aboutsummaryrefslogtreecommitdiffstats
path: root/buch
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/papers/clifford/3d/common.inc24
-rw-r--r--buch/papers/clifford/3d/dq.jpgbin135038 -> 135088 bytes
-rw-r--r--buch/papers/clifford/3d/dq.pdfbin156467 -> 156514 bytes
-rw-r--r--buch/papers/clifford/3d/drehung.jpgbin203814 -> 203830 bytes
-rw-r--r--buch/papers/clifford/3d/drehung.pdfbin224521 -> 224538 bytes
-rw-r--r--buch/papers/clifford/3d/drehung.pov37
-rw-r--r--buch/papers/clifford/3d/q23.jpgbin77888 -> 85740 bytes
-rw-r--r--buch/papers/clifford/3d/q23.pov2
-rw-r--r--buch/papers/clifford/3d/q31.jpgbin75576 -> 82876 bytes
-rw-r--r--buch/papers/clifford/3d/q31.pov3
-rw-r--r--buch/papers/clifford/3d/qq.pdfbin170756 -> 185901 bytes
-rw-r--r--buch/papers/munkres/figures/Ungarische_Methode_Beispiel.pngbin1179631 -> 485941 bytes
-rw-r--r--buch/papers/munkres/main.tex2
-rw-r--r--buch/papers/munkres/teil1.tex8
-rw-r--r--buch/papers/munkres/teil3.tex52
-rw-r--r--buch/papers/reedsolomon/tikz/Makefile7
-rw-r--r--buch/papers/reedsolomon/tikz/fourier.pdfbin0 -> 59572 bytes
-rw-r--r--buch/papers/reedsolomon/tikz/fourier.tex145
18 files changed, 202 insertions, 78 deletions
diff --git a/buch/papers/clifford/3d/common.inc b/buch/papers/clifford/3d/common.inc
index 54aa7fe..55bf6e1 100644
--- a/buch/papers/clifford/3d/common.inc
+++ b/buch/papers/clifford/3d/common.inc
@@ -245,3 +245,27 @@ cylinder {
#end
+#macro bogen(v1, v2, center, winkelbogen, farbe)
+
+union {
+ #declare phi = 0;
+ #declare phimax = winkelbogen;
+ #declare phistep = (phimax - phi) / N;
+ #while (phi < phimax - phistep/2)
+ cylinder {
+ cos(phi ) * v1 + sin(phi ) * v2 + center,
+ cos(phi+phistep) * v1 + sin(phi+phistep) * v2 + center,
+ 0.01
+ }
+ sphere {
+ cos(phi ) * v1 + sin(phi ) * v2 + center,
+ 0.01
+ }
+ #declare phi = phi + phistep;
+ #end
+ pigment {
+ color farbe
+ }
+}
+
+#end
diff --git a/buch/papers/clifford/3d/dq.jpg b/buch/papers/clifford/3d/dq.jpg
index bd44a65..690cfdc 100644
--- a/buch/papers/clifford/3d/dq.jpg
+++ b/buch/papers/clifford/3d/dq.jpg
Binary files differ
diff --git a/buch/papers/clifford/3d/dq.pdf b/buch/papers/clifford/3d/dq.pdf
index 71727d2..797a558 100644
--- a/buch/papers/clifford/3d/dq.pdf
+++ b/buch/papers/clifford/3d/dq.pdf
Binary files differ
diff --git a/buch/papers/clifford/3d/drehung.jpg b/buch/papers/clifford/3d/drehung.jpg
index ad7cd47..2347296 100644
--- a/buch/papers/clifford/3d/drehung.jpg
+++ b/buch/papers/clifford/3d/drehung.jpg
Binary files differ
diff --git a/buch/papers/clifford/3d/drehung.pdf b/buch/papers/clifford/3d/drehung.pdf
index de29085..bc8036e 100644
--- a/buch/papers/clifford/3d/drehung.pdf
+++ b/buch/papers/clifford/3d/drehung.pdf
Binary files differ
diff --git a/buch/papers/clifford/3d/drehung.pov b/buch/papers/clifford/3d/drehung.pov
index 54b5a2e..b86a2c5 100644
--- a/buch/papers/clifford/3d/drehung.pov
+++ b/buch/papers/clifford/3d/drehung.pov
@@ -60,24 +60,6 @@ mesh {
}
}
-union {
- #declare phi = 0;
- #declare phimax = 2*pi/3;
- #declare phistep = (phimax - phi) / N;
- #while (phi < phimax - phistep/2)
- cylinder {
- r * (cos(phi ) * e1 + sin(phi ) * e2),
- r * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2),
- 0.01
- }
- sphere { r * (cos(phi ) * e1 + sin(phi ) * e2), 0.01 }
- #declare phi = phi + phistep;
- #end
- pigment {
- color Blue
- }
-}
-
mesh {
#declare phi = 0;
#declare phimax = 2*pi/3;
