aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/multiplikation
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/multiplikation')
-rwxr-xr-xbuch/papers/multiplikation/code/MMbin26848 -> 0 bytes
-rwxr-xr-xbuch/papers/multiplikation/code/MM.c19
-rw-r--r--buch/papers/multiplikation/code/MM.py90
-rw-r--r--buch/papers/multiplikation/code/c_matrix.h204
-rw-r--r--buch/papers/multiplikation/code/c_meas_4096.pdfbin15865 -> 22207 bytes
-rw-r--r--buch/papers/multiplikation/code/ci.txt0
-rwxr-xr-xbuch/papers/multiplikation/code/helper_class.py5
-rw-r--r--buch/papers/multiplikation/code/meas/MM.txt112
-rw-r--r--buch/papers/multiplikation/code/meas/MM_dc.txt122
-rw-r--r--buch/papers/multiplikation/code/meas/blas.txt110
-rw-r--r--buch/papers/multiplikation/code/meas/ci/MM.txt0
-rw-r--r--buch/papers/multiplikation/code/meas/ci/Wino.txt0
-rw-r--r--buch/papers/multiplikation/code/meas/ci/blas.txt0
-rw-r--r--buch/papers/multiplikation/code/meas/ci/dc.txt0
-rw-r--r--buch/papers/multiplikation/code/meas/ci/strassen.txt0
-rw-r--r--buch/papers/multiplikation/code/meas/old/8196/MM.txt1
-rw-r--r--buch/papers/multiplikation/code/meas/old/8196/MM_dc.txt1
-rw-r--r--buch/papers/multiplikation/code/meas/old/8196/blas.txt1
-rw-r--r--buch/papers/multiplikation/code/meas/old/8196/strassen.txt1
-rw-r--r--buch/papers/multiplikation/code/meas/old/8196/winograd.txt1
-rw-r--r--buch/papers/multiplikation/code/meas/old/MM.txt12
-rw-r--r--buch/papers/multiplikation/code/meas/old/MM_dc.txt12
-rw-r--r--buch/papers/multiplikation/code/meas/old/blas.txt12
-rw-r--r--buch/papers/multiplikation/code/meas/old/strassen.txt12
-rw-r--r--buch/papers/multiplikation/code/meas/old/winograd.txt12
-rw-r--r--buch/papers/multiplikation/code/meas/strassen.txt120
-rw-r--r--buch/papers/multiplikation/code/meas/winograd.txt115
-rw-r--r--buch/papers/multiplikation/code/meas_1024.pdfbin17660 -> 18813 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_1024.txt10
-rw-r--r--buch/papers/multiplikation/code/meas_128.pdfbin17961 -> 18120 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_128.txt10
-rw-r--r--buch/papers/multiplikation/code/meas_256.pdfbin18067 -> 17715 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_256.txt10
-rw-r--r--buch/papers/multiplikation/code/meas_32.pdfbin17078 -> 17964 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_32.txt10
-rw-r--r--buch/papers/multiplikation/code/meas_4096.pdfbin0 -> 18300 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_4096.txt6
-rw-r--r--buch/papers/multiplikation/code/meas_64.pdfbin17678 -> 17747 bytes
-rw-r--r--buch/papers/multiplikation/code/meas_64.txt10
-rwxr-xr-xbuch/papers/multiplikation/einlteung.tex30
-rw-r--r--buch/papers/multiplikation/images/algo_tab.pdfbin0 -> 34251 bytes
-rw-r--r--buch/papers/multiplikation/images/algo_tab.tex122
-rw-r--r--buch/papers/multiplikation/images/bigo.pdfbin24288 -> 28312 bytes
-rw-r--r--buch/papers/multiplikation/images/bigo.tex43
-rw-r--r--buch/papers/multiplikation/images/c_meas_4096.pdfbin0 -> 17400 bytes
-rw-r--r--buch/papers/multiplikation/images/meas_1024.pdfbin0 -> 18813 bytes
-rw-r--r--buch/papers/multiplikation/images/meas_c.pdfbin0 -> 23887 bytes
-rw-r--r--buch/papers/multiplikation/images/meas_c.tex150
-rw-r--r--buch/papers/multiplikation/images/meas_python.pdfbin0 -> 22337 bytes
-rw-r--r--buch/papers/multiplikation/images/meas_python.tex145
-rw-r--r--buch/papers/multiplikation/images/strassen.pdfbin15850 -> 22262 bytes
-rw-r--r--buch/papers/multiplikation/images/strassen.tex149
-rwxr-xr-xbuch/papers/multiplikation/loesungsmethoden.tex334
-rwxr-xr-xbuch/papers/multiplikation/main.tex26
-rwxr-xr-xbuch/papers/multiplikation/problemstellung.tex187
-rwxr-xr-xbuch/papers/multiplikation/references.bib37
56 files changed, 1853 insertions, 388 deletions
diff --git a/buch/papers/multiplikation/code/MM b/buch/papers/multiplikation/code/MM
deleted file mode 100755
index f07985f..0000000
--- a/buch/papers/multiplikation/code/MM
+++ /dev/null
Binary files differ
diff --git a/buch/papers/multiplikation/code/MM.c b/buch/papers/multiplikation/code/MM.c
index 04c4dab..2588262 100755
--- a/buch/papers/multiplikation/code/MM.c
+++ b/buch/papers/multiplikation/code/MM.c
@@ -28,11 +28,12 @@ int main() {
// omp_set_num_threads(4);
// run_algo(openMP_MM, "openMP_MM",0);
run_algo(MM_dc, "MM_dc",0);
+
run_algo(strassen, "strassen",0);
run_algo(MM, "MM", 0);
- // run_algo(winograd, "winograd", 0);
- run_algo_cblas(0);
+ run_algo(winograd, "winograd", 0);
+ run_algo_cblas(0);
return 0;
}
@@ -414,12 +415,12 @@ void run_algo(void (*algo)(), char alog_name[], int print)
for(int i=0; i<n_arrays; ++i)
{
- for(int j = 0; j<1; ++j)
+ for(int j = 0; j<10; ++j)
{
- int *C = (int*) malloc(n[i] * n[i] * sizeof(int));
- double dtime = omp_get_wtime();
- algo(Ap[i], Bp[i], (int*) C, n[i]);
- dtime = omp_get_wtime() - dtime;
+ int *C = (int*) malloc(n[i] * n[i] * sizeof(int));
+ double dtime = omp_get_wtime();
+ algo(Ap[i], Bp[i], (int*) C, n[i]);
+ dtime = omp_get_wtime() - dtime;
// printf("The %s program took %f seconds to execute \n", alog_name, dtime);
fprintf(fptr, "%f,%d\n", dtime, n[i]);
@@ -428,7 +429,7 @@ void run_algo(void (*algo)(), char alog_name[], int print)
printMatrix((int*)C, n[i]);
}
free(C);
- }
+ }
}
fclose(fptr);
@@ -442,7 +443,7 @@ void run_algo_cblas(int print)
fptr = fopen("meas/blas.txt", "w");
for(int i=0; i<n_arrays; ++i)
{
- for(int j = 0; j<1; ++j)
+ for(int j = 0; j<10; ++j)
{
double *dC = (double*) malloc(n[i] * n[i] * sizeof(double));
double dtime = omp_get_wtime();
diff --git a/buch/papers/multiplikation/code/MM.py b/buch/papers/multiplikation/code/MM.py
index 626b82d..8057850 100644
--- a/buch/papers/multiplikation/code/MM.py
+++ b/buch/papers/multiplikation/code/MM.py
@@ -5,6 +5,7 @@ Created on Fri Mar 19 07:31:29 2021
@author: nunigan
"""
+import scipy.stats
import numpy as np
import time
import matplotlib.pyplot as plt
@@ -132,6 +133,7 @@ def winograd2(A, B):
return C
def test_perfomance(n):
+
t_mm = []
t_mm_dc = []
t_mm_strassen = []
@@ -174,17 +176,18 @@ def test_perfomance(n):
plt.plot(n, t_mm_strassen, label='Strassen', lw=5)
plt.plot(n, t_wino, label='Winograd', lw=5)
plt.plot(n, t_np, label='NumPy A@B', lw=5)
+ # plt.xscale('log', base=2)
plt.legend()
plt.xlabel("n")
plt.ylabel("time (s)")
- plt.grid(True)
+ plt.grid(True, which="both", ls="-")
plt.tight_layout()
# plt.yscale('log')
plt.legend(fontsize=19)
plt.savefig('meas_' + str(max(n))+ '.pdf')
arr = np.array([n, t_mm, t_mm_dc, t_mm_strassen, t_wino, t_np])
np.savetxt('meas_' + str(max(n))+ '.txt',arr)
- return arr
+ return t_np
def plot(num):
@@ -198,10 +201,11 @@ def plot(num):
plt.plot(n, t_mm, label='3 For Loops', lw=5)
plt.plot(n, t_mm_dc, label='Divide and Conquer', lw=5)
plt.plot(n, t_mm_strassen, label='Strassen', lw=5)
- # plt.plot(n, t_wino, label='Winograd', lw=5)
+ plt.plot(n, t_wino, label='Winograd', lw=5)
plt.plot(n, t_np, label='NumPy A@B', lw=5)
plt.legend()
plt.xlabel("n")
+ # plt.yscale('log', base=10)
plt.ylabel("time (s)")
plt.grid(True)
plt.tight_layout()
@@ -211,36 +215,39 @@ def plot(num):
return arr
def plot_c_res(ave, num):
+
MM = np.loadtxt("meas/MM.txt", delimiter=',')
- # winograd = np.loadtxt("meas/winograd.txt", delimiter=',')
+ winograd = np.loadtxt("meas/winograd.txt", delimiter=',')
blas = np.loadtxt("meas/blas.txt", delimiter=',')
MM_dc = np.loadtxt("meas/MM_dc.txt", delimiter=',')
strassen = np.loadtxt("meas/strassen.txt", delimiter=',')
MM_t = MM[:,0]
MM_n = MM[:,1]
- MM_t = np.mean(MM_t.reshape(-1,ave),axis=1)
- MM_n = np.mean(MM_n.reshape(-1,ave),axis=1)
+ # MM_t = np.mean(MM_t.reshape(-1,ave),axis=1)
+ # MM_n = np.mean(MM_n.reshape(-1,ave),axis=1)
MM_dc_t = MM_dc[:,0]
MM_dc_n = MM_dc[:,1]
- MM_dc_t = np.mean(MM_dc_t.reshape(-1,ave),axis=1)
- MM_dc_n = np.mean(MM_dc_n.reshape(-1,ave),axis=1)
+ # MM_dc_t = np.mean(MM_dc_t.reshape(-1,ave),axis=1)
+ # MM_dc_n = np.mean(MM_dc_n.reshape(-1,ave),axis=1)
strassen_t = strassen[:,0]
strassen_n = strassen[:,1]
- strassen_t = np.mean(strassen_t.reshape(-1,ave),axis=1)
- strassen_n = np.mean(strassen_n.reshape(-1,ave),axis=1)
+ # strassen_t = np.mean(strassen_t.reshape(-1,ave),axis=1)
+ # strassen_n = np.mean(strassen_n.reshape(-1,ave),axis=1)
- # winograd_t = winograd[:,0]
- # winograd_n = winograd[:,1]
+ winograd_t = winograd[:,0]
+ winograd_n = winograd[:,1]
# winograd_t = np.mean(winograd_t.reshape(-1,ave),axis=1)
# winograd_n = np.mean(winograd_n.reshape(-1,ave),axis=1)
blas_t = blas[:,0]
blas_n = blas[:,1]
- blas_t = np.mean(blas_t.reshape(-1,ave),axis=1)
- blas_n = np.mean(blas_n.reshape(-1,ave),axis=1)
+ # blas_t = np.mean(blas_t.reshape(-1,ave),axis=1)
+ # blas_n = np.mean(blas_n.reshape(-1,ave),axis=1)
+
+
def func(x, a,b):
return b*x**a
@@ -254,14 +261,16 @@ def plot_c_res(ave, num):
plt.rc('axes', labelsize=23)
plt.rc('xtick', labelsize=23)
plt.rc('ytick', labelsize=23)
- plt.plot(MM_n, MM_t, label='3 For Loops', lw=5)
- # plt.plot(winograd_n, winograd_t, label='Winograd MM', lw=5)
- plt.plot(blas_n, blas_t, label='Blas', lw=5)
- plt.plot(strassen_n, strassen_t, label='Strassen', lw=5)
- plt.plot(MM_dc_n, MM_dc_t, label='Divide and Conquer', lw=5)
+ plt.loglog(MM_n, MM_t, '.', label='3 For Loops', lw=5)
+ plt.loglog(winograd_n, winograd_t, '.', label='Winograd MM', lw=5)
+ plt.loglog(blas_n, blas_t, '.', label='Blas', lw=5)
+ plt.loglog(strassen_n, strassen_t, '.', label='Strassen', lw=5)
+ plt.loglog(MM_dc_n, MM_dc_t, '.', label='Divide and Conquer', lw=5)
plt.xlabel("n")
+ # plt.yscale('log', base=10)
+ # plt.xscale('log', base=2)
plt.ylabel("time (s)")
- plt.grid(True)
+ plt.grid(True, which="both", ls="-")
plt.tight_layout()
plt.legend(fontsize=19)
plt.savefig('c_meas_' + str(num)+ '.pdf')
@@ -271,23 +280,42 @@ def plot_c_res(ave, num):
# plt.plot(blas_n, func(blas_n, *popt2), 'r-', label='fit MM: a=%5.5f, b=%5.10f' % tuple(popt2))
plt.legend()
+ # return [MM_n,winograd_n,blas_n,strassen_n,MM_dc_n]
+
+ return [MM_t,winograd_t,blas_t,strassen_t,MM_dc_t]
+
+
+def mean_confidence_interval(data, confidence=0.95):
+ a = 1.0 * np.array(data)
+ n = len(a)
+ m, se = np.mean(a), scipy.stats.sem(a)
+ h = se * scipy.stats.t.ppf((1 + confidence) / 2., n-1)
+ return m, h
# test%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if __name__ == '__main__':
- plot_c_res(1, 4096)
-
-
- # plot(8)
- # n = np.logspace(1,10,10,base=2,dtype=(np.int))
+ # A = plot_c_res(10, 4096)
+ # name = ['MM', 'Wino', 'blas', 'strassen', 'dc']
+ # for i in range(5):
+ # ci_inner = []
+ # print(name[i])
+ # for j in range(11):
+ # m,h=mean_confidence_interval(A[i][j*10:(j+1)*10])
+ # print("({},{})".format(2**(j+1),m))
+ # np.savetxt('meas/ci/' + name[i]+'.txt',ci_inner)
+
+ arr = plot(4096)
+ # n = np.logspace(1,12,12,base=2,dtype=(np.int))
+ # n=[2048,4096]
# n = np.arange(1,50,2)
- A = np.random.randint(-10, 10, (5,3))
- B = np.random.randint(-10, 10, (3,5))
+ # A = np.random.randint(-10, 6, (5,3))
+ # B = np.random.randint(-10, 6, (3,5))
- C = winograd2(A, B)
- C_test = A@B
- print(C)
- print(C_test)
+ # C = winograd2(A, B)
+ # C_test = A@B
+ # print(C)
+ # print(C_test)
# print(np.equal(C, C_test))
# t_np = test_perfomance(n)
diff --git a/buch/papers/multiplikation/code/c_matrix.h b/buch/papers/multiplikation/code/c_matrix.h
index 13df55d..63d5390 100644
--- a/buch/papers/multiplikation/code/c_matrix.h
+++ b/buch/papers/multiplikation/code/c_matrix.h
@@ -1,101 +1,177 @@
-/* Seminar Matrizen, autogenerated File, Michael Schmid, 30/05/2021, 22:00:57 */
+/* Seminar Matrizen, autogenerated File, Michael Schmid, 10/08/2021, 05:46:32 */
#include <stdint.h>
const int A0[][2] =
{
- {-15,68},
- {49,86}
+ {60,-84},
+ {-66,-1}
};
const int B0[][2] =
{
- {33,73},
- {38,-76}
+ {-45,87},
+ {-38,-73}
};
const double dB0[][2] =
{
- {33,73},
- {38,-76}
+ {-45,87},
+ {-38,-73}
};
const double dA0[][2] =
{
- {-15,68},
- {49,86}
+ {60,-84},
+ {-66,-1}
};
const int A1[][4] =
{
- {75,-38,-32,-65},
- {37,74,-31,29},
- {15,-62,-20,-20},
- {-31,-35,-89,47}
+ {-72,-19,-91,62},
+ {-36,-74,-44,-47},
+ {-39,-31,50,-93},
+ {-81,2,-17,-86}
};
const int B1[][4] =
{
- {71,90,78,-98},
- {4,63,12,-47},
- {11,-44,75,-69},
