation/code/meas_64.txt
@@ -1,6 +1,6 @@
2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01
-1.645088195800781250e-05 7.295608520507812500e-05 3.807544708251953125e-04 2.672195434570312500e-03 2.010774612426757812e-02 1.662156581878662109e-01
-7.390975952148437500e-06 7.843971252441406250e-05 4.265308380126953125e-04 3.107070922851562500e-03 2.457642555236816406e-02 2.122807502746582031e-01
-1.931190490722656250e-05 1.568794250488281250e-04 7.593631744384765625e-04 3.937005996704101562e-03 3.596329689025878906e-02 2.131938934326171875e-01
-2.622604370117187500e-05 9.226799011230468750e-05 3.504753112792968750e-04 2.469539642333984375e-03 1.652932167053222656e-02 1.281068325042724609e-01
-1.788139343261718750e-05 7.152557373046875000e-06 6.914138793945312500e-06 1.120567321777343750e-05 2.884864807128906250e-05 6.914138793945312500e-05
+2.145767211914062500e-05 6.175041198730468750e-05 4.422664642333984375e-04 3.235816955566406250e-03 2.289748191833496094e-02 1.855163574218750000e-01
+1.025199890136718750e-05 6.341934204101562500e-05 5.202293395996093750e-04 3.566026687622070312e-03 3.026723861694335938e-02 2.312932014465332031e-01
+2.384185791015625000e-05 1.807212829589843750e-04 6.821155548095703125e-04 4.796504974365234375e-03 2.968001365661621094e-02 2.291278839111328125e-01
+3.504753112792968750e-05 1.106262207031250000e-04 4.322528839111328125e-04 2.696514129638671875e-03 2.188420295715332031e-02 1.477701663970947266e-01
+3.218650817871093750e-05 1.144409179687500000e-05 7.390975952148437500e-06 4.625320434570312500e-05 3.814697265625000000e-05 5.435943603515625000e-05
diff --git a/buch/papers/multiplikation/einlteung.tex b/buch/papers/multiplikation/einlteung.tex
index bc4bfcf..ea71d91 100755
--- a/buch/papers/multiplikation/einlteung.tex
+++ b/buch/papers/multiplikation/einlteung.tex
@@ -17,14 +17,8 @@ Koeffizienten
c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}.
\label{multiplikation:eq:MM}
\end{equation}
-Grafisch kann die Matrizenmultiplikation $AB=C$ wie in \ref{multiplikation:fig:mm_viz} visualisiert werden.
-\begin{figure}
- \center
- \includegraphics[]{papers/multiplikation/images/mm_visualisation}
- \caption{Matrizen Multiplikation}
- \label{multiplikation:fig:mm_viz}
-\end{figure}
-Im Fall einer Matrizengr\"osse von $2\times 2$
+Grafisch kann die Matrizenmultiplikation $\mathbf{AB}=\mathbf{C}$ wie in \ref{multiplikation:fig:mm_viz} visualisiert werden.
+Im Fall einer Matrizengr\"osse von $2\times 2$ kann die Matrixgleichung
\begin{equation}
\begin{bmatrix}
A_{11} & A_{12}\\
@@ -40,7 +34,7 @@ C_{11} & C_{12}\\
C_{21} & C_{22}
\end{bmatrix}
\end{equation}
-kann die Gleichung der einzelnen Terme
+explizt als Gleichung
\begin{equation} \label{multiplikation:eq:MM_exp}
\begin{split}
C_{11} &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21}\\
@@ -49,4 +43,10 @@ C_{21} &= A_{21} \cdot B_{11} + A_{22} \cdot B_{21}\\
C_{22} &= A_{21} \cdot B_{12} + A_{22} \cdot B_{22}
\end{split}
\end{equation}
-explizit geschrieben werden.
+der einzelnen Terme geschrieben werden.