@@ -100,21 +82,6 @@ mesh {
}
}
-union {
- #declare phi = 0;
- #declare phimax = 2*pi/3;
- #declare phistep = (phimax - phi) / N;
- #while (phi < phimax - phistep/2)
- cylinder {
- r * (cos(phi ) * e1 + sin(phi ) * e2) + Vparallel,
- r * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) + Vparallel,
- 0.01
- }
- sphere { r * (cos(phi ) * e1 + sin(phi ) * e2) + Vparallel, 0.01 }
- #declare phi = phi + phistep;
- #end
- pigment {
- color Green
- }
-}
+bogen(r * e1, r * e2, <0,0,0>, 2*pi/3, Blue)
+bogen(r * e1, r * e2, Vparallel, 2*pi/3, Green)
diff --git a/buch/papers/clifford/3d/q23.jpg b/buch/papers/clifford/3d/q23.jpg
index 50ca028..929ef90 100644
--- a/buch/papers/clifford/3d/q23.jpg
+++ b/buch/papers/clifford/3d/q23.jpg
Binary files differ
diff --git a/buch/papers/clifford/3d/q23.pov b/buch/papers/clifford/3d/q23.pov
index e3e5d49..2e55c96 100644
--- a/buch/papers/clifford/3d/q23.pov
+++ b/buch/papers/clifford/3d/q23.pov
@@ -7,6 +7,8 @@
circlearrow(<1,0,0>, 0.01*<0,0,-1>, <0, 0, 0>, 1.0, thick, 0.98*pi/2, 4)
+bogen( <0,1.7,0>, <-1.7, 0, 0>, <0,0,0>, pi/2, Blue)
+
arrow( <0,0,0>, <-2.0,0,0>, 0.99*thick, Blue)
arrow( <0,0,0>, <0,2.0,0>, 0.99*thick, Blue)
arrow( <0,0,0>, <0,0,2.0>, 0.99*thick, Red)
diff --git a/buch/papers/clifford/3d/q31.jpg b/buch/papers/clifford/3d/q31.jpg
index 10313fa..c240b4f 100644
--- a/buch/papers/clifford/3d/q31.jpg
+++ b/buch/papers/clifford/3d/q31.jpg
Binary files differ
diff --git a/buch/papers/clifford/3d/q31.pov b/buch/papers/clifford/3d/q31.pov
index 901f838..4abe1ed 100644
--- a/buch/papers/clifford/3d/q31.pov
+++ b/buch/papers/clifford/3d/q31.pov
@@ -10,3 +10,6 @@ circlearrow(<1,0,0>, 0.01*<0,-1,0>, <0, 0, 0>, 1.0, thick, 0.98*pi/2, 4)
arrow( <0,0,0>, <-2.0,0,0>, 0.99*thick, Blue)
arrow( <0,0,0>, <0,2.0,0>, 0.99*thick, Red)
arrow( <0,0,0>, <0,0,2.0>, 0.99*thick, Blue)
+
+bogen( <0,0,1.7>, <-1.7, 0, 0>, <0,0,0>, pi/2, Blue)
+
diff --git a/buch/papers/clifford/3d/qq.pdf b/buch/papers/clifford/3d/qq.pdf
index 4c55d57..fd7dbfa 100644
--- a/buch/papers/clifford/3d/qq.pdf
+++ b/buch/papers/clifford/3d/qq.pdf
Binary files differ
diff --git a/buch/papers/munkres/figures/Ungarische_Methode_Beispiel.png b/buch/papers/munkres/figures/Ungarische_Methode_Beispiel.png
index fb4d061..242db77 100644
--- a/buch/papers/munkres/figures/Ungarische_Methode_Beispiel.png
+++ b/buch/papers/munkres/figures/Ungarische_Methode_Beispiel.png
Binary files differ
diff --git a/buch/papers/munkres/main.tex b/buch/papers/munkres/main.tex
index e5282dc..201e70b 100644
--- a/buch/papers/munkres/main.tex
+++ b/buch/papers/munkres/main.tex
@@ -13,8 +13,6 @@
\input{papers/munkres/teil1.tex}
\input{papers/munkres/teil2.tex}
\input{papers/munkres/teil3.tex}
-\input{papers/munkres/teil4.tex}
-\input{papers/munkres/teil5.tex}
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/munkres/teil1.tex b/buch/papers/munkres/teil1.tex
index 3bec61d..a0cc739 100644
--- a/buch/papers/munkres/teil1.tex
+++ b/buch/papers/munkres/teil1.tex
@@ -45,13 +45,13 @@ a_{21}&a_{22}&\dots &a_{2n}\\
a_{n1}&a_{n2}&\dots &a_{nn}
\end{pmatrix}
\]
-
-$A$ $\mathbb{\in}$ $\mathbb{R}^{n,n}$ kann der Faktor Kosten mit in die Rechnung eingebracht werden.
+
+$A$ $\mathbb{\in}$ $\mathbb{R}^{n,n}$
+
+kann der Faktor Kosten mit in die Rechnung eingebracht werden.
In der Zelle dieser Matrix sind $a_{i,j}$ Zahlen dargestellt, welche den Weg in z.B. Kilometer beschreiben.