- {95,-15,64,23}
+ {-66,39,-23,52},
+ {-88,-13,13,-13},
+ {-45,-70,28,-20},
+ {96,5,88,96}
};
const double dB1[][4] =
{
- {71,90,78,-98},
- {4,63,12,-47},
- {11,-44,75,-69},
- {95,-15,64,23}
+ {-66,39,-23,52},
+ {-88,-13,13,-13},
+ {-45,-70,28,-20},
+ {96,5,88,96}
};
const double dA1[][4] =
{
- {75,-38,-32,-65},
- {37,74,-31,29},
- {15,-62,-20,-20},
- {-31,-35,-89,47}
+ {-72,-19,-91,62},
+ {-36,-74,-44,-47},
+ {-39,-31,50,-93},
+ {-81,2,-17,-86}
};
const int A2[][8] =
{
- {80,42,3,-16,6,55,87,16},
- {-99,-14,21,-1,-94,-56,91,10},
- {-47,-55,-59,62,12,-53,87,-65},
- {-60,94,-67,23,-62,33,-63,-72},
- {12,-75,16,21,22,-37,1,16},
- {-100,-99,82,-66,2,64,-13,44},
- {59,-100,-90,8,36,-24,18,88},
- {73,-58,75,-100,-19,-29,85,-19}
+ {-36,-2,-58,-32,34,-89,49,-55},
+ {-68,-73,52,-3,-51,-37,-31,70},
+ {73,-90,-21,-79,-15,96,-99,12},
+ {68,-25,38,-73,-60,35,-99,72},
+ {-43,-87,48,-84,-100,37,80,53},
+ {-27,88,-5,-82,-57,-27,20,10},
+ {-91,-47,54,-90,-99,-76,50,-18},
+ {69,-36,76,5,-67,-38,-95,91}
};
const int B2[][8] =
{
- {-61,88,69,49,-53,47,73,45},
- {16,14,-88,-11,-67,-73,-20,43},
- {-60,-63,26,32,-29,18,-44,-69},
- {1,21,21,38,7,-100,-61,-76},
- {-90,95,-99,88,49,-80,27,-36},
- {24,-12,-47,-7,29,15,52,37},
- {-98,-76,29,76,-41,-75,97,79},
- {62,-90,-35,-14,-30,-42,-95,52}
+ {-84,22,-13,-66,-42,51,66,0},
+ {37,-65,66,-85,-10,-23,77,5},
+ {1,41,-79,0,63,-37,-10,29},
+ {72,66,-99,92,-28,65,25,-40},
+ {69,-49,65,-18,64,-97,-47,30},
+ {36,86,66,-12,-17,89,1,-37},
+ {-100,11,27,23,-75,-23,96,-9},
+ {68,90,-87,-99,-70,-28,98,-76}
};
const double dB2[][8] =
{
- {-61,88,69,49,-53,47,73,45},
- {16,14,-88,-11,-67,-73,-20,43},
- {-60,-63,26,32,-29,18,-44,-69},
- {1,21,21,38,7,-100,-61,-76},
- {-90,95,-99,88,49,-80,27,-36},
- {24,-12,-47,-7,29,15,52,37},
- {-98,-76,29,76,-41,-75,97,79},
- {62,-90,-35,-14,-30,-42,-95,52}
+ {-84,22,-13,-66,-42,51,66,0},
+ {37,-65,66,-85,-10,-23,77,5},
+ {1,41,-79,0,63,-37,-10,29},
+ {72,66,-99,92,-28,65,25,-40},
+ {69,-49,65,-18,64,-97,-47,30},
+ {36,86,66,-12,-17,89,1,-37},
+ {-100,11,27,23,-75,-23,96,-9},
+ {68,90,-87,-99,-70,-28,98,-76}
};
const double dA2[][8] =
{
- {80,42,3,-16,6,55,87,16},
- {-99,-14,21,-1,-94,-56,91,10},
- {-47,-55,-59,62,12,-53,87,-65},
- {-60,94,-67,23,-62,33,-63,-72},
- {12,-75,16,21,22,-37,1,16},
- {-100,-99,82,-66,2,64,-13,44},
- {59,-100,-90,8,36,-24,18,88},
- {73,-58,75,-100,-19,-29,85,-19}
- };
-const int *Ap[3] = {(int*) A0,(int*) A1,(int*) A2};
-const int *Bp[3] = {(int*) B0,(int*) B1,(int*) B2};
-const double *dAp[3] = {(double*) dA0,(double*) dA1,(double*) dA2};
-const double *dBp[3] = {(double*) dB0,(double*) dB1,(double*) dB2};
-int n[3] = {2,4,8};
-int n_arrays = 3;
+ {-36,-2,-58,-32,34,-89,49,-55},
+ {-68,-73,52,-3,-51,-37,-31,70},
+ {73,-90,-21,-79,-15,96,-99,12},
+ {68,-25,38,-73,-60,35,-99,72},
+ {-43,-87,48,-84,-100,37,80,53},
+ {-27,88,-5,-82,-57,-27,20,10},
+ {-91,-47,54,-90,-99,-76,50,-18},
+ {69,-36,76,5,-67,-38,-95,91}
+ };
+const int A3[][16] =
+ {
+ {-24,65,21,19,94,70,-90,-81,53,-41,-23,-1,58,-80,-54,59},
+ {-42,76,-19,98,29,-56,92,14,45,11,82,83,48,-13,81,66},
+ {43,-57,-67,95,5,72,11,0,-47,55,-24,36,84,54,-31,-54},
+ {-39,-40,19,97,-82,-56,27,95,81,-21,-50,-74,-35,-87,-28,-26},
+ {-74,-98,79,92,-24,-48,99,94,55,-83,70,98,-24,18,-67,14},
+ {20,76,11,-23,-56,21,0,42,64,86,-74,44,93,-76,-30,97},
+ {13,20,-73,-11,-30,80,53,-8,60,21,17,-42,82,-72,-6,-80},
+ {36,-93,-64,-21,20,-85,15,24,99,81,-52,64,71,-56,52,63},
+ {32,9,-2,-85,17,62,-98,-35,75,-58,-44,-20,-47,89,-95,52},
+ {93,-43,86,68,-6,-25,90,57,60,-10,65,-97,43,46,-60,-41},
+ {43,-33,0,50,-100,26,-60,95,39,-70,-61,-81,9,-23,-99,-4},
+ {20,61,15,43,-96,93,-55,38,-29,-1,-10,26,-87,18,64,6},
+ {-98,-84,51,16,-14,86,52,59,44,-39,-2,10,82,-66,54,19},
+ {89,-49,-37,-6,-53,40,-11,46,-51,-56,86,34,11,13,-20,-49},
+ {-90,14,28,-45,-25,-56,-51,-61,28,-8,51,91,95,-10,-85,58},
+ {8,-44,88,-71,-27,11,89,37,86,-78,-44,-56,-87,0,-42,-61}
+ };
+const int B3[][16] =
+ {
+ {62,-30,62,92,29,-93,-95,44,-33,-88,-29,9,-88,-42,-90,-70},
+ {60,37,-44,-93,-87,6,-53,2,-29,53,-49,59,6,83,-15,50},
+ {-19,85,-49,-14,84,-4,12,88,-83,-81,-24,-16,-12,-42,-63,-71},
+ {-42,-78,-58,-61,-29,67,-28,-46,64,7,6,-13,88,-42,95,-24},
+ {-90,-56,8,-30,-89,70,37,-29,24,-8,-10,-2,-25,-63,-95,-91},
+ {10,-81,42,-28,-13,-68,-72,-20,-22,5,-79,-50,-88,62,57,69},
+ {-67,24,-71,-43,11,48,33,-93,-82,-65,-4,5,-15,25,-54,-45},
+ {-49,19,-29,90,-97,-87,78,-39,-75,-85,-79,-35,54,3,-73,7},
+ {-7,39,70,-42,32,-100,56,4,-24,-57,38,-49,-50,-44,79,-42},
+ {37,-65,-55,22,-97,-42,-76,95,97,-27,38,11,0,-81,-23,35},
+ {26,-70,10,-29,47,-70,-52,29,-13,-18,5,34,18,32,87,91},
+ {-84,41,-19,96,-51,-19,81,75,81,92,2,-40,-42,-69,-10,-61},
+ {-30,98,71,-51,91,-59,58,86,86,-22,-84,7,66,-55,-52,23},
+ {-71,-44,-9,90,26,18,26,-10,-85,64,-47,3,72,81,74,-8},
+ {52,-59,-91,22,8,-63,84,9,-11,-54,-78,-71,-98,42,96,57},
+ {18,-39,34,-50,-62,-96,-2,-78,52,94,-33,2,-19,-9,-86,-75}
+ };
+const double dB3[][16] =
+ {
+ {62,-30,62,92,29,-93,-95,44,-33,-88,-29,9,-88,-42,-90,-70},
+ {60,37,-44,-93,-87,6,-53,2,-29,53,-49,59,6,83,-15,50},
+ {-19,85,-49,-14,84,-4,12,88,-83,-81,-24,-16,-12,-42,-63,-71},
+ {-42,-78,-58,-61,-29,67,-28,-46,64,7,6,-13,88,-42,95,-24},
+ {-90,-56,8,-30,-89,70,37,-29,24,-8,-10,-2,-25,-63,-95,-91},
+ {10,-81,42,-28,-13,-68,-72,-20,-22,5,-79,-50,-88,62,57,69},
+ {-67,24,-71,-43,11,48,33,-93,-82,-65,-4,5,-15,25,-54,-45},
+ {-49,19,-29,90,-97,-87,78,-39,-75,-85,-79,-35,54,3,-73,7},
+ {-7,39,70,-42,32,-100,56,4,-24,-57,38,-49,-50,-44,79,-42},
+ {37,-65,-55,22,-97,-42,-76,95,97,-27,38,11,0,-81,-23,35},
+ {26,-70,10,-29,47,-70,-52,29,-13,-18,5,34,18,32,87,91},
+ {-84,41,-19,96,-51,-19,81,75,81,92,2,-40,-42,-69,-10,-61},
+ {-30,98,71,-51,91,-59,58,86,86,-22,-84,7,66,-55,-52,23},
+ {-71,-44,-9,90,26,18,26,-10,-85,64,-47,3,72,81,74,-8},
+ {52,-59,-91,22,8,-63,84,9,-11,-54,-78,-71,-98,42,96,57},
+ {18,-39,34,-50,-62,-96,-2,-78,52,94,-33,2,-19,-9,-86,-75}
+ };
+const double dA3[][16] =
+ {
+ {-24,65,21,19,94,70,-90,-81,53,-41,-23,-1,58,-80,-54,59},
+ {-42,76,-19,98,29,-56,92,14,45,11,82,83,48,-13,81,66},
+ {43,-57,-67,95,5,72,11,0,-47,55,-24,36,84,54,-31,-54},
+ {-39,-40,19,97,-82,-56,27,95,81,-21,-50,-74,-35,-87,-28,-26},
+ {-74,-98,79,92,-24,-48,99,94,55,-83,70,98,-24,18,-67,14},
+ {20,76,11,-23,-56,21,0,42,64,86,-74,44,93,-76,-30,97},
+ {13,20,-73,-11,-30,80,53,-8,60,21,17,-42,82,-72,-6,-80},
+ {36,-93,-64,-21,20,-85,15,24,99,81,-52,64,71,-56,52,63},
+ {32,9,-2,-85,17,62,-98,-35,75,-58,-44,-20,-47,89,-95,52},
+ {93,-43,86,68,-6,-25,90,57,60,-10,65,-97,43,46,-60,-41},
+ {43,-33,0,50,-100,26,-60,95,39,-70,-61,-81,9,-23,-99,-4},
+ {20,61,15,43,-96,93,-55,38,-29,-1,-10,26,-87,18,64,6},
+ {-98,-84,51,16,-14,86,52,59,44,-39,-2,10,82,-66,54,19},
+ {89,-49,-37,-6,-53,40,-11,46,-51,-56,86,34,11,13,-20,-49},
+ {-90,14,28,-45,-25,-56,-51,-61,28,-8,51,91,95,-10,-85,58},
+ {8,-44,88,-71,-27,11,89,37,86,-78,-44,-56,-87,0,-42,-61}
+ };
+const int *Ap[4] = {(int*) A0,(int*) A1,(int*) A2,(int*) A3};
+const int *Bp[4] = {(int*) B0,(int*) B1,(int*) B2,(int*) B3};
+const double *dAp[4] = {(double*) dA0,(double*) dA1,(double*) dA2,(double*) dA3};
+const double *dBp[4] = {(double*) dB0,(double*) dB1,(double*) dB2,(double*) dB3};
+int n[4] = {2,4,8,16};
+int n_arrays = 4;
diff --git a/buch/papers/multiplikation/code/c_meas_4096.pdf b/buch/papers/multiplikation/code/c_meas_4096.pdf
index 547d794..f637ae4 100644
--- a/buch/papers/multiplikation/code/c_meas_4096.pdf
+++ b/buch/papers/multiplikation/code/c_meas_4096.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/ci.txt b/buch/papers/multiplikation/code/ci.txt
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/buch/papers/multiplikation/code/ci.txt
diff --git a/buch/papers/multiplikation/code/helper_class.py b/buch/papers/multiplikation/code/helper_class.py
index 485fa76..3b74f67 100755
--- a/buch/papers/multiplikation/code/helper_class.py
+++ b/buch/papers/multiplikation/code/helper_class.py
@@ -101,5 +101,6 @@ if __name__ == '__main__':
helper = Helper()
# n = np.arange(2,10)
- n = np.logspace(1,3,3,base=2,dtype=(np.int))
- C = helper.write_c_matrix(n)
+ n = np.logspace(1,11,11,base=2,dtype=(np.int))
+ # n=[8192]
+ # C = helper.write_c_matrix(n)
diff --git a/buch/papers/multiplikation/code/meas/MM.txt b/buch/papers/multiplikation/code/meas/MM.txt
index 1a0cd5d..7bffb6e 100644
--- a/buch/papers/multiplikation/code/meas/MM.txt
+++ b/buch/papers/multiplikation/code/meas/MM.txt
@@ -1,12 +1,110 @@
0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000001,4
+0.000000,4
+0.000000,4
+0.000000,4
0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000001,4
+0.000001,4
+0.000002,8
0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000001,8
+0.000001,8
+0.000011,16
+0.000011,16
0.000011,16
+0.000011,16
+0.000011,16
+0.000021,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000090,32
+0.000093,32
+0.000083,32
+0.000082,32
+0.000090,32
+0.000080,32
+0.000080,32
0.000080,32
-0.000653,64
-0.005397,128
-0.045147,256
-0.487710,512
-3.964180,1024
-128.863544,2048
-996.370209,4096
+0.000089,32
+0.000126,32
+0.000771,64
+0.000651,64
+0.000651,64
+0.000651,64
+0.000731,64
+0.000673,64
+0.000745,64
+0.000672,64
+0.000671,64
+0.000707,64
+0.005642,128
+0.005579,128
+0.005768,128
+0.005745,128
+0.005518,128
+0.005877,128
+0.005513,128
+0.005850,128
+0.005769,128
+0.005581,128
+0.052188,256
+0.051988,256
+0.051888,256
+0.051518,256
+0.051709,256
+0.051543,256
+0.051707,256
+0.051845,256
+0.051495,256
+0.051834,256
+0.507020,512
+0.504111,512
+0.502049,512
+0.529743,512
+0.501028,512
+0.502097,512
+0.503490,512
+0.502079,512
+0.506688,512
+0.504163,512
+4.538722,1024
+4.291473,1024
+4.516302,1024
+4.374630,1024
+4.719557,1024
+4.438999,1024
+4.641680,1024
+4.407959,1024
+4.441451,1024
+4.677313,1024
+129.433279,2048
+129.277802,2048
+129.284817,2048
+129.086884,2048
+129.197444,2048
+129.350999,2048
+129.264250,2048
+129.295723,2048
+129.402601,2048
+129.300820,2048
diff --git a/buch/papers/multiplikation/code/meas/MM_dc.txt b/buch/papers/multiplikation/code/meas/MM_dc.txt
index 0d5580a..b78b925 100644
--- a/buch/papers/multiplikation/code/meas/MM_dc.txt
+++ b/buch/papers/multiplikation/code/meas/MM_dc.txt
@@ -1,12 +1,110 @@
-0.000006,2
-0.000007,4
-0.000035,8
-0.000228,16
-0.001310,32
-0.007204,64
-0.034338,128
-0.267511,256
-2.131212,512
-17.177403,1024
-146.112874,2048
-1156.777565,4096
+0.000003,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000002,4
+0.000001,4
+0.000001,4
+0.000001,4
+0.000001,4
+0.000001,4
+0.000001,4
+0.000001,4
+0.000001,4
+0.000001,4
+0.000008,8
+0.000008,8
+0.000008,8
+0.000008,8
+0.000007,8
+0.000007,8
+0.000007,8
+0.000007,8
+0.000018,8
+0.000008,8
+0.000075,16
+0.000063,16
+0.000088,16
+0.000062,16
+0.000086,16
+0.000092,16
+0.000081,16
+0.000080,16
+0.000070,16
+0.000085,16
+0.000581,32
+0.000659,32
+0.000584,32
+0.000714,32
+0.000666,32
+0.000574,32
+0.000616,32
+0.000534,32
+0.000506,32
+0.000506,32
+0.004567,64
+0.004502,64
+0.004332,64
+0.004578,64
+0.004543,64
+0.004426,64
+0.004497,64
+0.004329,64
+0.004288,64
+0.004277,64
+0.036456,128
+0.034901,128
+0.034545,128
+0.034283,128
+0.035150,128
+0.034663,128
+0.034901,128
+0.034022,128
+0.034368,128
+0.035154,128
+0.296292,256
+0.297592,256
+0.302464,256
+0.299557,256
+0.299367,256
+0.306394,256
+0.287616,256
+0.292630,256
+0.289542,256
+0.277019,256
+2.331956,512
+2.224501,512
+2.203910,512
+2.198937,512
+2.206083,512
+2.199477,512
+2.199847,512
+2.225379,512
+2.202491,512
+2.235926,512
+17.649432,1024
+17.636769,1024
+17.639024,1024
+17.625402,1024
+17.722286,1024
+17.611777,1024
+17.653120,1024
+17.748270,1024
+17.691817,1024
+17.614448,1024
+141.943689,2048
+141.580812,2048
+141.882050,2048
+141.516253,2048
+141.351237,2048
+141.641167,2048
+141.596407,2048
+141.607048,2048
+141.469723,2048
+141.515550,2048
diff --git a/buch/papers/multiplikation/code/meas/blas.txt b/buch/papers/multiplikation/code/meas/blas.txt
index 6b7cd0b..9414d8f 100644
--- a/buch/papers/multiplikation/code/meas/blas.txt
+++ b/buch/papers/multiplikation/code/meas/blas.txt
@@ -1,12 +1,110 @@
0.000001,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