+\begin{figure}
+ \center
+ \includegraphics[]{papers/multiplikation/images/mm_visualisation}
+ \caption{Matrizen Multiplikation}
+ \label{multiplikation:fig:mm_viz}
+\end{figure} \ No newline at end of file
diff --git a/buch/papers/multiplikation/images/bigo.pdf b/buch/papers/multiplikation/images/bigo.pdf
index dfa2ba4..c29a891 100644
--- a/buch/papers/multiplikation/images/bigo.pdf
+++ b/buch/papers/multiplikation/images/bigo.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/images/bigo.tex b/buch/papers/multiplikation/images/bigo.tex
index e3293e4..a415ccb 100644
--- a/buch/papers/multiplikation/images/bigo.tex
+++ b/buch/papers/multiplikation/images/bigo.tex
@@ -39,67 +39,71 @@
\begin{document}
\begin{tikzpicture}
+
\begin{axis}[
- axis lines = left,
+ xmode=log, ymode=log,
+ xmin=1e-0, xmax=5e1,
+ ymin=10e-1, ymax=1e7,
+ grid=both,
+ major grid style={black!50},
xlabel = $n$ (Data Input),
ylabel = {$t$ (time)},
legend pos=north east,
very thick,
- ymax = 500,
yticklabels=\empty,
xticklabels=\empty,
scale only axis=true,
width=12cm, height=6cm,
]
\addplot [
- domain= 1:20,
+ domain= 1:50,
samples=100,
color=red,
]
{1};
\addlegendentry{$\mathcal{O}(1)$}
\addplot [
- domain= 1:20,
+ domain= 1:50,
samples=100,
color=green,
]
{x};
\addlegendentry{$\mathcal{O}(n)$}
\addplot [
- domain= 1:20,
+ domain= 1:50,
samples=100,
color=blue,
]
{x^2};
-\addlegendentry{$\mathcal{O}(n^2)$}
+\addlegendentry{$\mathcal{O}\left(n^2\right)$}
\addplot [
- domain= 1:10,
+ domain= 1:50,
samples=100,
color=purple,
]
{x^3};
-\addlegendentry{$\mathcal{O}(n^3)$}
+\addlegendentry{$\mathcal{O}\left(n^3\right)$}
\addplot [
- domain= 1:10,
+ domain= 1:50,
samples=100,
color=black,
]
-{exp(x)};
-\addlegendentry{$\mathcal{O}(e^n)$}
+{exp(x) - 1.7};
+\addlegendentry{$\mathcal{O}\left(e^n\right)$}
\addplot [
- domain= 1:20,
+ domain= 1:50,
samples=100,
color=orange,
]
-{log2(x)};
+{log2(x)+1};
\addlegendentry{$\mathcal{O}(\log n)$}
\addplot [
- domain= 1:20,
+ domain= 1:50,
samples=100,
color=gray,
]
-{x*log2(x)};
+{x*log2(x)+1};
\addlegendentry{$\mathcal{O}(n \log n)$}
\end{axis}
\end{tikzpicture}
diff --git a/buch/papers/multiplikation/images/strassen.pdf b/buch/papers/multiplikation/images/strassen.pdf
index 9899dcb..a30fdaa 100644
--- a/buch/papers/multiplikation/images/strassen.pdf
+++ b/buch/papers/multiplikation/images/strassen.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/images/strassen.tex b/buch/papers/multiplikation/images/strassen.tex
index 797772b..5cf39b4 100644
--- a/buch/papers/multiplikation/images/strassen.tex
+++ b/buch/papers/multiplikation/images/strassen.tex
@@ -81,13 +81,13 @@
\node at (-3,-10) {$C_{12}=$} ;
\node at (-3,-5) {$C_{11}=$} ;
- \node at (5,-2) {I};
- \node at (10,-2) {II};
- \node at (15,-2) {III};
- \node at (20,-2) {IV};
- \node at (25,-2) {V};
- \node at (30,-2) {VI};
- \node at (35,-2) {VII};
+ \node at (5,-2) {P};
+ \node at (10,-2) {Q};
+ \node at (15,-2) {R};
+ \node at (20,-2) {S};
+ \node at (25,-2) {T};
+ \node at (30,-2) {U};
+ \node at (35,-2) {V};
}
diff --git a/buch/papers/multiplikation/loesungsmethoden.tex b/buch/papers/multiplikation/loesungsmethoden.tex
index 83be814..b25462a 100755
--- a/buch/papers/multiplikation/loesungsmethoden.tex
+++ b/buch/papers/multiplikation/loesungsmethoden.tex
@@ -4,16 +4,16 @@
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{L\"osungsmethoden}
-\rhead{L\"osungsmethoden}
+\section{Algorithmen}
+\rhead{Algorithmen}
In diesem Abschnitt werden mehrere Algorithmen zur Berechnung der Matrizenmultiplikation vorgestellt, auch werden Libraries zur automatisierten Verwendung von vordefinierten Algorithmen gezeigt.
\subsection{Standard Algorithmus}
-Der Standard Methode kann im Algorithmus \ref{multiplikation:alg:smm} entnommen werden.