0.000000,4
0.000001,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000000,8
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000003,16
+0.000012,16
+0.000003,16
+0.000003,16
0.000003,16
0.000021,32
+0.000019,32
+0.000030,32
+0.000020,32
+0.000020,32
+0.000020,32
+0.000020,32
+0.000020,32
+0.000020,32
+0.000020,32
+0.000180,64
+0.000192,64
+0.000163,64
+0.000153,64
+0.000153,64
+0.000197,64
+0.000163,64
+0.000267,64
+0.000226,64
0.000164,64
-0.001240,128
-0.009657,256
-0.072523,512
-0.735149,1024
-6.895747,2048
-56.812183,4096
+0.001216,128
+0.001233,128
+0.001364,128
+0.001278,128
+0.001211,128
+0.001295,128
+0.001206,128
+0.001371,128
+0.001225,128
+0.001250,128
+0.009733,256
+0.009497,256
+0.009586,256
+0.009600,256
+0.009768,256
+0.009566,256
+0.009731,256
+0.009550,256
+0.009664,256
+0.009794,256
+0.077453,512
+0.076616,512
+0.088812,512
+0.075990,512
+0.076925,512
+0.076303,512
+0.075915,512
+0.075600,512
+0.075122,512
+0.075029,512
+0.769186,1024
+0.775780,1024
+0.753906,1024
+0.757834,1024
+0.772001,1024
+0.770950,1024
+0.791317,1024
+0.753319,1024
+0.747228,1024
+0.752347,1024
+7.625205,2048
+7.652278,2048
+7.640682,2048
+7.649428,2048
+7.632806,2048
+7.579347,2048
+7.612317,2048
+7.676742,2048
+7.632979,2048
+7.619210,2048
diff --git a/buch/papers/multiplikation/code/meas/ci/MM.txt b/buch/papers/multiplikation/code/meas/ci/MM.txt
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/ci/MM.txt
diff --git a/buch/papers/multiplikation/code/meas/ci/Wino.txt b/buch/papers/multiplikation/code/meas/ci/Wino.txt
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/ci/Wino.txt
diff --git a/buch/papers/multiplikation/code/meas/ci/blas.txt b/buch/papers/multiplikation/code/meas/ci/blas.txt
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/ci/blas.txt
diff --git a/buch/papers/multiplikation/code/meas/ci/dc.txt b/buch/papers/multiplikation/code/meas/ci/dc.txt
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/ci/dc.txt
diff --git a/buch/papers/multiplikation/code/meas/ci/strassen.txt b/buch/papers/multiplikation/code/meas/ci/strassen.txt
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/ci/strassen.txt
diff --git a/buch/papers/multiplikation/code/meas/old/8196/MM.txt b/buch/papers/multiplikation/code/meas/old/8196/MM.txt
new file mode 100644
index 0000000..0edf9f6
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/old/8196/MM.txt
@@ -0,0 +1 @@
+9376.173434,8192
diff --git a/buch/papers/multiplikation/code/meas/old/8196/MM_dc.txt b/buch/papers/multiplikation/code/meas/old/8196/MM_dc.txt
new file mode 100644
index 0000000..36f6ff0
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/old/8196/MM_dc.txt
@@ -0,0 +1 @@
+9606.402522,8192
diff --git a/buch/papers/multiplikation/code/meas/old/8196/blas.txt b/buch/papers/multiplikation/code/meas/old/8196/blas.txt
new file mode 100644
index 0000000..b5989fb
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/old/8196/blas.txt
@@ -0,0 +1 @@
+478.429957,8192
diff --git a/buch/papers/multiplikation/code/meas/old/8196/strassen.txt b/buch/papers/multiplikation/code/meas/old/8196/strassen.txt
new file mode 100644
index 0000000..ca06e97
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/old/8196/strassen.txt
@@ -0,0 +1 @@
+3014.235467,8192
diff --git a/buch/papers/multiplikation/code/meas/old/8196/winograd.txt b/buch/papers/multiplikation/code/meas/old/8196/winograd.txt
new file mode 100644
index 0000000..2a529c4
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/old/8196/winograd.txt
@@ -0,0 +1 @@
+10071.512655,8192
diff --git a/buch/papers/multiplikation/code/meas/old/MM.txt b/buch/papers/multiplikation/code/meas/old/MM.txt
new file mode 100644
index 0000000..e296dd7
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/old/MM.txt
@@ -0,0 +1,12 @@
+0.000001,2
+0.000001,4
+0.000001,8
+0.000010,16
+0.000081,32
+0.000654,64
+0.005556,128
+0.054253,256
+0.487317,512
+4.162845,1024
+125.909034,2048
+1111.312696,4096
diff --git a/buch/papers/multiplikation/code/meas/old/MM_dc.txt b/buch/papers/multiplikation/code/meas/old/MM_dc.txt
new file mode 100644
index 0000000..f6be928
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/old/MM_dc.txt
@@ -0,0 +1,12 @@
+0.000003,2
+0.000002,4
+0.000010,8
+0.000068,16
+0.000594,32
+0.004264,64
+0.036289,128
+0.324645,256
+2.612010,512
+19.928951,1024
+159.333884,2048
+1147.106865,4096
diff --git a/buch/papers/multiplikation/code/meas/old/blas.txt b/buch/papers/multiplikation/code/meas/old/blas.txt
new file mode 100644
index 0000000..92a61b9
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/old/blas.txt
@@ -0,0 +1,12 @@
+0.000001,2
+0.000001,4
+0.000001,8
+0.000003,16
+0.000022,32
+0.000179,64
+0.001278,128
+0.010165,256
+0.074739,512
+0.704748,1024
+6.845095,2048
+55.845038,4096
diff --git a/buch/papers/multiplikation/code/meas/old/strassen.txt b/buch/papers/multiplikation/code/meas/old/strassen.txt
new file mode 100644
index 0000000..fdfbf2b
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/old/strassen.txt
@@ -0,0 +1,12 @@
+0.000001,2
+0.000003,4
+0.000010,8
+0.000066,16
+0.000470,32
+0.003368,64
+0.024232,128
+0.172000,256
+1.209262,512
+8.457472,1024
+59.267256,2048
+414.648901,4096
diff --git a/buch/papers/multiplikation/code/meas/old/winograd.txt b/buch/papers/multiplikation/code/meas/old/winograd.txt
new file mode 100644
index 0000000..d185906
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas/old/winograd.txt
@@ -0,0 +1,12 @@
+0.000001,2
+0.000001,4
+0.000002,8
+0.000011,16
+0.000100,32
+0.000654,64
+0.005229,128
+0.057440,256
+0.517850,512
+4.539413,1024
+130.627663,2048
+1179.261048,4096
diff --git a/buch/papers/multiplikation/code/meas/strassen.txt b/buch/papers/multiplikation/code/meas/strassen.txt
index 89cf41a..d6e040e 100644
--- a/buch/papers/multiplikation/code/meas/strassen.txt
+++ b/buch/papers/multiplikation/code/meas/strassen.txt
@@ -1,12 +1,110 @@
0.000000,2
-0.000003,4
-0.000010,8
-0.000086,16
-0.000476,32
-0.003366,64
-0.025547,128
-0.184593,256
-1.248713,512
-9.007700,1024
-61.079879,2048
-424.493037,4096
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000004,4
+0.000002,4
+0.000002,4
+0.000002,4
+0.000002,4
+0.000002,4
+0.000002,4
+0.000002,4
+0.000002,4
+0.000001,4
+0.000020,8
+0.000018,8
+0.000008,8
+0.000008,8
+0.000008,8
+0.000008,8
+0.000008,8
+0.000008,8
+0.000008,8
+0.000019,8
+0.000080,16
+0.000075,16
+0.000078,16
+0.000085,16
+0.000065,16
+0.000065,16
+0.000065,16
+0.000064,16
+0.000065,16
+0.000065,16
+0.000546,32
+0.000480,32
+0.000563,32
+0.000551,32
+0.000502,32
+0.000504,32
+0.000463,32
+0.000462,32
+0.000508,32
+0.000462,32
+0.003675,64
+0.003665,64
+0.003493,64
+0.003708,64
+0.003465,64
+0.003502,64
+0.003710,64
+0.003537,64
+0.003637,64
+0.003568,64
+0.025342,128
+0.025179,128
+0.026475,128
+0.025758,128
+0.025333,128
+0.024988,128
+0.025727,128
+0.025298,128
+0.025283,128
+0.025098,128
+0.181311,256
+0.178432,256
+0.177075,256
+0.177474,256
+0.177025,256
+0.177805,256
+0.177944,256
+0.178151,256
+0.177858,256
+0.178742,256
+1.283374,512
+1.246682,512
+1.245898,512
+1.251547,512
+1.250288,512
+1.250495,512
+1.257037,512
+1.255247,512
+1.255382,512
+1.259050,512
+8.784102,1024
+8.845725,1024
+8.771100,1024
+8.770184,1024
+8.955977,1024
+8.849161,1024
+8.806902,1024
+8.808937,1024
+8.848900,1024
+8.861383,1024
+61.787123,2048
+61.972599,2048
+61.822434,2048
+62.051331,2048
+61.946171,2048
+61.911404,2048
+61.872671,2048
+61.791260,2048
+61.818110,2048
+62.045588,2048
diff --git a/buch/papers/multiplikation/code/meas/winograd.txt b/buch/papers/multiplikation/code/meas/winograd.txt
index 3a4d88b..970a3f4 100644
--- a/buch/papers/multiplikation/code/meas/winograd.txt
+++ b/buch/papers/multiplikation/code/meas/winograd.txt
@@ -1,11 +1,110 @@
+0.000001,2
0.000000,2
-0.000001,4
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,2
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000000,4
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000002,8
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000011,16
+0.000021,16
+0.000011,16
0.000011,16
-0.000091,32
-0.000663,64
-0.005182,128
-0.046038,256
-0.533429,512
-4.257458,1024
-130.378038,2048
+0.000092,32
+0.000092,32
+0.000081,32
+0.000081,32
+0.000081,32
+0.000081,32
+0.000088,32
+0.000079,32
+0.000079,32
+0.000079,32
+0.000670,64
+0.000739,64
+0.000609,64
+0.000609,64
+0.000700,64
+0.000648,64
+0.000626,64
+0.000626,64
+0.000626,64
+0.000626,64
+0.005321,128
+0.005286,128
+0.005180,128
+0.005223,128
+0.005249,128
+0.005299,128
+0.005205,128
+0.005268,128
+0.005464,128
+0.005378,128
+0.053123,256
+0.052325,256
+0.052729,256
+0.052930,256
+0.052207,256
+0.053178,256
+0.052122,256
+0.052681,256
+0.052965,256
+0.052486,256
+0.527028,512
+0.525201,512
+0.521822,512
+0.525147,512
+0.525241,512
+0.527725,512
+0.526321,512
+0.526479,512
+0.524020,512
+0.520768,512
+4.732299,1024
+4.617253,1024
+4.647425,1024
+4.519233,1024
+4.917471,1024
+4.564929,1024
+4.870771,1024
+4.555407,1024
+4.727473,1024
+4.559349,1024
+136.409028,2048
+136.390557,2048
+136.541672,2048
+136.598491,2048
+137.720790,2048
+136.825926,2048
+136.367686,2048
+136.650627,2048
+136.642195,2048
+136.622805,2048
diff --git a/buch/papers/multiplikation/code/meas_1024.pdf b/buch/papers/multiplikation/code/meas_1024.pdf
index fd0a108..f489a7d 100644
--- a/buch/papers/multiplikation/code/meas_1024.pdf
+++ b/buch/papers/multiplikation/code/meas_1024.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_1024.txt b/buch/papers/multiplikation/code/meas_1024.txt
index c5ce619..ab507a2 100644
--- a/buch/papers/multiplikation/code/meas_1024.txt
+++ b/buch/papers/multiplikation/code/meas_1024.txt
@@ -1,6 +1,6 @@
2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02 2.560000000000000000e+02 5.120000000000000000e+02 1.024000000000000000e+03
-1.502037048339843750e-05 6.628036499023437500e-05 4.780292510986328125e-04 2.713203430175781250e-03 2.115225791931152344e-02 1.758832931518554688e-01 1.338865518569946289e+00 1.009106445312500000e+01 8.192077994346618652e+01 7.835870332717895508e+02
-6.675720214843750000e-06 7.200241088867187500e-05 5.540847778320312500e-04 3.144979476928710938e-03 2.545046806335449219e-02 2.083067893981933594e-01 1.659256219863891602e+00 1.319160294532775879e+01 1.046767003536224365e+02 9.679818902015686035e+02
-1.668930053710937500e-05 1.628398895263671875e-04 7.648468017578125000e-04 4.426956176757812500e-03 2.922415733337402344e-02 1.800994873046875000e-01 1.286747694015502930e+00 9.412034273147583008e+00 6.263725924491882324e+01 4.427414393424987793e+02
-2.408027648925781250e-05 8.463859558105468750e-05 4.761219024658203125e-04 2.339839935302734375e-03 1.682758331298828125e-02 1.299476623535156250e-01 1.048770904541015625e+00 8.114667415618896484e+00 6.373566389083862305e+01 6.489995403289794922e+02
-1.573562622070312500e-05 7.152557373046875000e-06 7.152557373046875000e-06 2.074241638183593750e-05 5.388259887695312500e-05 6.365776062011718750e-05 3.257751464843750000e-03 1.396179199218750000e-03 3.274917602539062500e-03 2.186250686645507812e-02
+1.859664916992187500e-05 8.296966552734375000e-05 5.471706390380859375e-04 3.053665161132812500e-03 2.407431602478027344e-02 1.868948936462402344e-01 1.563691616058349609e+00 1.100623321533203125e+01 8.547679090499877930e+01 7.507572824954986572e+02
+8.106231689453125000e-06 9.012222290039062500e-05 7.290840148925781250e-04 4.970788955688476562e-03 2.718997001647949219e-02 2.652802467346191406e-01 1.777865171432495117e+00 1.327002429962158203e+01 1.053971357345581055e+02 8.473208103179931641e+02
+2.098083496093750000e-05 1.742839813232421875e-04 9.438991546630859375e-04 4.754066467285156250e-03 4.852557182312011719e-02 2.204136848449707031e-01 1.447179555892944336e+00 9.938656568527221680e+00 6.396102952957153320e+01 4.614939928054809570e+02
+2.789497375488281250e-05 1.049041748046875000e-04 5.528926849365234375e-04 4.555702209472656250e-03 1.871442794799804688e-02 1.530685424804687500e-01 1.194762229919433594e+00 8.298985958099365234e+00 6.836994743347167969e+01 5.373736469745635986e+02
+1.835823059082031250e-05 7.867813110351562500e-06 1.001358032226562500e-05 5.412101745605468750e-05 4.267692565917968750e-05 1.184940338134765625e-04 2.441406250000000000e-04 6.957054138183593750e-04 2.217054367065429688e-03 1.880884170532226562e-02
diff --git a/buch/papers/multiplikation/code/meas_128.pdf b/buch/papers/multiplikation/code/meas_128.pdf
index ed1ec63..c54648f 100644
--- a/buch/papers/multiplikation/code/meas_128.pdf
+++ b/buch/papers/multiplikation/code/meas_128.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_128.txt b/buch/papers/multiplikation/code/meas_128.txt
index 976bbdf..f3a5beb 100644
--- a/buch/papers/multiplikation/code/meas_128.txt
+++ b/buch/papers/multiplikation/code/meas_128.txt
@@ -1,6 +1,6 @@
2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02
-1.978874206542968750e-05 1.134872436523437500e-04 4.298686981201171875e-04 2.815246582031250000e-03 2.616596221923828125e-02 1.767718791961669922e-01 1.293319463729858398e+00
-6.675720214843750000e-06 1.251697540283203125e-04 4.818439483642578125e-04 3.490447998046875000e-03 2.465796470642089844e-02 2.014584541320800781e-01 1.630620479583740234e+00
-2.408027648925781250e-05 2.126693725585937500e-04 1.172780990600585938e-03 4.364490509033203125e-03 3.148293495178222656e-02 2.010228633880615234e-01 1.429297924041748047e+00
-2.932548522949218750e-05 1.466274261474609375e-04 4.270076751708984375e-04 2.837419509887695312e-03 1.723575592041015625e-02 1.308519840240478516e-01 1.015527009963989258e+00
-3.337860107421875000e-05 1.096725463867187500e-05 9.536743164062500000e-06 3.600120544433593750e-05 2.837181091308593750e-05 5.912780761718750000e-05 1.981019973754882812e-03
+1.239776611328125000e-05 5.507469177246093750e-05 3.888607025146484375e-04 2.762079238891601562e-03 2.097773551940917969e-02 1.672370433807373047e-01 1.410297393798828125e+00
+5.483627319335937500e-06 5.888938903808593750e-05 3.871917724609375000e-04 3.364324569702148438e-03 2.481031417846679688e-02 2.047052383422851562e-01 1.712310314178466797e+00
+1.358985900878906250e-05 1.189708709716796875e-04 6.430149078369140625e-04 5.586385726928710938e-03 3.101944923400878906e-02 1.874091625213623047e-01 1.327976465225219727e+00
+1.978874206542968750e-05 7.224082946777343750e-05 4.618167877197265625e-04 3.294944763183593750e-03 1.755571365356445312e-02 1.360688209533691406e-01 1.028253555297851562e+00
+1.215934753417968750e-05 5.722045898437500000e-06 2.074241638183593750e-05 4.339218139648437500e-05 2.813339233398437500e-05 5.292892456054687500e-05 1.921653747558593750e-04
diff --git a/buch/papers/multiplikation/code/meas_256.pdf b/buch/papers/multiplikation/code/meas_256.pdf
index 5f049dc..2eb177b 100644
--- a/buch/papers/multiplikation/code/meas_256.pdf
+++ b/buch/papers/multiplikation/code/meas_256.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_256.txt b/buch/papers/multiplikation/code/meas_256.txt
index 15035c6..62e77cb 100644
--- a/buch/papers/multiplikation/code/meas_256.txt
+++ b/buch/papers/multiplikation/code/meas_256.txt
@@ -1,6 +1,6 @@
2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02 2.560000000000000000e+02
-1.049041748046875000e-05 5.340576171875000000e-05 5.936622619628906250e-04 2.707719802856445312e-03 2.246093750000000000e-02 1.631326675415039062e-01 1.335460901260375977e+00 1.052024245262145996e+01
-4.768371582031250000e-06 5.531311035156250000e-05 8.208751678466796875e-04 3.099203109741210938e-03 2.490711212158203125e-02 2.070860862731933594e-01 1.739669799804687500e+00 1.384817218780517578e+01
-1.478195190429687500e-05 1.132488250732421875e-04 5.970001220703125000e-04 3.906726837158203125e-03 3.041696548461914062e-02 2.000186443328857422e-01 1.392681598663330078e+00 9.388872385025024414e+00
-1.716613769531250000e-05 6.866455078125000000e-05 5.314350128173828125e-04 2.688407897949218750e-03 1.695108413696289062e-02 1.297233104705810547e-01 1.087257385253906250e+00 8.699601650238037109e+00
-2.336502075195312500e-05 4.529953002929687500e-06 8.106231689453125000e-06 4.291534423828125000e-05 6.008148193359375000e-05 8.988380432128906250e-05 1.647472381591796875e-04 4.460811614990234375e-04
+1.144409179687500000e-05 5.507469177246093750e-05 3.774166107177734375e-04 3.177404403686523438e-03 2.508044242858886719e-02 2.120554447174072266e-01 1.431464910507202148e+00 1.076412820816040039e+01
+5.722045898437500000e-06 5.745887756347656250e-05 4.494190216064453125e-04 3.611087799072265625e-03 3.317713737487792969e-02 2.292332649230957031e-01 2.090558290481567383e+00 1.306217479705810547e+01
+1.788139343261718750e-05 1.168251037597656250e-04 5.981922149658203125e-04 4.416465759277343750e-03 3.002405166625976562e-02 2.104022502899169922e-01 1.488269329071044922e+00 9.164114713668823242e+00
+1.955032348632812500e-05 7.224082946777343750e-05 3.829002380371093750e-04 2.558946609497070312e-03 2.043128013610839844e-02 1.361320018768310547e-01 1.089214324951171875e+00 8.553364753723144531e+00
+2.384185791015625000e-05 5.245208740234375000e-06 6.437301635742187500e-06 2.455711364746093750e-05 4.148483276367187500e-05 8.702278137207031250e-05 3.793239593505859375e-04 6.709098815917968750e-04
diff --git a/buch/papers/multiplikation/code/meas_32.pdf b/buch/papers/multiplikation/code/meas_32.pdf
index 94c3731..b926095 100644
--- a/buch/papers/multiplikation/code/meas_32.pdf
+++ b/buch/papers/multiplikation/code/meas_32.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_32.txt b/buch/papers/multiplikation/code/meas_32.txt
index afdb6d5..0fdc18d 100644
--- a/buch/papers/multiplikation/code/meas_32.txt
+++ b/buch/papers/multiplikation/code/meas_32.txt
@@ -1,6 +1,6 @@
2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01
-1.215934753417968750e-05 5.459785461425781250e-05 3.700256347656250000e-04 3.249406814575195312e-03 1.996850967407226562e-02
-4.529953002929687500e-06 5.650520324707031250e-05 4.577636718750000000e-04 4.029273986816406250e-03 2.444481849670410156e-02
-1.311302185058593750e-05 1.165866851806640625e-04 6.275177001953125000e-04 4.323244094848632812e-03 2.624726295471191406e-02
-1.835823059082031250e-05 6.890296936035156250e-05 3.914833068847656250e-04 2.423048019409179688e-03 1.761770248413085938e-02
-1.263618469238281250e-05 5.006790161132812500e-06 5.960464477539062500e-06 1.144409179687500000e-05 3.600120544433593750e-05
+1.239776611328125000e-05 5.507469177246093750e-05 3.802776336669921875e-04 2.795457839965820312e-03 2.073740959167480469e-02
+5.006790161132812500e-06 5.841255187988281250e-05 3.988742828369140625e-04 3.505229949951171875e-03 2.511668205261230469e-02
+1.335144042968750000e-05 1.149177551269531250e-04 6.387233734130859375e-04 4.088878631591796875e-03 2.969408035278320312e-02
+1.955032348632812500e-05 8.058547973632812500e-05 3.998279571533203125e-04 2.514839172363281250e-03 1.842117309570312500e-02
+1.215934753417968750e-05 8.583068847656250000e-06 6.675720214843750000e-06 2.694129943847656250e-05 2.789497375488281250e-05
diff --git a/buch/papers/multiplikation/code/meas_4096.pdf b/buch/papers/multiplikation/code/meas_4096.pdf
new file mode 100644
index 0000000..ecf2cff
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_4096.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_4096.txt b/buch/papers/multiplikation/code/meas_4096.txt
new file mode 100644
index 0000000..cae1bc6
--- /dev/null
+++ b/buch/papers/multiplikation/code/meas_4096.txt
@@ -0,0 +1,6 @@
+2.048000000000000000e+03 4.096000000000000000e+03
+6.154183513402938843e+03 4.681333474493026733e+04
+7.375929301261901855e+03 5.846600176072120667e+04
+3.860573610544204712e+03 2.290433094644546509e+04
+4.884613198995590210e+03 4.359707747149467468e+04
+2.157390117645263672e-01 1.491588830947875977e+00
diff --git a/buch/papers/multiplikation/code/meas_64.pdf b/buch/papers/multiplikation/code/meas_64.pdf
index 3a90949..92af29b 100644
--- a/buch/papers/multiplikation/code/meas_64.pdf
+++ b/buch/papers/multiplikation/code/meas_64.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/code/meas_64.txt b/buch/papers/multiplikation/code/meas_64.txt
index ae6ff9b..b4fc7a1 100644
--- a/buch/papers/multiplikation/code/meas_64.txt
+++ b/buch/papers/multiplikation/code/meas_64.txt
@@ -1,6 +1,6 @@
2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01
-1.645088195800781250e-05 7.295608520507812500e-05 3.807544708251953125e-04 2.672195434570312500e-03 2.010774612426757812e-02 1.662156581878662109e-01
-7.390975952148437500e-06 7.843971252441406250e-05 4.265308380126953125e-04 3.107070922851562500e-03 2.457642555236816406e-02 2.122807502746582031e-01
-1.931190490722656250e-05 1.568794250488281250e-04 7.593631744384765625e-04 3.937005996704101562e-03 3.596329689025878906e-02 2.131938934326171875e-01
-2.622604370117187500e-05 9.226799011230468750e-05 3.504753112792968750e-04 2.469539642333984375e-03 1.652932167053222656e-02 1.281068325042724609e-01
-1.788139343261718750e-05 7.152557373046875000e-06 6.914138793945312500e-06 1.120567321777343750e-05 2.884864807128906250e-05 6.914138793945312500e-05
+2.145767211914062500e-05 6.175041198730468750e-05 4.422664642333984375e-04 3.235816955566406250e-03 2.289748191833496094e-02 1.855163574218750000e-01
+1.025199890136718750e-05 6.341934204101562500e-05 5.202293395996093750e-04 3.566026687622070312e-03 3.026723861694335938e-02 2.312932014465332031e-01
+2.384185791015625000e-05 1.807212829589843750e-04 6.821155548095703125e-04 4.796504974365234375e-03 2.968001365661621094e-02 2.291278839111328125e-01
+3.504753112792968750e-05 1.106262207031250000e-04 4.322528839111328125e-04 2.696514129638671875e-03 2.188420295715332031e-02 1.477701663970947266e-01
+3.218650817871093750e-05 1.144409179687500000e-05 7.390975952148437500e-06 4.625320434570312500e-05 3.814697265625000000e-05 5.435943603515625000e-05
diff --git a/buch/papers/multiplikation/einlteung.tex b/buch/papers/multiplikation/einlteung.tex
index bc4bfcf..21fa9df 100755
--- a/buch/papers/multiplikation/einlteung.tex
+++ b/buch/papers/multiplikation/einlteung.tex
@@ -3,28 +3,22 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Einleitung \label{multiplikation:section:einleitung}}
-\rhead{Einleitung}
+\section{Matrizenmultiplikation \label{multiplikation:section:einleitung}}
+\rhead{Matrizenmultiplikation}
-Die Multiplikation zweier Matrizen ist eine wichtige Operation die in verschiedensten Teilen der Mathematik Anwendung findet.
-Die Beschreibung der Multiplikation aus der Definition 2.10 (\textcolor{blue} {Kein Hyperlink zu einer Definition?)}:
+Die Multiplikation zweier Matrizen ist eine wichtige Operation, die in verschiedensten Teilen der Mathematik Anwendung findet.
+Die Beschreibung der Multiplikation aus der Definition 2.10:
Eine $m\times n$-Matrix $\mathbf{A}\in M_{m\times n}(\Bbbk)$ und eine
$n\times p$-Matrix $\mathbf{B}\in M_{n\times l}(\Bbbk)$ haben als Produkt
eine $n\times l$-Matrix $\mathbf{C}=\mathbf{AB}\in M_{n\times l}(\Bbbk)$ mit den
Koeffizienten
\begin{equation}
-c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}.
+C_{ij} = \sum_{k=1}^n A_{ik} B_{kj}.
\label{multiplikation:eq:MM}
\end{equation}
-Grafisch kann die Matrizenmultiplikation $AB=C$ wie in \ref{multiplikation:fig:mm_viz} visualisiert werden.
-\begin{figure}
- \center
- \includegraphics[]{papers/multiplikation/images/mm_visualisation}
- \caption{Matrizen Multiplikation}
- \label{multiplikation:fig:mm_viz}
-\end{figure}
-Im Fall einer Matrizengr\"osse von $2\times 2$
+Grafisch kann die Matrizenmultiplikation $\mathbf{AB}=\mathbf{C}$ wie in Abbildung \ref{multiplikation:fig:mm_viz} visualisiert werden.
+Im Fall einer Matrizengr\"osse von $2\times 2$ kann die Matrixgleichung
\begin{equation}
\begin{bmatrix}
A_{11} & A_{12}\\
@@ -40,7 +34,7 @@ C_{11} & C_{12}\\
C_{21} & C_{22}
\end{bmatrix}
\end{equation}
-kann die Gleichung der einzelnen Terme
+explizt als Gleichungen
\begin{equation} \label{multiplikation:eq:MM_exp}
\begin{split}
C_{11} &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21}\\
@@ -49,4 +43,10 @@ C_{21} &= A_{21} \cdot B_{11} + A_{22} \cdot B_{21}\\
C_{22} &= A_{21} \cdot B_{12} + A_{22} \cdot B_{22}
\end{split}
\end{equation}
-explizit geschrieben werden.
+der einzelnen Terme geschrieben werden.