+Die Standardmethode kann im Algorithmus \ref{multiplikation:alg:smm} entnommen werden.
Hierf\"ur wurde die Gleichung \eqref{multiplikation:eq:MM} direkt implementiert.
-Die \texttt{For i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, die \texttt{For j} Schleife iteriert \"uber alle Spalten der $\mathbf{B}$ Matrix und die \texttt{For k} Schleife iteriert \"uber alle Eintr\"age dieser Zeilen bzw. Spalten.
+Die \texttt{for i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, die \texttt{for j} Schleife iteriert \"uber alle Spalten der $\mathbf{B}$ Matrix und die \texttt{for k} Schleife iteriert \"uber alle Eintr\"age dieser Zeilen bzw. Spalten.
\begin{algorithm}\caption{Matrix Multiplication}
\label{multiplikation:alg:smm}
@@ -39,16 +39,18 @@ Die \texttt{For i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix,
\end{algorithmic}
\end{algorithm}
-Die Laufzeit dieser Struktur mit drei \texttt{For} Schleifen ist $\mathcal{O}(n^3)$
+Die Laufzeit dieser Struktur mit drei \texttt{For} Schleifen ist $\mathcal{O}\left(n^3\right)$
\subsubsection{Divide and Conquer Methode}
-F\"ur gewisse Algorithmen f\"uhren \textit{Divide and Conquer} Ans\"atze zu markant besseren Laufzeiten.
-Das bekannteste Beispiel ist wohl die \textit{Fast Fourier Transform} wobei die Laufzeit von $\mathcal{O}(n^2)$ zu $\mathcal{O}(n \log n)$ verbessert werden kann.
+F\"ur gewisse Algorithmen f\"uhren \textit{Divide and Conquer} Ans\"atze \cite{multiplikation:DAC} zu markant besseren Laufzeiten.
+Die Grundidee ist, dass ein Problem in mehrere, meist simplere und kleinere Teilprobleme aufgeteilt wird.
+Das bekannteste Beispiel ist wohl die \textit{Fast Fourier Transform} wobei die Laufzeit von $\mathcal{O}\left(n^2\right)$ zu $\mathcal{O}(n \log n)$ verbessert werden kann.
Die Matrizenmultiplikation kann ebenfalls mit solch einem Ansatz berechnet werden.
-Zur vereinfachten Veranschaulichung kann die Situation, mit $\mathbf{A}$ und $\mathbf{B}$ der gr\"osse $2^n \times 2^n$ verwendet werden.
-Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen der gr\"osse $2^{n-1} \times 2^{n-1}$
+Zur vereinfachten Veranschaulichung kann die Situation mit $\mathbf{A}$ und $\mathbf{B}$ der Gr\"osse $2^n \times 2^n$ verwendet werden.
+Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen der Gr\"osse $2^{n-1} \times 2^{n-1}$ aufgeteilt.
+Das Matrizen produklt
\begin{equation}
\mathbf{A}\mathbf{B}=
\begin{bmatrix}
@@ -63,15 +65,13 @@ Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen
\begin{bmatrix}
\mathbf{C}_{11} & \mathbf{C}_{12}\\
\mathbf{C}_{21} & \mathbf{C}_{22}
-\end{bmatrix}
+\end{bmatrix},
\end{equation}
-aufgeteilt.
-Die Berechnung
\begin{equation}
\mathbf{C}_{ij} = \sum_{k=1}^n \mathbf{A}_{ik} \mathbf{B}_{kj}
\label{multiplikation:eq:MM_block}
\end{equation}
-ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, wobei hier f\"ur die Multiplikation die Matrizenmultiplikation verwendet wird.
+ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, f\"ur die Multiplikation wird die Matrizenmultiplikation verwendet.
Der Algorithmus \ref{multiplikation:alg:devide_mm} zeigt den \textit{Divide and Conquer} Ansatz,
Der Grundstruktur dieser Methode besteht aus dem rekursiven Aufruf der Funktion mit den erzeugten Blockmatrizen.
@@ -105,15 +105,11 @@ Der rekursive Aufruf wird bis zu der Gr\"osse der Matrizen von $N = 2 \times 2$
\end{algorithmic}
\end{algorithm}
-Die Laufzeit dieser rekursiven Funktion kann mit dem \textit{Master Theorem} berechnet werden.
-Ohne auf diesen vertieft einzugehen, bestimmt die Anzahl rekursiver Aufrufe der Funktion die Laufzeit.