+\begin{figure}
+ \center
+ \includegraphics[]{papers/multiplikation/images/mm_visualisation}
+ \caption{Grafische Illustration der Matrizenmultiplikation}
+ \label{multiplikation:fig:mm_viz}
+\end{figure}
diff --git a/buch/papers/multiplikation/images/algo_tab.pdf b/buch/papers/multiplikation/images/algo_tab.pdf
new file mode 100644
index 0000000..7f2bb4f
--- /dev/null
+++ b/buch/papers/multiplikation/images/algo_tab.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/images/algo_tab.tex b/buch/papers/multiplikation/images/algo_tab.tex
new file mode 100644
index 0000000..50ce392
--- /dev/null
+++ b/buch/papers/multiplikation/images/algo_tab.tex
@@ -0,0 +1,122 @@
+\documentclass{article}
+\usepackage[left=25mm,right=25mm,top=25mm,bottom=25mm]{geometry}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{times}
+\usepackage{geometry}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{algorithm}
+\usepackage{algpseudocode}
+\usepackage{mathrsfs}
+\usepackage{amsfonts}
+\usepackage{amsthm}
+\usepackage{lipsum}
+\usepackage{amscd}
+\usepackage{graphicx}
+\usepackage{fancyhdr}
+\usepackage{textcomp}
+\usepackage{pgfplots}
+\usepackage{txfonts}
+\usepackage[all]{xy}
+\usepackage{paralist}
+\usepackage[colorlinks=true]{hyperref}
+\usepackage{array}
+\usepackage{tikz}
+\usepackage{slashed}
+\usepackage{pdfpages}
+\usepackage{multicol}
+\usepackage{cite}
+\usepackage{url}
+\usepackage{amsmath,amsfonts,amssymb}
+\usepackage{tikz}
+\usetikzlibrary{arrows,matrix,positioning}
+\usetikzlibrary{overlay-beamer-styles}
+\usetikzlibrary{matrix.skeleton}
+\usetikzlibrary{automata,positioning}
+\usetikzlibrary{decorations.text}
+\usepackage{listings}
+\usepackage{multirow}
+\usepackage{color}
+
+\begin{document}
+
+
+
+\begin{table}[t]
+ \begin{tabular}{ll}
+ \begin{minipage}{0.4\textwidth}
+ \begin{algorithm}[H]\footnotesize\caption{}
+ \label{multiplikation:alg:b1}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \Function{B1}{$a, b$}
+ \State \textbf{return} $a+b$
+ \EndFunction
+ \State
+ \State
+ \end{algorithmic}
+ \end{algorithm}
+ \end{minipage}
+ &
+ \begin{minipage}{0.4\textwidth}
+ \begin{algorithm}[H]\footnotesize\caption{}
+ \label{multiplikation:alg:b2}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \Function{B2}{$a, b$}
+ \State $ x \gets a+b $
+ \State $ y \gets a \cdot b $
+ \State \textbf{return} $x+y$
+ \EndFunction
+ \end{algorithmic}
+\end{algorithm}
+
+ \end{minipage}
+ \end{tabular}
+\end{table}
+
+\begin{table}
+ \begin{tabular}[t]{ll}
+ \begin{minipage}{0.4\textwidth}
+ \begin{algorithm}[H]\footnotesize\caption{}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \label{multiplikation:alg:linear}
+ \Function{L}{$\mathbf{a}, \mathbf{b}$,n}
+ \State $ sum \gets 0$
+ \For{$i = 0,1,2 \dots,n$}
+ \State $ sum \gets sum + A[i] \cdot B[i] $
+ \EndFor
+
+ \State \textbf{return} $sum$
+
+ \EndFunction
+ \State
+ \State
+ \end{algorithmic}
+ \end{algorithm}
+ \end{minipage}
+ &
+ \begin{minipage}{0.4\textwidth}
+ \begin{algorithm}[H]\footnotesize\caption{}
+ \label{multiplikation:alg:q1}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \Function{Q}{$\mathbf{A}, \mathbf{B}$,n}
+ \State $ sum \gets 0$
+ \For{$i = 0,1,2 \dots,n$}
+ \For{$j = 0,1,2 \dots,n$}
+ \State $ sum \gets sum + A[i] \cdot B[j] $
+ \EndFor
+ \EndFor
+ \State \textbf{return} $sum$
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+ \end{minipage}
+ \end{tabular}
+\end{table}
+
+dhdfh
+\end{document}
diff --git a/buch/papers/multiplikation/images/bigo.pdf b/buch/papers/multiplikation/images/bigo.pdf
index dfa2ba4..2519553 100644
--- a/buch/papers/multiplikation/images/bigo.pdf
+++ b/buch/papers/multiplikation/images/bigo.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/images/bigo.tex b/buch/papers/multiplikation/images/bigo.tex
index e3293e4..63fd0fd 100644
--- a/buch/papers/multiplikation/images/bigo.tex
+++ b/buch/papers/multiplikation/images/bigo.tex
@@ -39,67 +39,72 @@
\begin{document}
\begin{tikzpicture}
+
\begin{axis}[
- axis lines = left,
- xlabel = $n$ (Data Input),
- ylabel = {$t$ (time)},
- legend pos=north east,
+ xmode=log, ymode=log,
+ xmin=1e-0, xmax=5000,
+ ymin=10e-1, ymax=1e7,
+ grid=both,
+ major grid style={black!50},
+ xlabel = data input size,
+ ylabel = {time},
+ legend pos=north west,
very thick,
- ymax = 500,
yticklabels=\empty,
xticklabels=\empty,
scale only axis=true,
- width=12cm, height=6cm,
+ width=12cm, height=8cm,
+ legend cell align={left}
]
\addplot [
- domain= 1:20,
+ domain= 1:5000,
samples=100,
color=red,
]
{1};
\addlegendentry{$\mathcal{O}(1)$}
\addplot [
- domain= 1:20,
+ domain= 1:5000,
samples=100,
color=green,
]
{x};
\addlegendentry{$\mathcal{O}(n)$}
\addplot [
- domain= 1:20,
+ domain= 1:50000,
samples=100,
color=blue,
]
{x^2};
-\addlegendentry{$\mathcal{O}(n^2)$}
+\addlegendentry{$\mathcal{O}\left(n^2\right)$}
\addplot [
- domain= 1:10,
+ domain= 1:500,
samples=100,
color=purple,
]
{x^3};
-\addlegendentry{$\mathcal{O}(n^3)$}
+\addlegendentry{$\mathcal{O}\left(n^3\right)$}
\addplot [
- domain= 1:10,
+ domain= 1:500,
samples=100,
color=black,
]
-{exp(x)};
-\addlegendentry{$\mathcal{O}(e^n)$}
+{exp(x) - 1.7};
+\addlegendentry{$\mathcal{O}\left(e^n\right)$}
\addplot [
- domain= 1:20,
+ domain= 1:5000,
samples=100,
color=orange,
]
-{log2(x)};
+{log2(x)+1};
\addlegendentry{$\mathcal{O}(\log n)$}
\addplot [
- domain= 1:20,
+ domain= 1:5000,
samples=100,
color=gray,
]
-{x*log2(x)};
+{x*log2(x)+1};
\addlegendentry{$\mathcal{O}(n \log n)$}
\end{axis}
\end{tikzpicture}
diff --git a/buch/papers/multiplikation/images/c_meas_4096.pdf b/buch/papers/multiplikation/images/c_meas_4096.pdf
new file mode 100644
index 0000000..304015a
--- /dev/null
+++ b/buch/papers/multiplikation/images/c_meas_4096.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/images/meas_1024.pdf b/buch/papers/multiplikation/images/meas_1024.pdf
new file mode 100644
index 0000000..70c7ec1
--- /dev/null
+++ b/buch/papers/multiplikation/images/meas_1024.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/images/meas_c.pdf b/buch/papers/multiplikation/images/meas_c.pdf
new file mode 100644
index 0000000..521151e
--- /dev/null
+++ b/buch/papers/multiplikation/images/meas_c.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/images/meas_c.tex b/buch/papers/multiplikation/images/meas_c.tex
new file mode 100644
index 0000000..12d3527
--- /dev/null
+++ b/buch/papers/multiplikation/images/meas_c.tex
@@ -0,0 +1,150 @@
+
+\documentclass[border=10pt,varwidth]{standalone}
+\usepackage[left=25mm,right=25mm,top=25mm,bottom=25mm]{geometry}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{times}
+\usepackage{geometry}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{mathrsfs}
+\usepackage{amsfonts}
+\usepackage{amsthm}
+\usepackage{lipsum}
+\usepackage{amscd}
+\usepackage{graphicx}
+\usepackage{fancyhdr}
+\usepackage{textcomp}
+\usepackage{pgfplots}
+\usepackage{txfonts}
+\usepackage[all]{xy}
+\usepackage{paralist}
+\usepackage[colorlinks=true]{hyperref}
+\usepackage{array}
+\usepackage{tikz}
+\usepackage{slashed}
+\usepackage{pdfpages}
+\usepackage{cite}
+\usepackage{url}
+\usepackage{amsmath,amsfonts,amssymb}
+\usepackage{tikz}
+\usepackage{pgfplotstable}
+\usetikzlibrary{arrows,matrix,positioning}
+\usetikzlibrary{overlay-beamer-styles}
+\usetikzlibrary{matrix.skeleton}
+\usetikzlibrary{automata,positioning}
+\usetikzlibrary{decorations.text}
+\usepackage{listings}
+\usepackage{multirow}
+\usepackage{color}
+
+\begin{document}
+
+\begin{tikzpicture}
+\begin{axis}[
+xmode=log, ymode=log,
+xmin=30, xmax=10000,
+ymin=1e-5, ymax=2e4,
+grid=both,
+major grid style={black!50},
+xlabel = data input ($n$),
+ylabel = {time ($s$)},
+legend pos=north west,
+very thick,
+scale only axis=true,
+width=12cm, height=8cm,
+ log basis x={10},
+ legend cell align={left}
+]
+\addlegendentry{Winograd}
+\addplot[ color=blue,
+ error bars/.cd, y dir=both, y explicit,
+] coordinates {
+%(2,1e-07)
+%(4,5e-07)
+%(8,2.0000000000000003e-06)
+%(16,1.1999999999999999e-05)
+(32,8.329999999999999e-05)
+(64,0.0006479)
+(128,0.0052873)
+(256,0.052674599999999995)
+(512,0.5249752000000001)
+(1024,4.671161)
+(2048,136.6769777)
+(4096,1179.261048)
+(8192,10071.512655)
+};
+\addlegendentry{Strassen}
+\addplot [ color=black,
+]coordinates {
+%(2,1e-07)
+%(4,2.1e-06)
+%(8,1.13e-05)
+%(16,7.07e-05)
+(32,0.0005041)
+(64,0.003596)
+(128,0.0254481)
+(256,0.1781817)
+(512,1.2555)
+(1024,8.8302371)
+(2048,61.9018691)
+(4096,414.648901)
+(8192,3014.235467)
+};
+
+\addlegendentry{MM div and conq}
+\addplot[ color=green,
+] coordinates {
+%(2,3e-07)
+%(4,1.1e-06)
+%(8,8.6e-06)
+%(16,7.819999999999999e-05)
+(32,0.0005940000000000001)
+(64,0.0044339)
+(128,0.0348443)
+(256,0.29484730000000003)
+(512,2.2228507)
+(1024,17.659234500000004)
+(2048,141.6103936)
+(4096,1147.106865)
+(8192,9606.402522)
+};
+
+\addlegendentry{MM}
+\addplot [ color=red,
+]coordinates {
+%(2,0.0)
+%(4,3e-07)
+%(8,1.8000000000000001e-06)
+%(16,1.1999999999999999e-05)
+(32,8.93e-05)
+(64,0.0006923)
+(128,0.0056842)
+(256,0.051771500000000005)
+(512,0.5062468000000001)
+(1024,4.5048086)
+(2048,129.2894619)
+(4096,1111.312696)
+(8192,9376.173434)
+};
+\addlegendentry{BLAS}
+\addplot[ color=purple,
+] coordinates {
+%(2,1e-07)
+%(4,0.0)
+%(8,1e-07)
+%(16,3.9e-06)
+(32,2.1000000000000002e-05)
+(64,0.00018580000000000002)
+(128,0.0012649)
+(256,0.0096489)
+(512,0.0773765)
+(1024,0.7643868)
+(2048,7.6320993999999995)
+(4096,55.845038)
+(8192,478.429957)
+};
+\end{axis}
+\end{tikzpicture}
+
+\end{document}
diff --git a/buch/papers/multiplikation/images/meas_python.pdf b/buch/papers/multiplikation/images/meas_python.pdf
new file mode 100644
index 0000000..fe89773
--- /dev/null
+++ b/buch/papers/multiplikation/images/meas_python.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/images/meas_python.tex b/buch/papers/multiplikation/images/meas_python.tex
new file mode 100644
index 0000000..ad43cf6
--- /dev/null
+++ b/buch/papers/multiplikation/images/meas_python.tex
@@ -0,0 +1,145 @@
+
+\documentclass[border=10pt,varwidth]{standalone}
+\usepackage[left=25mm,right=25mm,top=25mm,bottom=25mm]{geometry}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{times}
+\usepackage{geometry}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{mathrsfs}
+\usepackage{amsfonts}
+\usepackage{amsthm}
+\usepackage{lipsum}
+\usepackage{amscd}
+\usepackage{graphicx}
+\usepackage{fancyhdr}
+\usepackage{textcomp}
+\usepackage{pgfplots}
+\usepackage{txfonts}
+\usepackage[all]{xy}
+\usepackage{paralist}
+\usepackage[colorlinks=true]{hyperref}
+\usepackage{array}
+\usepackage{tikz}
+\usepackage{slashed}
+\usepackage{pdfpages}
+\usepackage{cite}
+\usepackage{url}
+\usepackage{amsmath,amsfonts,amssymb}
+\usepackage{tikz}
+\usepackage{pgfplotstable}
+\usetikzlibrary{arrows,matrix,positioning}
+\usetikzlibrary{overlay-beamer-styles}
+\usetikzlibrary{matrix.skeleton}
+\usetikzlibrary{automata,positioning}
+\usetikzlibrary{decorations.text}
+\usepackage{listings}
+\usepackage{multirow}
+\usepackage{color}
+
+\begin{document}
+
+\begin{tikzpicture}
+\begin{axis}[
+xmode=log, ymode=log,
+xmin=30, xmax=4200,
+ymin=0.01, ymax=70000,
+grid=both,
+major grid style={black!50},
+xlabel = data input ($n$),
+ylabel = {time ($s$)},
+legend pos=north west,
+very thick,
+scale only axis=true,
+width=12cm, height=8cm,
+ log basis x={10},
+ legend cell align={left}
+]
+\addlegendentry{Winograd}
+\addplot[ color=blue,
+] coordinates {
+% (2, 2.7895e-05 )
+% (4, 0.000104904)
+% (8, 0.000552893)
+% (16, 0.0045557 )
+(32, 0.0187144 )
+(64, 0.153069 )
+(128, 1.19476 )
+(256, 8.29899 )
+(512, 68.3699 )
+(1024,537.374 )
+(2046,4884.61)
+(4096,43597.1)
+};
+\addlegendentry{Strassen}
+\addplot [ color=black,
+]coordinates {
+ % (2,2.09808e-05 )
+ % (4,0.000174284 )
+ % (8,0.000943899 )
+ % (16,0.00475407 )
+ (32,0.0485256 )
+ (64,0.220414 )
+ (128,1.44718 )
+ (256,9.93866 )
+ (512,63.961 )
+(1024,461.494 )
+(2046,3860.57)
+(4096,22904.3)
+};
+
+\addlegendentry{MM div and conq}
+\addplot[ color=green,
+] coordinates {
+ % (2,8.10623e-06 )
+ % (4,9.01222e-05 )
+ % (8,0.000729084 )
+ % (16,0.00497079 )
+ (32,0.02719 )
+ (64,0.26528 )
+ (128,1.77787 )
+ (256,13.27 )
+ (512,105.397 )
+(1024,847.321 )
+(2046,7375.93)
+(4096,58466)
+};
+
+\addlegendentry{MM}
+\addplot [ color=red,
+]coordinates {
+ % (2,1.85966e-05)
+ % (4,8.29697e-05 )
+ % (8,0.000547171)
+ % (16,0.00305367 )
+ (32, 0.0240743 )
+ (64, 0.186895 )
+ (128, 1.56369 )
+ (256, 11.0062 )
+ (512, 85.4768)
+(1024,750.757 )
+(2046,6154.18)
+(4096,46813.3)
+};
+% \addlegendentry{NumPy}
+% \addplot[ color=blue,
+% ] coordinates {
+% % (2,1.83582e-05 )
+% % (4,7.86781e-06)
+% % (8,1.00136e-05)
+% % (16,5.4121e-05 )
+% (32,4.26769e-05)
+% (64,0.000118494)
+% (128,0.000244141 )
+% (256,0.000695705 )
+% (512,0.00221705 )
+% (1024,0.0188088 )
+% (2046,0.215739)
+% (4096,1.49159)
+% };
+
+\end{axis}
+\end{tikzpicture}
+
+\end{document}
diff --git a/buch/papers/multiplikation/images/strassen.pdf b/buch/papers/multiplikation/images/strassen.pdf
index 9899dcb..d150125 100644
--- a/buch/papers/multiplikation/images/strassen.pdf
+++ b/buch/papers/multiplikation/images/strassen.pdf
Binary files differ
diff --git a/buch/papers/multiplikation/images/strassen.tex b/buch/papers/multiplikation/images/strassen.tex
index 797772b..b51a9d5 100644
--- a/buch/papers/multiplikation/images/strassen.tex
+++ b/buch/papers/multiplikation/images/strassen.tex
@@ -56,7 +56,7 @@
A_{11}B_{11} \& A_{12}B_{12} \& A_{21}B_{12} \& A_{22}B_{12} \\
A_{11}B_{22} \& A_{12}B_{22} \& A_{21}B_{22} \& A_{22}B_{22} \\
};}
-
+
\foreach \j in {1,...,7}
{
\matrix(M\i\j)[matrix of math nodes,nodes in empty cells,
@@ -76,18 +76,18 @@
}
\huge{
- \node at (-3,-20) {$C_{22}=$};
- \node at (-3,-15) {$C_{21}=$} ;
- \node at (-3,-10) {$C_{12}=$} ;
- \node at (-3,-5) {$C_{11}=$} ;
-
- \node at (5,-2) {I};
- \node at (10,-2) {II};
- \node at (15,-2) {III};
- \node at (20,-2) {IV};
- \node at (25,-2) {V};
- \node at (30,-2) {VI};
- \node at (35,-2) {VII};
+ \node at (-3,-20) {$\mathbf{C}_{22}=$};
+ \node at (-3,-15) {$\mathbf{C}_{21}=$} ;
+ \node at (-3,-10) {$\mathbf{C}_{12}=$} ;
+ \node at (-3,-5) {$\mathbf{C}_{11}=$} ;
+
+ \node at (5,-2) {$\mathbf{P}$};
+ \node at (10,-2) {$\mathbf{Q}$};
+ \node at (15,-2) {$\mathbf{R}$};
+ \node at (20,-2) {$\mathbf{S}$};
+ \node at (25,-2) {$\mathbf{T}$};
+ \node at (30,-2) {$\mathbf{U}$};
+ \node at (35,-2) {$\mathbf{V}$};
}
@@ -100,41 +100,132 @@
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X4-3-3)] {};
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(X4-4-4)] {};
+% P
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-4-1)] {};
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-1-4)] {};
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-4-4)] {};
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M11-1-1)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M14-1-4)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M14-2-4)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M15-4-1)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M15-4-2)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M17-2-4)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M17-4-4)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M17-2-2)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M17-4-2)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M23-3-1)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M23-4-1)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M25-4-1)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M25-4-2)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M21-4-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M21-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M21-4-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M21-1-1)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M32-1-4)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M32-1-3)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M34-1-4)] {};
-\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M34-2-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M31-4-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M31-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M31-4-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M31-1-1)] {};
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-4-1)] {};
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-1-4)] {};
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-4-4)] {};
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M41-1-1)] {};
+
+% Q
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M12-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M12-1-3)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M22-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M22-1-3)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M32-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M32-1-3)] {};
+
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M42-1-4)] {};
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M42-1-3)] {};
+
+% R
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M13-3-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M13-4-1)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M23-3-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M23-4-1)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M33-3-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M33-4-1)] {};
+
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M43-3-1)] {};
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M43-4-1)] {};
+
+% S
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M14-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M14-2-4)] {};
+
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M24-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M24-2-4)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M34-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M34-2-4)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M44-1-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M44-2-4)] {};
+
+%T
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M15-4-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M15-4-2)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M25-4-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M25-4-2)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M35-4-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M35-4-2)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M45-4-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M45-4-2)] {};
+
+% U
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M16-1-3)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M16-1-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M16-3-3)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M16-3-1)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M26-1-3)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M26-1-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M26-3-3)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M26-3-1)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M36-1-3)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M36-1-1)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M36-3-3)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M36-3-1)] {};
+
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M46-1-3)] {};
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M46-1-1)] {};
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M46-3-3)] {};
\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M46-3-1)] {};
+
+%V
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M17-2-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=red, fit=(M17-4-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M17-2-2)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=green, fit=(M17-4-2)] {};
+
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M27-2-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M27-4-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M27-2-2)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M27-4-2)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M37-2-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M37-4-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M37-2-2)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M37-4-2)] {};
+
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M47-2-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M47-4-4)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M47-2-2)] {};
+\node[opacity=0.5, rounded corners=0pt, inner sep=-1pt, fill=gray, fit=(M47-4-2)] {};
+
+
+
+
+
\end{tikzpicture}
\end{document}
diff --git a/buch/papers/multiplikation/loesungsmethoden.tex b/buch/papers/multiplikation/loesungsmethoden.tex
index 83be814..51872f5 100755
--- a/buch/papers/multiplikation/loesungsmethoden.tex
+++ b/buch/papers/multiplikation/loesungsmethoden.tex
@@ -4,18 +4,17 @@
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{L\"osungsmethoden}
-\rhead{L\"osungsmethoden}
+\section{Algorithmen}
+\rhead{Algorithmen}
-In diesem Abschnitt werden mehrere Algorithmen zur Berechnung der Matrizenmultiplikation vorgestellt, auch werden Libraries zur automatisierten Verwendung von vordefinierten Algorithmen gezeigt.
+In diesem Abschnitt werden mehrere Algorithmen zur Berechnung der Matrizenmultiplikation vorgestellt, auch werden Bibliotheken zur unkomplizierten Verwendung von vordefinierten Algorithmen gezeigt.
\subsection{Standard Algorithmus}
-Der Standard Methode kann im Algorithmus \ref{multiplikation:alg:smm} entnommen werden.
-Hierf\"ur wurde die Gleichung \eqref{multiplikation:eq:MM} direkt implementiert.
-Die \texttt{For i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, die \texttt{For j} Schleife iteriert \"uber alle Spalten der $\mathbf{B}$ Matrix und die \texttt{For k} Schleife iteriert \"uber alle Eintr\"age dieser Zeilen bzw. Spalten.
-
-\begin{algorithm}\caption{Matrix Multiplication}
+Die Standardmethode ist im Algorithmus \ref{multiplikation:alg:smm} implementiert.
+Hierf\"ur wurde die Gleichung \eqref{multiplikation:eq:MM} direkt umgesetzt.
+Die \texttt{for i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, die \texttt{for j} Schleife iteriert \"uber alle Spalten der $\mathbf{B}$ Matrix und die \texttt{for k} Schleife iteriert \"uber alle Eintr\"age dieser Zeilen bzw. Spalten.
+\begin{algorithm}\footnotesize\caption{Matrizenmultiplikation}
\label{multiplikation:alg:smm}
\setlength{\lineskip}{7pt}
\begin{algorithmic}[1]
@@ -38,17 +37,18 @@ Die \texttt{For i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix,
\EndFunction
\end{algorithmic}
\end{algorithm}
-
-Die Laufzeit dieser Struktur mit drei \texttt{For} Schleifen ist $\mathcal{O}(n^3)$
+Die Laufzeit dieser Struktur mit drei \texttt{for} Schleifen ist $\mathcal{O} (n^3)$.
\subsubsection{Divide and Conquer Methode}
-F\"ur gewisse Algorithmen f\"uhren \textit{Divide and Conquer} Ans\"atze zu markant besseren Laufzeiten.
-Das bekannteste Beispiel ist wohl die \textit{Fast Fourier Transform} wobei die Laufzeit von $\mathcal{O}(n^2)$ zu $\mathcal{O}(n \log n)$ verbessert werden kann.
+F\"ur gewisse Algorithmen f\"uhren \textit{Divide and Conquer} Ans\"atze \cite{multiplikation:DAC} zu markant besseren Laufzeiten.
+Die Grundidee ist, dass ein Problem in mehrere, meist simplere und kleinere Teilprobleme aufgeteilt wird.
+Das bekannteste Beispiel ist wohl die \textit{Fast Fourier Transform} wobei die Laufzeit von $\mathcal{O} (n^2)$ zu $\mathcal{O}(n \log n)$ verbessert werden kann.
Die Matrizenmultiplikation kann ebenfalls mit solch einem Ansatz berechnet werden.
-Zur vereinfachten Veranschaulichung kann die Situation, mit $\mathbf{A}$ und $\mathbf{B}$ der gr\"osse $2^n \times 2^n$ verwendet werden.
-Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen der gr\"osse $2^{n-1} \times 2^{n-1}$
+Zur vereinfachten Veranschaulichung kann die Situation mit $\mathbf{A}$ und $\mathbf{B}$ der Gr\"osse $2^n \times 2^n$ verwendet werden.
+Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen der Gr\"osse $2^{n-1} \times 2^{n-1}$ aufgeteilt.
+Das Matrizen Produkt
\begin{equation}
\mathbf{A}\mathbf{B}=
\begin{bmatrix}
@@ -63,20 +63,18 @@ Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen
\begin{bmatrix}
\mathbf{C}_{11} & \mathbf{C}_{12}\\
\mathbf{C}_{21} & \mathbf{C}_{22}
-\end{bmatrix}
+\end{bmatrix},
\end{equation}
-aufgeteilt.
-Die Berechnung
-\begin{equation}
-\mathbf{C}_{ij} = \sum_{k=1}^n \mathbf{A}_{ik} \mathbf{B}_{kj}
+mit \begin{equation}
+\mathbf{C}_{ij} = \sum_{k=1}^{2n} \mathbf{A}_{ik} \mathbf{B}_{kj},
\label{multiplikation:eq:MM_block}
\end{equation}
-ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, wobei hier f\"ur die Multiplikation die Matrizenmultiplikation verwendet wird.
+ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, f\"ur die Multiplikation der Untermatrize $\mathbf{A}_{ik}$ und $\mathbf{B}_{kj}$ wird die Matrizenmultiplikation verwendet.
Der Algorithmus \ref{multiplikation:alg:devide_mm} zeigt den \textit{Divide and Conquer} Ansatz,
Der Grundstruktur dieser Methode besteht aus dem rekursiven Aufruf der Funktion mit den erzeugten Blockmatrizen.
Der rekursive Aufruf wird bis zu der Gr\"osse der Matrizen von $N = 2 \times 2$ durchgef\"uhrt.
-\begin{algorithm}\caption{Divide and Conquer Matrix Multiplication}
+\begin{algorithm}\footnotesize\caption{Divide and Conquer Matrizenmultiplikation}
\setlength{\lineskip}{7pt}
\label{multiplikation:alg:devide_mm}
\begin{algorithmic}
@@ -105,37 +103,33 @@ Der rekursive Aufruf wird bis zu der Gr\"osse der Matrizen von $N = 2 \times 2$
\end{algorithmic}
\end{algorithm}
-Die Laufzeit dieser rekursiven Funktion kann mit dem \textit{Master Theorem} berechnet werden.
-Ohne auf diesen vertieft einzugehen, bestimmt die Anzahl rekursiver Aufrufe der Funktion die Laufzeit.
-In diesem Fall wird die Funktion pro Durchlauf acht mal rekursiv aufgerufen, dies f\"uhrt
+Die Laufzeit dieser rekursiven Funktion kann mit dem \textit{Master Theorem} \cite{multiplikation:master_theorem} berechnet werden. Das \textit{Master Theorem} bestimmt die Zeitkomplexit\"at von rekursiven Algorithmen.
+Ohne auf dieses vertieft einzugehen, bestimmt die Anzahl rekursiver Aufrufe $\mathcal{T} $ der Funktion die Laufzeit.
+In diesem Fall wird die Funktion pro Durchlauf acht mal rekursiv aufgerufen, dies f\"uhrt zu
\begin{equation} \label{multiplikation:eq:laufzeitdac}
- \mathcal{T}(n) =
- \begin{cases}
- 1 & \text{if } n \leq 2\\
- 8 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2
- \end{cases} = \mathcal{O}(n^{\log_2 8}) = \mathcal{O}(n^{3})
+ \mathcal{T}(n) = 8 \cdot \mathcal{T} \left(\frac{n}{2}\right ) + n^2 = \mathcal{O}(n^{\log_2 8}) = \mathcal{O} (n^{3} ),
\end{equation}
-zu einer kubischen Laufzeit.
+also einer kubischen Laufzeit.
Die Addition zweier Matrizen $\mathbf{A} + \mathbf{B} = \mathbf{C}$ hat eine Laufzeit von $\mathcal{O}(n^{2})$ und kann neben dem dominierendem Anteil von $\mathcal{O}(n^{3})$ ignoriert werden.
In diesem Fall hat der \textit{Divide and Conquer} Ansatz zu keiner Verbesserung gef\"uhrt.
-\subsection{Strassen's Algorithmus}
+\subsection{Strassens Algorithmus}
-Strassen's Algorithmus \cite{multiplikation:strassen_1969} beschreibt die Matrizenmultiplikation mit einer Vielzahl von Additionen, Subtraktionen und Multiplikationen.
-Die Grundlegenden Terme
+Strassens Algorithmus \cite{multiplikation:strassen_1969} beschreibt die Matrizenmultiplikation mit einer Vielzahl von Additionen, Subtraktionen und Multiplikationen von Blockmatrizen.
+Die sieben grundlegenden Terme
\begin{equation} \label{multiplikation:eq:strassen}
\begin{split}
-\text{\textbf{P}} &= (\mathbf{A}_{11} + \mathbf{A}_{22}) \cdot (\mathbf{B}_{11} + \mathbf{B}_{22}) \\
-\text{\textbf{Q}} &= (\mathbf{A}_{21} + \mathbf{A}_{22}) \cdot \mathbf{B}_{11} \\
-\text{\textbf{R}} &= \mathbf{A}_{11} \cdot (\mathbf{B}_{12}-\mathbf{B}_{22}) \\
-\text{\textbf{S}} &= \mathbf{A}_{22} \cdot (-\mathbf{B}_{11}+\mathbf{B}_{21}) \\
-\text{\textbf{T}} &= (\mathbf{A}_{11} + \mathbf{A}_{12}) \cdot \mathbf{B}_{22} \\
-\text{\textbf{U}} &= (-\mathbf{A}_{11} + \mathbf{A}_{21}) \cdot (\mathbf{B}_{11} + \mathbf{B}_{12}) \\
-\text{\textbf{V}} &= (\mathbf{A}_{12} - \mathbf{A}_{22}) \cdot (\mathbf{B}_{21} + \mathbf{B}_{22})
+\text{\textbf{P}} &= \left(\mathbf{A}_{11} + \mathbf{A}_{22}\right ) \cdot \left(\mathbf{B}_{11} + \mathbf{B}_{22}\right ) \\
+\text{\textbf{Q}} &= \left(\mathbf{A}_{21} + \mathbf{A}_{22}\right ) \cdot \mathbf{B}_{11} \\
+\text{\textbf{R}} &= \mathbf{A}_{11} \cdot \left(\mathbf{B}_{12}-\mathbf{B}_{22}\right ) \\
+\text{\textbf{S}} &= \mathbf{A}_{22} \cdot \left(-\mathbf{B}_{11}+\mathbf{B}_{21}\right ) \\
+\text{\textbf{T}} &= \left(\mathbf{A}_{11} + \mathbf{A}_{12}\right ) \cdot \mathbf{B}_{22} \\
+\text{\textbf{U}} &= \left(-\mathbf{A}_{11} + \mathbf{A}_{21}\right ) \cdot \left(\mathbf{B}_{11} + \mathbf{B}_{12}\right ) \\
+\text{\textbf{V}} &= \left(\mathbf{A}_{12} - \mathbf{A}_{22}\right ) \cdot \left(\mathbf{B}_{21} + \mathbf{B}_{22}\right )
\end{split}
\end{equation}
-aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Matrix $\mathbf{C}$
+aus $\mathbf{A}$ und $\mathbf{B}$ werden f\"ur die Berechnung der Bl\"ocke
\begin{equation} \label{multiplikation:eq:strassen2}
\begin{split}
\mathbf{C}_{11} &= \text{\textbf{P}} + \text{\textbf{S}} - \text{\textbf{T}} + \text{\textbf{V}} \\
@@ -144,8 +138,8 @@ aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Matrix $\math
\mathbf{C}_{22} &= \text{\textbf{P}} + \text{\textbf{R}} - \text{\textbf{Q}} + \text{\textbf{U}}
\end{split}
\end{equation}
-gebraucht.
-\begin{algorithm}\caption{Strassen Matrix Multiplication}
+der Matrix $\mathbf{C}$ gebraucht.
+\begin{algorithm}\footnotesize\caption{Strassen Matrizenmultiplikation}
\label{multiplikation:alg:strassen}
\setlength{\lineskip}{7pt}
\begin{algorithmic}
@@ -190,63 +184,86 @@ gebraucht.
\EndFunction
\end{algorithmic}
\end{algorithm}
-Strassens's Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt.
+Strassens Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt.
+Jedes Feld steht f\"ur eine Multiplikation zweier Matrizenelementen von $\mathbf{A}$ oder $\mathbf{B}$ .
+Die gr\"unen Felder auf der linken Seite, zeigen die Addition, welche f\"ur den dazugeh\"origen Term ben\"otigt wird.
+Die sieben Spalten beschreiben die Matrizen $\mathbf{P,Q,R, \ldots, V}$.
+Rote Felder stehen f\"ur eine Subtraktion und die gr\"unen f\"ur eine Addition.
\begin{figure}
\center
\includegraphics[width=\linewidth]{papers/multiplikation/images/strassen.pdf}
- \caption{Strassen's Algorithmus}
+ \caption{Der Algorithmus von Strassen verwendet Multiplikationen zur Berechnung der sieben Block-Matrizen $\mathbf{P}$ bis $\mathbf{V}$ aus $\mathbf{A}$ und $\mathbf{B}$, aus denen sich die Blöcke es Produktes $\mathbf{C}=\mathbf{AB}$ ausschliesslich durch Addition und Subtraktion bilden lassen. Die einzelnen Felder in den Quadraten stellen alle möglichen Produkte von Matrizen $\mathbf{A}_{ik}$ und $\mathbf{B}_{jl}$ dar. In den grossen Quadraten am linken Rand sind diejenigen Produkte grün markiert, welche zusammen die entsprechenden Blöcke $\mathbf{C}_{il}$ von $\mathbf{C}$ ergeben. In den Spalten $\mathbf{P}$ bis $\mathbf{V}$ sind die Produkte farblich hervorgehoben, die in der Definition der entsprechenden Matrix vorkommen. Grün und rot symbolisieren die Vorzeichen, mit denen die Produkte kombiniert werden müssen}
\label{multiplikation:fig:strassen}
\end{figure}
Die Funktion wird sieben mal rekursiv aufgerufen.