+Die Laufzeit dieser rekursiven Funktion kann mit dem \textit{Master Theorem} \cite{multiplikation:master_theorem} berechnet werden. Das \textit{Master Theorem} bestimmt die Zeitkomplexit\"at von rekursiven Algortihmen.
+Ohne auf dieses vertieft einzugehen, bestimmt die Anzahl rekursiver Aufrufe der Funktion die Laufzeit.
In diesem Fall wird die Funktion pro Durchlauf acht mal rekursiv aufgerufen, dies f\"uhrt
\begin{equation} \label{multiplikation:eq:laufzeitdac}
- \mathcal{T}(n) =
- \begin{cases}
- 1 & \text{if } n \leq 2\\
- 8 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2
- \end{cases} = \mathcal{O}(n^{\log_2 8}) = \mathcal{O}(n^{3})
+ \mathcal{T}(n) = 8 \cdot \mathcal{T}\left (\frac{n}{2}\right ) + n^2 = \mathcal{O}(n^{\log_2 8}) = \mathcal{O}\left (n^{3} \right )
\end{equation}
zu einer kubischen Laufzeit.
Die Addition zweier Matrizen $\mathbf{A} + \mathbf{B} = \mathbf{C}$ hat eine Laufzeit von $\mathcal{O}(n^{2})$ und kann neben dem dominierendem Anteil von $\mathcal{O}(n^{3})$ ignoriert werden.
@@ -122,20 +118,20 @@ In diesem Fall hat der \textit{Divide and Conquer} Ansatz zu keiner Verbesserung
\subsection{Strassen's Algorithmus}
-Strassen's Algorithmus \cite{multiplikation:strassen_1969} beschreibt die Matrizenmultiplikation mit einer Vielzahl von Additionen, Subtraktionen und Multiplikationen.
-Die Grundlegenden Terme
+Strassen's Algorithmus \cite{multiplikation:strassen_1969} beschreibt die Matrizenmultiplikation mit einer Vielzahl von Additionen, Subtraktionen und Multiplikationen von Blockmatrizen.
+Die grundlegenden Terme
\begin{equation} \label{multiplikation:eq:strassen}
\begin{split}
-\text{\textbf{P}} &= (\mathbf{A}_{11} + \mathbf{A}_{22}) \cdot (\mathbf{B}_{11} + \mathbf{B}_{22}) \\
-\text{\textbf{Q}} &= (\mathbf{A}_{21} + \mathbf{A}_{22}) \cdot \mathbf{B}_{11} \\
-\text{\textbf{R}} &= \mathbf{A}_{11} \cdot (\mathbf{B}_{12}-\mathbf{B}_{22}) \\
-\text{\textbf{S}} &= \mathbf{A}_{22} \cdot (-\mathbf{B}_{11}+\mathbf{B}_{21}) \\
-\text{\textbf{T}} &= (\mathbf{A}_{11} + \mathbf{A}_{12}) \cdot \mathbf{B}_{22} \\
-\text{\textbf{U}} &= (-\mathbf{A}_{11} + \mathbf{A}_{21}) \cdot (\mathbf{B}_{11} + \mathbf{B}_{12}) \\
-\text{\textbf{V}} &= (\mathbf{A}_{12} - \mathbf{A}_{22}) \cdot (\mathbf{B}_{21} + \mathbf{B}_{22})
+\text{\textbf{P}} &= \left(\mathbf{A}_{11} + \mathbf{A}_{22}\right ) \cdot \left(\mathbf{B}_{11} + \mathbf{B}_{22}\right ) \\
+\text{\textbf{Q}} &= \left(\mathbf{A}_{21} + \mathbf{A}_{22}\right ) \cdot \mathbf{B}_{11} \\
+\text{\textbf{R}} &= \mathbf{A}_{11} \cdot \left(\mathbf{B}_{12}-\mathbf{B}_{22}\right ) \\
+\text{\textbf{S}} &= \mathbf{A}_{22} \cdot \left(-\mathbf{B}_{11}+\mathbf{B}_{21}\right ) \\
+\text{\textbf{T}} &= \left(\mathbf{A}_{11} + \mathbf{A}_{12}\right ) \cdot \mathbf{B}_{22} \\
+\text{\textbf{U}} &= \left(-\mathbf{A}_{11} + \mathbf{A}_{21}\right ) \cdot \left(\mathbf{B}_{11} + \mathbf{B}_{12}\right ) \\
+\text{\textbf{V}} &= \left(\mathbf{A}_{12} - \mathbf{A}_{22}\right ) \cdot \left(\mathbf{B}_{21} + \mathbf{B}_{22}\right )
\end{split}
\end{equation}
-aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Matrix $\mathbf{C}$
+aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Bl\"ocke
\begin{equation} \label{multiplikation:eq:strassen2}
\begin{split}
\mathbf{C}_{11} &= \text{\textbf{P}} + \text{\textbf{S}} - \text{\textbf{T}} + \text{\textbf{V}} \\
@@ -144,7 +140,7 @@ aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Matrix $\math
\mathbf{C}_{22} &= \text{\textbf{P}} + \text{\textbf{R}} - \text{\textbf{Q}} + \text{\textbf{U}}
\end{split}
\end{equation}
-gebraucht.