-Dies f\"uhrt zu einer Laufzeit von
+Dies f\"uhrt nach dem \textit{Master Theorem} zu einer Laufzeit von
\begin{equation} \label{multiplikation:eq:laufzeitstrassen}
\mathcal{T}(n) =
-\begin{cases}
-1 & \text{if } n \leq 2\\
-7 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2
-\end{cases} = \mathcal{O}(n^{\log_2 7}) = \mathcal{O}(n^{2.8074})
+7 \cdot \mathcal{T}\left(\frac{n}{2}\right) + n^2 = \mathcal{O}(n^{\log_2 7} ) = \mathcal{O}(n^{2.8074} )
\end{equation}
-und ist somit schneller als die Standard Methode.
+und ist somit schneller als die Standardmethode.
+Man beachte, dass die Anzahl von Additionen und Subtraktionen gr\"osser und die Anzahl der Multiplikationen kleiner wurde.
-\subsection{Winograd's Algorithmus}
+\subsection{Winograds Algorithmus}
-Ein weiterer Ansatz lieferte Shmuel Winograd im Jahre 1968 \cite{multiplikation:winograd_1968}.
-Er zeigte einen neuen Algorithmus f\"ur das
-\begin{equation}
- \langle x,y \rangle = \sum_{i=1}^{n}x_i y_i
+Einen weiteren Ansatz lieferte Shmuel Winograd im Jahre 1968 \cite{multiplikation:winograd_1968}.
+Er beschrieb einen neuen Algorithmus f\"ur das Skalarprodukt
+\begin{equation} \label{multiplikation:eq:skalar}
+ \langle x,y \rangle = \sum_{i=1}^{n}x_i y_i.
\end{equation}
-Skalarprodukt.
F\"ur jeden Vektor berechne
\begin{equation}
\xi = \sum_{j=1}^{ \lfloor n/2 \rfloor} x_{2j-1} \cdot x_{2j}
\end{equation}
und
\begin{equation}
- \eta = \sum_{j=1}^{ \lfloor n/2 \rfloor} y_{2j-1} \cdot y_{2j}.
+ \eta = \sum_{j=1}^{ \lfloor n/2 \rfloor} y_{2j-1} \cdot y_{2j},
\end{equation}
+die jeweils nur von $x$ und $y$ abhängen.
+Dazu werden $2 \cdot \lfloor n/2 \rfloor \leq n$ Multiplikationen benötigt.
Das Skalarprodukt ist nun geben mit
\begin{equation}
\langle x,y \rangle =
\begin{cases}
- \displaystyle \quad \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta & \text{if $n$ is even}\\
- \displaystyle \quad \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta + x_n y_n & \text{if $n$ is odd}.
+ \displaystyle \quad \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta & \text{wenn $n$ gerade}\\
+ \displaystyle \quad \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta + x_n y_n & \text{wenn $n$ ungerade}.
\end{cases}
\end{equation}
-
-Angenommen man hat $N$ Vektoren mit welchen man $T$ Skalarprodukte berechnen m\"ochte.
+Das Skalarprodukt kann also mit $ \lfloor \frac{n+1}{2} \rfloor$ weiteren Multiplikationen berechnet werden.
+Angenommen man hat $N$ Vektoren, mit welchen man $T$ Skalarprodukte berechnen m\"ochte.
Daf\"ur werden $N\lfloor n/2 \rfloor + T\lfloor (n+1)/2 \rfloor $ Multiplikationen ben\"otigt.
+Die Summen f\"ur $\xi$ und $\eta$ m\"ussen nur einmal berechnet werden.
+Für die ursprüngliche Gleichung \eqref{multiplikation:eq:skalar} für das Skalarprodukt benötigt man $Tn$ Multiplikationen.
+Damit können wir die Laufzeit der Methode von Winograd mit der Laufzeit der Standardmethode vergleichen. Sie ist kleiner als die Laufzeit für die Standardmethode, wenn gilt
+\begin{equation}\label{multiplikation:eq:eff}
+\begin{array}{crcl}
+ & N\lfloor n/2\rfloor + T\lfloor(n+1)/2\rfloor \approx Nn/2 + Tn/2 & \le & Tn \\
+\Leftrightarrow & Nn/2 & \le & Tn/2 \\
+\Leftrightarrow & N & \le & T.
+\end{array}
+\end{equation}
Eine Matrizenmultiplikation mit $\mathbf{A}$ einer $m \times n$ und $\mathbf{B}$ einer $n \times p$ Matrix, entspricht $N=m+p$ Vektoren mit welchen man $T=mp$ Skalarprodukte berechnet.
Dies f\"uhrt zu
\begin{equation}
(m+p) \left \lfloor \frac{n}{2} \right \rfloor + mp \left \lfloor \frac{n+1}{2} \right \rfloor = \frac{mn}{2} + \frac{pn}{2} + \frac{mpn}{2} + \frac{mp}{2}
\end{equation}
Multiplikationen.
-Wenn $m,p,n$ gross werden, dominiert der Term $\frac{mpn}{2}$ und es werden $\frac{mpn}{2}$ Multiplikationen ben\"otigt.
-Was im Vergleich zu den $mpn$ Multiplikation der Standard Methode nur die H\"alfte ist.
-Die Implementation kann im Algorithmus \ref{multiplikation:alg:winograd} entnommen werden.
-
-\begin{algorithm}\caption{Winograd Matrix Multiplication}
+Wenn $m,p,n$ gross werden, dominiert der Term $\frac{mpn}{2}$ und es werden $\frac{mpn}{2}$ Multiplikationen ben\"otigt, was im Vergleich zu den $mpn$ Multiplikation der Standardmethode nur die H\"alfte ist.
+Mit dem gleichen Ansatz wie in der Gleichung \eqref{multiplikation:eq:eff} aber mit quadratischen Matrizen, muss
+\begin{align}
+ \begin{split}
+N=2n, &\quad T = n^2 \\
+ 2n &\leq n^2 \\
+ 2 &\leq n
+\end{split}
+\end{align}
+sein, damit man etwas einspart.
+Die Implementation kann Algorithmus \ref{multiplikation:alg:winograd} entnommen werden.
+Falls $m=n=p$, werden $\frac{n^3}{2}$ Multiplikationen benötigt.
+Im Abschnitt \ref{muliplikation:sec:bigo} wurde bereits erläutert: falls $n \rightarrow \infty$ können Konstanten vernachlässigt werden und
+ somit entsteht für diesen Algorithmus wieder die ursprüngliche Laufzeit von $\mathcal{O}(n^3 )$.
+\begin{algorithm}\footnotesize\caption{Winograds Matrizenmultiplikation}
\setlength{\lineskip}{7pt}
\label{multiplikation:alg:winograd}
\begin{algorithmic}
@@ -297,13 +314,188 @@ Die Implementation kann im Algorithmus \ref{multiplikation:alg:winograd} entnomm
\end{algorithmic}
\end{algorithm}
-\subsection{Weitere Algorithmen}
-\textcolor{red}{TODO: BLAS}
+\subsection{Basic Linear Algebra Subprograms (BLAS)}
+
+Die gebräuchliche Methode f\"ur die Anwendung einer optimierten Matrizenmultiplikation ist die Verwendung einer Subroutine aus den \textit{Basic Linear Algebra Subprograms (BLAS)} \cite{multiplikation:BLAS}.
+Die meisten numerischen Bibliotheken von high-level Skriptsprachen wie \texttt{Matlab}, \texttt{NumPy (Python)}, \texttt{GNU Octave} oder \texttt{Mathematica} ben\"utzen eine Form von \textit{BLAS}.
+
+\textit{BLAS} sind dabei in drei unterschiedliche Levels aufgeteilt.
+
+\begin{itemize}
+ \item Level 1
+ \begin{itemize}
+ \item Operationen der Art: $\mathbf{y} \leftarrow \alpha \mathbf{x}+\mathbf{y}$
+ \item Dieses Level hat $\mathcal{O}(n)$ Charakteristik
+ \end{itemize}
+ \item Level 2
+ \begin{itemize}
+ \item Operationen der Art: $\mathbf{y} \leftarrow \alpha \mathbf{A}\mathbf{x}+\beta \mathbf{y}$
+ \item Dieses Level hat $\mathcal{O}(n^2)$ Charakteristik
+ \end{itemize}
+ \item Level 3
+ \begin{itemize}
+ \item Operationen der Art: $\mathbf{C} \leftarrow \alpha \mathbf{A}\mathbf{B}+\beta\mathbf{C}$
+ \item Dieses Level hat $\mathcal{O}(n^3)$ Charakteristik
+ \end{itemize}
+\end{itemize}
+
+Die \textit{BLAS} sind auf die modernen Computer Prozessoren optimiert und k\"onnen dank einer ausgeklügelter Verwendung der Speicherarchitektur zu erheblichen Leistungsoptimierungen f\"uhren.
+
-\section{Implementation}
+%\subsubsection{General Matrix Multiplication (GEMM)}
+%
+%Die \textit{Double-GEMM} \cite{multiplikation:DGEMM} ist definiert als:
+%
+%\textit{DGEMM performs one of the matrix-matrix operations}
+%$$
+% C := \alpha \cdot op( A )\cdot op( B ) + \beta \cdot C,
+% $$
+% \textit{where op( X ) is one of}
+%$$
+%op( X ) = X \quad \text{ or } \quad op( X ) = X^T,
+%$$
+% \textit{alpha and beta are scalars, and A, B and C are matrices, with op( A )
+% an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
+% }
+
+%Die Implementation von $\alpha\mathbf{A}\mathbf{B} + \beta \mathbf{C} = \mathbf{C}$, wobei $\alpha = 1.0$ und $\beta = 0.0$ in der \texttt{C}-Version von \textit{BLAS}, ist als
+%\begin{lstlisting}[style=multiplikationC]
+%cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
+% m, n, k, 1, A, m , B, k, 0, C, m);
+%\end{lstlisting}
+%definiert.
+
+
+
+\section{Implementation}\label{multiplikation:section:Implementation}
\rhead{Implementation}
-\textcolor{red}{TODO: messresultate}
+
+Folgende Algorithmen wurden jeweils in \texttt{C} und \texttt{Python} implementiert.
+\begin{itemize}
+ \item Standard Matrizenmultiplikation
+ \item \textit{Divide and Conquer} Matrizenmultiplikation
+ \item Strassens Matrizenmultiplikation
+ \item Winograds Matrizenmultiplikation
+ \item \texttt{BLAS} Matrizenmultiplikation in \texttt{C}
+ \item \texttt{Numpy} Matrizenmultiplikation in \texttt{Python}
+\end{itemize}
+
+Der Code kann im zum Buch gehörigem \textit{GitHub} \footnote{\url{https://github.com/AndreasFMueller/SeminarMatrizen.git}} Repository gefunden werden.
+Anzumerken ist, dass die Matrizenmultiplikation von \texttt{NumPy} als einzige Implementation Multiprocessing und Multithreading verwendet, dies f\"uhrt zu den tiefen Messzeiten.
+In Abbildung \ref{multiplikation:fig:python} und Abbildung \ref{multiplikation:fig:c_meas_4096} sind de Messresultate grafisch dargestellt. Die selben Messresultate sind tabellarisch in Tabelle \ref{multiplikation:tab:messung_Python} und Tabelle \ref{multiplikation:tab:messung_C} ersichtlich.
+
+Die gezeigten Algorithmen haben alle eine Laufzeit der Form $\mathcal{O}(n^k) $.
+Bei einer doppelt logarithmischen Darstellung unterscheiden sich diese in Geraden mit unterschiedlichen Steigungen.
+Bei den grafisch gezeigten Messresultate, können diese Steigungen gut erkannt werden, wobei die tiefere Laufzeit des Strassen Algorithmus eindrücklich zu sehen ist.
+Der benötigte Overhead der Algorithmen zeigt sich in unterschiedlichen $y$-Achsenschnittpunkte.
+
+In der Messung mit der Programmiersprache \texttt{C} kann ein typischer Cache-Effekt beobachtet wer-
+den.
+Bei den Algorithmen von Winograd und der Standardmethode hat bei einer Matrizengrösse von $n = 2048$ wohl eine Zeile der Matrix nicht an einer Cache Speicherstelle Platz.
+Diese beiden Algorithmen sind die Einzigen, welche \texttt{for}-Schleifen über die ganze Breite der Matrizen verwenden.
+Dies führt dazu, dass ganze Zeilen zwischengespeichert werden müssen.
+Bei den anderen Algorithmen ist dies nicht der Fall.
+
+Die Hardwareinformationen des verwendeten Computers sind in der Tabelle \ref{multiplikation:tab:pc_config} aufgelistet.
+
+
+\begin{table}
+ \begin{center}
+ \begin{tabular}{r l l l l l}
+ \hline
+ \hline
+ \textbf{n} & \textbf{MM (\textit{s})} & \textbf{MM DC (\textit{s})} & \textbf{Strassen (\textit{s})} & \textbf{Winograd (\textit{s})} & \textbf{BLAS (\textit{s})} \\
+ \hline
+ \multicolumn{6}{c}{} \\
+ \textbf{32} & \phantom{000}0.000089 & \phantom{000}0.000594 & \phantom{000}0.0005 & \phantom{0000}0.00008 & \phantom{00}0.000021 \\
+ \textbf{64} & \phantom{000}0.00069 & \phantom{000}0.0044 & \phantom{000}0.0036 & \phantom{0000}0.00064 & \phantom{00}0.00018 \\
+ \textbf{128} & \phantom{000}0.0057 & \phantom{000}0.035 & \phantom{000}0.025 & \phantom{0000}0.0052 & \phantom{00}0.0012 \\
+ \textbf{256} & \phantom{000}0.052 & \phantom{000}0.29 & \phantom{000}0.178 & \phantom{0000}0.053 & \phantom{00}0.0096 \\
+ \textbf{512} & \phantom{000}0.51 & \phantom{000}2.22 & \phantom{000}1.25 & \phantom{0000}0.55 & \phantom{00}0.077 \\
+ \textbf{1024} & \phantom{000}4.50 & \phantom{00}17.65 & \phantom{000}8.83 & \phantom{0000}4.67 & \phantom{00}0.764 \\
+ \textbf{2048} & \phantom{0}129.28 & \phantom{0}141.61 & \phantom{00}61.901 & \phantom{00}136.67 & \phantom{00}7.63 \\
+ \textbf{4096} & 1111.31 & 1147.10 & \phantom{0}414.64 & \phantom{0}1179.26 & \phantom{0}55.84 \\
+ \textbf{8192} & 9376.17 & 9606.40 & 3014.23 & 10071.51 & 478.42 \\
+ \multicolumn{6}{c}{} \\
+ \hline
+ \hline
+ \end{tabular}
+ \end{center}
+ \caption{Laufzeiten der verschieden Algorithmen in der Programmiersprache \texttt{C}}
+ \label{multiplikation:tab:messung_C}
+ \end{table}
+
+
+
+ \begin{table}
+ \begin{center}
+ \begin{tabular}{r l l l l l}
+ \hline
+ \hline
+ \textbf{n} & \textbf{MM (\textit{s})} & \textbf{MM DC (\textit{s})} & \textbf{Strassen (\textit{s})} & \textbf{Winograd (\textit{s})} & \textbf{NumPy(\textit{s})} \\
+ \hline
+ \multicolumn{6}{c}{} \\
+ \textbf{32} & \phantom{000}0.0240 & \phantom{0000}0.0271& \phantom{0000}0.04852 & \phantom{0000}0.01871 & 0.0000426 \\
+ \textbf{64} &\phantom{000} 0.186 & \phantom{0000}0.265 & \phantom{0000}0.2204 & \phantom{0000}0.1530& 0.000118 \\
+ \textbf{128} &\phantom{000} 1.563 & \phantom{0000}1.777 & \phantom{0000}1.447 & \phantom{0000}1.1947 & 0.000244 \\
+ \textbf{256} &\phantom{00} 11.006 & \phantom{000}13.27 & \phantom{0000}9.938 & \phantom{0000}8.298& 0.000695 \\
+ \textbf{512} &\phantom{00} 85.476 & \phantom{00}105.397 & \phantom{000}63.961 & \phantom{000}68.360 & 0.00221\\
+ \textbf{1024} &\phantom{0} 750.757 & \phantom{00}847.321 & \phantom{00}461.494 & \phantom{00}537.374 & 0.0188 \\
+ \textbf{2048} & 6154.18 & \phantom{0}7375.93 & \phantom{0}3860.57 & \phantom{0}4884.61 & 0.215 \\
+ \textbf{4096} & 46813.30 & 58466.00 & 22904.30 & 43597.10 & 1.49 \\
+ \multicolumn{6}{c}{} \\
+ \hline
+ \hline
+ \end{tabular}
+ \end{center}
+ \caption{Laufzeiten der verschieden Algorithmen in der Skriptsprache \texttt{Python}}
+ \label{multiplikation:tab:messung_Python}
+ \end{table}
+
+ \begin{table}
+ \begin{center}
+ \begin{tabular}{c c c c}
+ \hline
+ \hline
+ \textbf{CPU} & \textbf{OS} & \textbf{GPU } & \textbf{Memory } \\
+ \hline
+ \multicolumn{4}{c}{} \\
+ Intel® Core™ i7-4770K CPU & Ubuntu 20.04.2 LTS & Radeon RX 570 & 32 GB 1600 MHz \\
+ @ 3.50GHz × 8 & 64-bit & & \\
+ \multicolumn{4}{c}{} \\
+ \hline
+ \hline
+ \end{tabular}
+ \end{center}
+ \caption{Messsystem}
+ \label{multiplikation:tab:pc_config}
+ \end{table}
+
+\begin{figure}
+ \center
+ \includegraphics[width=\linewidth]{papers/multiplikation/images/meas_c}
+ \caption{Doppelt logarithmisch dargestellte Laufzeiten, der verschieden Algorithmen, in der Programmiersprache \texttt{C}}
+ \label{multiplikation:fig:c_meas_4096}
+\end{figure}
+
+
+\begin{figure}
+ \center
+ \includegraphics[width=\linewidth]{papers/multiplikation/images/meas_python}
+ \caption{Doppelt logarithmisch dargestellte Laufzeiten, der verschieden Algorithmen, in der Skriptsprache \texttt{Python}}
+ \label{multiplikation:fig:python}
+\end{figure}
\section{Fazit}
\rhead{Fazit}
+
+Wie man im Abschnitt \ref{multiplikation:section:Implementation} sehen kann, sind die gezeigten Algorithmen trotz der theoretisch geringeren Zeitkomplexitäten den Implementationen der numerischen Bibliotheken klar unterlegen.
+Ein optimierter Speicherzugriff hat einen weitaus grösseren Einfluss auf die Laufzeit als die Zeitkomplexität des Algorithmus.
+
+Doch haben Entdeckungen wie jene von Strassen und Winograd ihre Daseinsberechtigung.
+Nicht auf jeden Computersystemen können die \textit{BLAS} angewandt werden.
+Denke man an sehr kleine Mikrocontroller ohne Floatingpoint Recheneinheiten oder auch an \textit{Field Programmable Gate Arrays (FPGA's)}.
+Der Overhead der gezeigten Algorithmen ist in allen Fällen grösser als bei der Standardmethode (z.B. sieben rekursive Aufrufe gegenüber drei \texttt{for}-Schleifen).
+Um diesem entgegenzuwirken muss der Laufzeitunterschied zwischen Addition und Multiplikation gross genug sein.
+Wenn dies gegeben ist und dazu noch grosse Matritzen multipliziert werden, kann die Verwendung der Algorithmen von Strassen oder Winograd zu einer Senkung der Laufzeit führen.
diff --git a/buch/papers/multiplikation/main.tex b/buch/papers/multiplikation/main.tex
index 8d0a8df..ca93e92 100755
--- a/buch/papers/multiplikation/main.tex
+++ b/buch/papers/multiplikation/main.tex
@@ -4,8 +4,30 @@
%
% (c) 2021 Hochschule Rapperswil
%
-\chapter{Schnelle Matrizen Multiplikation\label{chapter:multiplikation}}
-\lhead{FMM}
+\definecolor{mygreen}{RGB}{28,172,0} % color values Red, Green, Blue
+\definecolor{mylilas}{RGB}{170,55,241}
+\definecolor{backcolour}{rgb}{0.95,0.95,0.92}
+\lstdefinestyle{multiplikationC}{
+ numbers=left,
+ belowcaptionskip=1\baselineskip,
+ breaklines=true,
+ frame=l,
+ framerule=0pt,
+ framesep=-1pt,
+ xleftmargin=1em,
+ language=C,
+ showstringspaces=false,
+ basicstyle=\ttfamily,
+ keywordstyle=\bfseries\color{green!40!black},
+ commentstyle=\itshape\color{purple!40!black},
+ identifierstyle=\color{blue},
+ stringstyle=\color{red},
+ numberstyle=\ttfamily\tiny,
+ backgroundcolor=\color{backcolour}
+}
+
+\chapter{Schnelle Matrizenmultiplikation\label{chapter:multiplikation}}
+\lhead{MM}
\begin{refsection}
\chapterauthor{Michael Schmid}
diff --git a/buch/papers/multiplikation/problemstellung.tex b/buch/papers/multiplikation/problemstellung.tex
index b20a791..604ea36 100755
--- a/buch/papers/multiplikation/problemstellung.tex
+++ b/buch/papers/multiplikation/problemstellung.tex
@@ -3,102 +3,135 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Problemstellung}
+\section{Laufzeiten von Algorithmen}
\rhead{Problemstellung}
-Dank der breiten Anwendung der Matrizenmultiplikation ist eine effiziente L\"osung dieser Operation von grosser Bedeutung.
-Das Ziel dieses Papers ist verschiedenen Algorithmen der Matrizenmultiplikation vorzustellen.
-Wobei gezielt auf Algorithmen, welche das Problem schneller als der Standard Algorithmus L\"osen eingegangen wird.
-
-\subsection{Big $\mathcal{O}$ Notation}
-Die Big $\mathcal{O}$ Notation beschreibt die Laufzeitkomplexit\"at eines Algorithmus \cite{multiplikation:bigo}.
-$f(x) \in \mathcal{O}(g(x))$ besagt das die Funktion $f$ nicht wesentlich schneller w\"achst als $g$ wenn $x \rightarrow \infty$.
-Vereinfacht werden f\"ur Algorithmen die folgende Notation verwendet:
+Wegen der breiten Anwendung der Matrizenmultiplikation ist eine effiziente Ausführung dieser Operation von grosser Bedeutung.
+Das Ziel dieses Papers ist, verschiedenen Algorithmen der Matrizenmultiplikation vorzustellen.
+Gezielt wird auf Algorithmen eingegangen, welche das Problem schneller als der Standardalgorithmus l\"osen.
+
+\label{muliplikation:sec:bigo}
+Die Big $\mathcal{O}$ Notation beschreibt die Laufzeitkomplexit\"at eines Algorithmus in Abhängigkeit zur Inputgrösse \cite{multiplikation:bigo}.
+$f(x) \in \mathcal{O}(g(x))$ besagt, dass die Funktion $f$ nicht wesentlich schneller w\"achst als $g$ wenn $x \rightarrow \infty$.
+Dies ist gegeben, wenn es für $f \in \mathcal{O}(n^k)$ eine Konstante $C$ gibt, mit $f(n) \leq Cn^k$.
+% Es gibt eine Konstante $K$ derart, dass $f(x) \le K g(x)$ für $x\to\infty$.
+Vereinfacht werden f\"ur Algorithmen die folgende Sprechweise verwendet:
\begin{itemize}
\item $f \in \mathcal{O}(1) \rightarrow f$ ist beschr\"ankt
\item $f \in \mathcal{O}(n) \rightarrow f$ w\"achst linear
- \item $f \in \mathcal{O}(n^2) \rightarrow f$ w\"achst quadratisch
+ \item $f \in \mathcal{O} (n^2 ) \rightarrow f$ w\"achst quadratisch
\item $f \in \mathcal{O}(\log n) \rightarrow f$ w\"achst logarithmisch
\item $f \in \mathcal{O}(n \log n) \rightarrow f$ hat super-lineares Wachstum
- \item $f \in \mathcal{O}(e^n) \rightarrow f$ w\"achst exponentiell
+ \item $f \in \mathcal{O} (e^n ) \rightarrow f$ w\"achst exponentiell
\item usw.
\end{itemize}
-In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die Verschiedenen Laufzeiten miteinander verglichen werden.
+Konstanten werden nicht beachtet, eine Laufzeit von $4n^2$ führt, falls $n \rightarrow \infty$ zu $\mathcal{O}(n^2)$.
+In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die verschiedenen Laufzeiten miteinander verglichen werden.
+Bei einer doppelt logarithmischen Darstellung werden Polynome der Form $f(x) = x^k$ als Gerade und Exponentialfunktionen der Form $f(x) = a^x$ als nach oben gekr\"ummte Kurven abgebildet.
+
-\begin{figure}
- \center
- \includegraphics[]{papers/multiplikation/images/bigo}
- \caption{Verschiedene Laufzeiten}
- \label{multiplikation:fig:bigo}
-\end{figure}
\subsubsection{Beispiel Algorithmen}
+
+Es folgen einige Beispiele von Algorithmen, welche zu einer bestimmten Zeitkomplexit\"atsklasse zugeteilt werden k\"onnen.
+
+
+\begin{table}[t]
+ \begin{tabular}{ll}
+ \begin{minipage}{0.48\textwidth}
+ \begin{algorithm}[H]\footnotesize\caption{}
+ \label{multiplikation:alg:b1}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \Function{B1}{$a, b$}
+ \State \textbf{return} $a+b$
+ \EndFunction
+ \State
+ \State
+ \end{algorithmic}
+ \end{algorithm}
+ \end{minipage}
+ &
+ \begin{minipage}{0.48\textwidth}
+ \begin{algorithm}[H]\footnotesize\caption{}
+ \label{multiplikation:alg:b2}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \Function{B2}{$a, b$}
+ \State $ x \gets a+b $
+ \State $ y \gets a \cdot b $
+ \State \textbf{return} $x+y$
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+
+ \end{minipage}
+ \end{tabular}
+\end{table}
+
+\begin{table}
+ \begin{tabular}[t]{ll}
+ \begin{minipage}{0.48\textwidth}
+ \begin{algorithm}[H]\footnotesize\caption{}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \label{multiplikation:alg:linear}
+ \Function{L}{$\mathbf{a}, \mathbf{b}$,n}
+ \State $ sum \gets 0$
+ \For{$i = 0,1,2 \dots,n$}
+ \State $ sum \gets sum + A[i] \cdot B[i] $
+ \EndFor
+
+ \State \textbf{return} $sum$
+
+ \EndFunction
+ \State
+ \State
+ \end{algorithmic}
+ \end{algorithm}
+ \end{minipage}
+ &
+ \begin{minipage}{0.48\textwidth}
+ \begin{algorithm}[H]\footnotesize\caption{}
+ \label{multiplikation:alg:q1}
+ \setlength{\lineskip}{7pt}
+ \begin{algorithmic}
+ \Function{Q}{$\mathbf{A}, \mathbf{B}$,n}
+ \State $ sum \gets 0$
+ \For{$i = 0,1,2 \dots,n$}
+ \For{$j = 0,1,2 \dots,n$}
+ \State $ sum \gets sum + A[i] \cdot B[j] $
+ \EndFor
+ \EndFor
+ \State \textbf{return} $sum$
+ \EndFunction
+ \end{algorithmic}
+ \end{algorithm}
+ \end{minipage}
+ \end{tabular}
+\end{table}
+
\paragraph{Beschr\"ankter Algorithmus}
+Algorithmus \ref{multiplikation:alg:b1} ist ein Beispiel mit beschränkter Laufzeit $\mathcal{O}(1)$
+Da $a$ und $b$ Skalare sind, hat keine Gr\"osse $n$ einen Einfluss auf die Laufzeit.
+
+Wie erwähnt, werden konstanten nicht beachtet, der Algorithmus \ref{multiplikation:alg:b2} f\"uhrt ebenso zu $\mathcal{O}(1)$ und nicht zu $\mathcal{O}(2)$.
-Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden.
-
-\begin{algorithm}\caption{}
- \label{multiplikation:alg:b1}
- \setlength{\lineskip}{7pt}
- \begin{algorithmic}
- \Function{B1}{$a, b$}
- \State \textbf{return} $a+b$
- \EndFunction
- \end{algorithmic}
-\end{algorithm}
-
-Wobei Konstanten nicht beachtet werden, der Algorithmus \ref{multiplikation:alg:b2} f\"uhrt ebenso zu $\mathcal{O}(1)$ und nicht zu $\mathcal{O}(2)$.
-
-\begin{algorithm}\caption{}
- \label{multiplikation:alg:b2}
- \setlength{\lineskip}{7pt}
- \begin{algorithmic}
- \Function{B2}{$a, b$}
- \State $ x \gets a+b $
- \State $ y \gets a \cdot b $
- \State \textbf{return} $x+y$
- \EndFunction
- \end{algorithmic}
-\end{algorithm}
\paragraph{Linearer Algorithmus}
-Folgender Algorithmus \ref{multiplikation:alg:l1} hat ein lineares $\mathcal{O}(n)$ Verhalten.
-
-\begin{algorithm}\caption{}
- \setlength{\lineskip}{7pt}
- \begin{algorithmic}
- \label{multiplikation:alg:l1}
- \Function{L}{$\mathbf{A}, \mathbf{B}$,n}
- \State $ sum \gets 0$
- \For{$i = 0,1,2 \dots,n$}
- \State $ sum \gets sum + A[i] \cdot B[i] $
- \EndFor
-
- \State \textbf{return} $sum$
-
- \EndFunction
- \end{algorithmic}
-\end{algorithm}
+Der Algorithmus \ref{multiplikation:alg:linear} hat ein lineares Verhalten.
+Die \texttt{for}-Schleife wird $n$-mal durchlaufen und f\"uhrt deshalb zu $\mathcal{O}(n)$.
\paragraph{Quadratischer Algorithmus}
-Folgender Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches $\mathcal{O}(n^2)$ Verhalten.
-
-\begin{algorithm}[H]\caption{}
- \label{multiplikation:alg:q1}
- \setlength{\lineskip}{7pt}
- \begin{algorithmic}
- \Function{Q}{$\mathbf{A}, \mathbf{B}$,n}
- \State $ sum \gets 0$
- \For{$i = 0,1,2 \dots,n$}
- \For{$j = 0,1,2 \dots,n$}
- \State $ sum \gets sum + A[i] \cdot B[j] $
- \EndFor
- \EndFor
- \State \textbf{return} $sum$
- \EndFunction
- \end{algorithmic}
-\end{algorithm}
+Der Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches Verhalten.
+Die beiden \texttt{for}-Schleifen werden jeweils $n$-mal durchlaufen und f\"uhrt deshalb zu $\mathcal{O} (n^2 )$.
+\begin{figure}
+ \center
+ \includegraphics[]{papers/multiplikation/images/bigo}
+ \caption{Laufzeiten von verschiedensten Zeitkomplexitäten. Bei einer logarithmischen Darstellung werden Polynome der Form $f(x) = x^k$ als Gerade und Exponentialfunktionen der Form $f(x) = a^x$ als nach oben gekr\"ummte Kurven dargestellt.}
+ \label{multiplikation:fig:bigo}
+\end{figure}
diff --git a/buch/papers/multiplikation/references.bib b/buch/papers/multiplikation/references.bib
index 9d76e8e..8815386 100755
--- a/buch/papers/multiplikation/references.bib
+++ b/buch/papers/multiplikation/references.bib
@@ -63,3 +63,40 @@
month = {7},
day = {27}
}
+
+@online{multiplikation:master_theorem,
+ title = {Master theorem (analysis of algorithms)},
+ url = {https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)},
+ date = {2021-07-28},
+ year = {2021},
+ month = {7},
+ day = {28}
+}
+
+
+@online{multiplikation:DAC,
+ title = {Divide-and-conquer algorithm},
+ url = {https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm},
+ date = {2021-07-28},
+ year = {2021},
+ month = {7},
+ day = {28}
+}
+
+@online{multiplikation:BLAS,
+ title = {BLAS (Basic Linear Algebra Subprograms)},
+ url = {http://www.netlib.org/blas/},
+ date = {2021-08-01},
+ year = {2021},
+ month = {8},
+ day = {01}
+}
+
+@online{multiplikation:DGEMM,
+ title = {DGEMM},
+ url = {http://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_gaeda3cbd99c8fb834a60a6412878226e1.html#gaeda3cbd99c8fb834a60a6412878226e1},
+ date = {2021-08-01},
+ year = {2021},
+ month = {8},
+ day = {01}
+}