+der Matrix $\mathbf{C}$ gebraucht.
\begin{algorithm}\caption{Strassen Matrix Multiplication}
\label{multiplikation:alg:strassen}
\setlength{\lineskip}{7pt}
@@ -190,7 +186,11 @@ gebraucht.
\EndFunction
\end{algorithmic}
\end{algorithm}
-Strassens's Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt.
+Strassen's Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt.
+Jedes Feld steht f\"ur eine Multiplikation zweier Matrizenelementen von $\mathbf{A}$ oder $\mathbf{B}$ .
+Die gr\"unen Felder auf der linken Seite, zeigen die addition welche f\"ur den dazugeh\"origen Term ben\"otigt wird.
+Die sieben Spalten beschreiben die Matrizen $\mathbf{P,Q,R, \dotsb, V}$.
+Rote Felder stehen f\"ur eine Subtraktion und die gr\"unen f\"ur eine Addition.
\begin{figure}
\center
\includegraphics[width=\linewidth]{papers/multiplikation/images/strassen.pdf}
@@ -202,17 +202,14 @@ Die Funktion wird sieben mal rekursiv aufgerufen.
Dies f\"uhrt zu einer Laufzeit von
\begin{equation} \label{multiplikation:eq:laufzeitstrassen}
\mathcal{T}(n) =
-\begin{cases}
-1 & \text{if } n \leq 2\\
-7 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2
-\end{cases} = \mathcal{O}(n^{\log_2 7}) = \mathcal{O}(n^{2.8074})
+7 \cdot \mathcal{T}(\frac{n}{2}) + n^2 = \mathcal{O}\left(n^{\log_2 7}\right ) = \mathcal{O}\left(n^{2.8074} \right )
\end{equation}
-und ist somit schneller als die Standard Methode.
+und ist somit schneller als die Standardmethode.
\subsection{Winograd's Algorithmus}
-Ein weiterer Ansatz lieferte Shmuel Winograd im Jahre 1968 \cite{multiplikation:winograd_1968}.
-Er zeigte einen neuen Algorithmus f\"ur das
+Einen weiteren Ansatz lieferte Shmuel Winograd im Jahre 1968 \cite{multiplikation:winograd_1968}.
+Er beschrieb einen neuen Algorithmus f\"ur das
\begin{equation}
\langle x,y \rangle = \sum_{i=1}^{n}x_i y_i
\end{equation}
@@ -236,6 +233,7 @@ Das Skalarprodukt ist nun geben mit
Angenommen man hat $N$ Vektoren mit welchen man $T$ Skalarprodukte berechnen m\"ochte.
Daf\"ur werden $N\lfloor n/2 \rfloor + T\lfloor (n+1)/2 \rfloor $ Multiplikationen ben\"otigt.
+
Eine Matrizenmultiplikation mit $\mathbf{A}$ einer $m \times n$ und $\mathbf{B}$ einer $n \times p$ Matrix, entspricht $N=m+p$ Vektoren mit welchen man $T=mp$ Skalarprodukte berechnet.
Dies f\"uhrt zu
\begin{equation}
@@ -243,8 +241,8 @@ Dies f\"uhrt zu
\end{equation}
Multiplikationen.
Wenn $m,p,n$ gross werden, dominiert der Term $\frac{mpn}{2}$ und es werden $\frac{mpn}{2}$ Multiplikationen ben\"otigt.
-Was im Vergleich zu den $mpn$ Multiplikation der Standard Methode nur die H\"alfte ist.
-Die Implementation kann im Algorithmus \ref{multiplikation:alg:winograd} entnommen werden.
+Was im Vergleich zu den $mpn$ Multiplikation der Standardmethode nur die H\"alfte ist.
+Die Implementation kann Algorithmus \ref{multiplikation:alg:winograd} entnommen werden.
\begin{algorithm}\caption{Winograd Matrix Multiplication}
\setlength{\lineskip}{7pt}
@@ -297,13 +295,80 @@ Die Implementation kann im Algorithmus \ref{multiplikation:alg:winograd} entnomm
\end{algorithmic}
\end{algorithm}
-\subsection{Weitere Algorithmen}
+\subsection{Basic Linear Algebra Subprograms (BLAS)}
+
+die gebr\"uchlichen Methode f\"ur die Anwendung einer optimierten Matrizenmultiplikation ist die Verwendung einer Subrutine aus den \textit{Basic Linear Algebra Subprograms (BLAS)} \cite{multiplikation:BLAS}.
+Die meisten Numerischen Bibliotheken von High-Level Skriptsprachen wie \texttt{Matlab}, \texttt{NumPy (Python)}, \texttt{GNU Octave} oder \texttt{Mathematica} ben\"utzen eine Form von \textit{BLAS}.
+
+\textit{BLAS} sind dabei in drei unterschiedliche Levels aufgeteilt.
+
+\begin{itemize}
+ \item Level 1
+ \begin{itemize}
+ \item Operationen der Art: $\mathbf{y} \leftarrow \alpha \mathbf{x}+\mathbf{y}$
+ \item Dieses Level hat $\mathcal{O}(n)$ karakteristik
+ \end{itemize}
+ \item Level 2
+ \begin{itemize}
+ \item Operationen der Art: $\mathbf{y} \leftarrow \alpha \mathbf{A}\mathbf{x}+\beta \mathbf{y}$
+ \item Dieses Level hat $\mathcal{O}\left(n^2\right)$ karakteristik
+ \end{itemize}
+ \item Level 3
+ \begin{itemize}
+ \item Operationen der Art: $\mathbf{C} \leftarrow \alpha \mathbf{A}\mathbf{B}+\beta\mathbf{C}$
+ \item Dieses Level hat $\mathcal{O}\left(n^3\right)$ karakteristik
+ \end{itemize}
+\end{itemize}
+
+Die \textit{BLAS} sind auf die modernen Computer Prozessoren optimiert und k\"onnen dank einer ausgek\"ugelter Verwedung der Speicher Architektur zur erheblichen Leistungoprimierung f\"uhren.
+
+
+\subsubsection{General Matrix Multiplication (GEMM)}
+
+Die \textit{Double-GEMM} ist in \cite{multiplikation:DGEMM} definiert als:
+
+\textit{DGEMM performs one of the matrix-matrix operations}
+$$
+ C := \alpha \cdot op( A )\cdot op( B ) + \beta \cdot C,
+ $$
+ \textit{where op( X ) is one of}
+$$
+op( X ) = X \quad \text{ or } \quad op( X ) = X^T,
+$$
+ \textit{alpha and beta are scalars, and A, B and C are matrices, with op( A )
+ an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
+ }
+
+Die Implementaion von $\alpha\mathbf{A}\mathbf{B} + \beta \mathbf{C} = \mathbf{C}$, wobei $\alpha = 1.0$ und $\beta = 0.0$ in der \texttt{C}-Version von \textit{BLAS}, ist als
+\begin{lstlisting}[style=multiplikationC]
+cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
+ m, n, k, 1, A, m , B, k, 0, C, m);
+\end{lstlisting}
+definiert.
+
-\textcolor{red}{TODO: BLAS}
\section{Implementation}
\rhead{Implementation}
\textcolor{red}{TODO: messresultate}
+Folgende Algorithmen wurden jweiles in \texttt{C} und \texttt{Python} implementiert.
+\begin{itemize}
+ \item Standard Matrizenmultiplikation
+ \item \textit{Devide and Conquer} Matrizenmultiplikation
+ \item Strassen's Matrizenmultiplikation
+ \item Winograd's Matrizenmultiplikation
+ \item \texttt{CBLAS} Matrizenmultiplikation in \texttt{C}
+ \item \texttt{Numpy} Matrizenmultiplikation in \texttt{Python}
+\end{itemize}
+
\section{Fazit}
\rhead{Fazit}
+
+Wie man in \textcolor{red}{hyperlink Messresultate} gesehen haben, sind die geziegten Algorithmen, trotz den theoretisch geringeren Zeitkomplexitäten, den Implementationen der numerischen Bibliotheken klar unterlegen.
+Einen optimierten Speicherzugriff hat einen weitaus grösseren Einfluss auf die Laufzeit als die Zeitkomplexität des Algorithmus.
+
+Doch haben Entdeckungen wie jene von Strassen und Winograd ihre Daseinsberechtigung.
+Nicht auf jeden Computersystemen können die \textit{BLAS} angewandt werden.
+Denke man an sehr keleine Mikrocontroller ohne Floatingpoint Recheneinhieten oder auch an \textit{Field Programmable Gate Arrays (FPGA's)}.
+Sobland sehr grosse Matrizen multipliziert werden müssen und eine Addition in weniger Taktzyklen als eine Multiplikation durcheführt werden kann, können die gezeigten Algorithmen von Vorteil sein.
diff --git a/buch/papers/multiplikation/main.tex b/buch/papers/multiplikation/main.tex
index 8d0a8df..fb1908e 100755
--- a/buch/papers/multiplikation/main.tex
+++ b/buch/papers/multiplikation/main.tex
@@ -4,6 +4,28 @@
%
% (c) 2021 Hochschule Rapperswil
%
+\definecolor{mygreen}{RGB}{28,172,0} % color values Red, Green, Blue
+\definecolor{mylilas}{RGB}{170,55,241}
+\definecolor{backcolour}{rgb}{0.95,0.95,0.92}
+\lstdefinestyle{multiplikationC}{
+ numbers=left,
+ belowcaptionskip=1\baselineskip,
+ breaklines=true,
+ frame=l,
+ framerule=0pt,
+ framesep=-1pt,
+ xleftmargin=1em,
+ language=C,
+ showstringspaces=false,
+ basicstyle=\ttfamily,
+ keywordstyle=\bfseries\color{green!40!black},
+ commentstyle=\itshape\color{purple!40!black},
+ identifierstyle=\color{blue},
+ stringstyle=\color{red},
+ numberstyle=\ttfamily\tiny,
+ backgroundcolor=\color{backcolour}
+}
+
\chapter{Schnelle Matrizen Multiplikation\label{chapter:multiplikation}}
\lhead{FMM}
\begin{refsection}
diff --git a/buch/papers/multiplikation/problemstellung.tex b/buch/papers/multiplikation/problemstellung.tex
index b20a791..2688f27 100755
--- a/buch/papers/multiplikation/problemstellung.tex
+++ b/buch/papers/multiplikation/problemstellung.tex
@@ -6,24 +6,24 @@
\section{Problemstellung}
\rhead{Problemstellung}
Dank der breiten Anwendung der Matrizenmultiplikation ist eine effiziente L\"osung dieser Operation von grosser Bedeutung.
-Das Ziel dieses Papers ist verschiedenen Algorithmen der Matrizenmultiplikation vorzustellen.
-Wobei gezielt auf Algorithmen, welche das Problem schneller als der Standard Algorithmus L\"osen eingegangen wird.
+Das Ziel dieses Papers ist, verschiedenen Algorithmen der Matrizenmultiplikation vorzustellen.
+Gezielt werden auf Algorithmen, welche das Problem schneller als der Standard Algorithmus L\"osen eingegangen.
\subsection{Big $\mathcal{O}$ Notation}
Die Big $\mathcal{O}$ Notation beschreibt die Laufzeitkomplexit\"at eines Algorithmus \cite{multiplikation:bigo}.
-$f(x) \in \mathcal{O}(g(x))$ besagt das die Funktion $f$ nicht wesentlich schneller w\"achst als $g$ wenn $x \rightarrow \infty$.
+$f(x) \in \mathcal{O}(g(x))$ besagt, dass die Funktion $f$ nicht wesentlich schneller w\"achst als $g$ wenn $x \rightarrow \infty$.
Vereinfacht werden f\"ur Algorithmen die folgende Notation verwendet:
\begin{itemize}
\item $f \in \mathcal{O}(1) \rightarrow f$ ist beschr\"ankt
\item $f \in \mathcal{O}(n) \rightarrow f$ w\"achst linear
- \item $f \in \mathcal{O}(n^2) \rightarrow f$ w\"achst quadratisch
+ \item $f \in \mathcal{O}\left (n^2 \right ) \rightarrow f$ w\"achst quadratisch
\item $f \in \mathcal{O}(\log n) \rightarrow f$ w\"achst logarithmisch
\item $f \in \mathcal{O}(n \log n) \rightarrow f$ hat super-lineares Wachstum
- \item $f \in \mathcal{O}(e^n) \rightarrow f$ w\"achst exponentiell
+ \item $f \in \mathcal{O}\left (e^n \right ) \rightarrow f$ w\"achst exponentiell
\item usw.
\end{itemize}
-In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die Verschiedenen Laufzeiten miteinander verglichen werden.
+In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die verschiedenen Laufzeiten miteinander verglichen werden.
\begin{figure}
\center
@@ -33,9 +33,11 @@ In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die Verschiedenen Laufze
\end{figure}
\subsubsection{Beispiel Algorithmen}
+
+Folgend einige Beispiele von Algorithmen welche zu einer bestimmten Zeitkomplexit\"atsklasse zugeteilt werden kann.
\paragraph{Beschr\"ankter Algorithmus}
-Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden.
+Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden. Da $a$ und $b$ Skalare sind, hat keine Gr\"osse $n$ einen einfluss auf die Laufzeit.
\begin{algorithm}\caption{}
\label{multiplikation:alg:b1}
@@ -47,7 +49,7 @@ Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmu
\end{algorithmic}
\end{algorithm}
-Wobei Konstanten nicht beachtet werden, der Algorithmus \ref{multiplikation:alg:b2} f\"uhrt ebenso zu $\mathcal{O}(1)$ und nicht zu $\mathcal{O}(2)$.
+Konstanten werden nicht beachtet, der Algorithmus \ref{multiplikation:alg:b2} f\"uhrt ebenso zu $\mathcal{O}(1)$ und nicht zu $\mathcal{O}(2)$.
\begin{algorithm}\caption{}
\label{multiplikation:alg:b2}
@@ -63,13 +65,14 @@ Wobei Konstanten nicht beachtet werden, der Algorithmus \ref{multiplikation:alg:
\paragraph{Linearer Algorithmus}
-Folgender Algorithmus \ref{multiplikation:alg:l1} hat ein lineares $\mathcal{O}(n)$ Verhalten.
+Folgender Algorithmus \ref{multiplikation:alg:l1} hat ein lineares Verhalten.
+Die \texttt{for}-Schleife wird $n$-mal durchlaufen und f\"uhrt deshalb zu $\mathcal{O}(n)$.
\begin{algorithm}\caption{}
\setlength{\lineskip}{7pt}
\begin{algorithmic}
\label{multiplikation:alg:l1}
- \Function{L}{$\mathbf{A}, \mathbf{B}$,n}
+ \Function{L}{$\mathbf{a}, \mathbf{b}$,n}
\State $ sum \gets 0$
\For{$i = 0,1,2 \dots,n$}
\State $ sum \gets sum + A[i] \cdot B[i] $
@@ -83,7 +86,9 @@ Folgender Algorithmus \ref{multiplikation:alg:l1} hat ein lineares $\mathcal{O}(
\paragraph{Quadratischer Algorithmus}
-Folgender Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches $\mathcal{O}(n^2)$ Verhalten.
+Folgender Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches Verhalten.
+Die beiden \texttt{for}-Schleifen werden jeweils $n$-mal durchglaufen und f\"uhrt deshalb zu $\mathcal{O}\left(n^2\right)$.
+
\begin{algorithm}[H]\caption{}
\label{multiplikation:alg:q1}
diff --git a/buch/papers/multiplikation/references.bib b/buch/papers/multiplikation/references.bib
index 9d76e8e..8815386 100755
--- a/buch/papers/multiplikation/references.bib
+++ b/buch/papers/multiplikation/references.bib
@@ -63,3 +63,40 @@
month = {7},
day = {27}
}
+
+@online{multiplikation:master_theorem,
+ title = {Master theorem (analysis of algorithms)},
+ url = {https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)},
+ date = {2021-07-28},
+ year = {2021},
+ month = {7},
+ day = {28}
+}
+
+
+@online{multiplikation:DAC,
+ title = {Divide-and-conquer algorithm},
+ url = {https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm},
+ date = {2021-07-28},
+ year = {2021},
+ month = {7},
+ day = {28}
+}
+
+@online{multiplikation:BLAS,
+ title = {BLAS (Basic Linear Algebra Subprograms)},
+ url = {http://www.netlib.org/blas/},
+ date = {2021-08-01},
+ year = {2021},
+ month = {8},
+ day = {01}
+}
+
+@online{multiplikation:DGEMM,
+ title = {DGEMM},
+ url = {http://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_gaeda3cbd99c8fb834a60a6412878226e1.html#gaeda3cbd99c8fb834a60a6412878226e1},
+ date = {2021-08-01},
+ year = {2021},
+ month = {8},
+ day = {01}
+}