Sie entstehen, wenn man z.B. einem Kran $i$ den Einsatzort $j$ zuordnet.
-Die oben ersichtliche Matrix $A$ besitzt Matrix-Elemente. Die Elemente einer Matrix vom Typ $(n,n)$ mit Namen $A$ sind $a_{ij}$ wobei $i$ = 1,..., $n$ ist und $j$ = 1,...,$n$. $a_{ij}$ ist der Eintrag in der $i$-ten Zeile und $j$-ten Spalte der Matrix . Zum Beispiel ist a21 das Element der 2. Zeile und 1. Spalte. $i$ wird auch der Zeilenindex, $j$ der Spaltenindex genannt.
-
\subsection{Alternative Darstellungen des Zuordnungsproblems
\label{munkres:subsection:bonorum}}
\subsubsection{Netzwerk}
diff --git a/buch/papers/munkres/teil3.tex b/buch/papers/munkres/teil3.tex
index 964444c..692bfdf 100644
--- a/buch/papers/munkres/teil3.tex
+++ b/buch/papers/munkres/teil3.tex
@@ -41,53 +41,28 @@ Es gibt Fälle, in welchen das Ausgangsproblem keine quadratische Form besitzt.
\subsection{Beispiel eines händischen Verfahrens
\label{munkres:subsection:malorum}}
-Die ungarische Methode kann in einem einfachen händischen Beispiel erläutert werden. Es gibt eine Ausgangsmatrix. Diese Matrix wird in mehreren Schritten immer weiter reduziert. Anschließend erfolgen mehrere Zuordnungen. Hierbei ist zu beachten, dass jede Zeile und jede Spalte immer genau eine eindeutige Zuordnung ergibt. Die optimale Lösung ist erreicht, wenn genau $n$ Zuordnungen gefunden sind. Das Vorgehen wird in den nachfolgenden Schritten 1-16 beschrieben und auch in der Abbildung 21.5 dargestellt.
+Die ungarische Methode kann in einem einfachen händischen Beispiel erläutert werden. Es gibt eine Ausgangsmatrix. Diese Matrix wird in mehreren Schritten immer weiter reduziert. Anschließend erfolgen mehrere Zuordnungen. Hierbei ist zu beachten, dass jede Zeile und jede Spalte immer genau eine eindeutige Zuordnung ergibt. Es gibt Situationen, in denen man nichts mehr tun muss, um eine optimale Zuordnung zu finden. Eine optimale Zuordnung ohne zusätzliche Kosten ist eine Auswahl genau eines Feldes in jeder Zeile und Spalte, welches 0 enthält. Das Ziel des Algorithmus ist also, die Matrix so zu ändern, dass genügend Nullen in der Matrix vorkommen. Es ist zudem wichtig, dass man nach jeder Modifikation der Matrix testet, ob man bereits eine Zuordnung machen kann, also genügend Nullen hat.
+Das Vorgehen wird in den nachfolgenden Schritten 1-6 beschrieben und auch in der Abbildung 21.5 dargestellt.
\begin{enumerate}
-\item Pro Zeile eruiert man die kleinste Zahl. Diese kleinste Zahl wird bei
-allen anderen Ziffern in der jeweiligen Zeile subtrahiert. Mit dieser Subtraktion zieht man die unvermeidbaren Kosten ab, die man hat, um eine Baustelle zu erreichen.
+\item Man beginnt mit der Zeilen-Reduktion. Pro Zeile eruiert man die kleinste Zahl. Diese kleinste Zahl, jeweils in rot markiert, wird bei allen anderen Ziffern in der jeweiligen Zeile subtrahiert. Mit dieser Subtraktion zieht man die unvermeidbaren Kosten ab, die man hat, um eine Baustelle zu erreichen. Man erkennt, dass die Nullen mit zwei Linien abdeckbar sind. Das heisst es gibt 2 Spalten bei denen noch keine Zuordnungen möglich sind.
-\item Auch in diesem Schritt werden die unvermeidbaren Weg-Kosten abgezogen. Man zieht die kleinste Zahl in jeder Spalte von allen Zahlen in der Spalte ab.
+\item Auch im zweiten Schritt werden mittels der Spalten-Reduktion die unvermeidbaren Weg-Kosten abgezogen. Man zieht die kleinste Zahl, wiederum in rot markiert, in jeder Spalte von allen Zahlen in der Spalte ab.
+Die Nullen können somit mit 3 Linien abgedeckt werden. Im Idealfall hat die Matrix in jeder Zeile und Spalte bereits genügend viele Nullen, so dass man bereits eine Zuordnung ohne Mehrkosten machen kann. Dies ist jedoch noch nicht der Fall. Es sollen weitere Nullen in die Matrix hineingebracht werden.
-\item Bei den nachfolgenden Schritten bleiben dann nur noch die Kosten übrig, die man hat, wenn man eine andere Zuordnung wählt. Hierbei sollen möglichst viele Nullen markiert werden, welche freistehend sind.
-(Freistehend bedeutet, sowohl in der jeweiligen Zeile und Spalte nur
-eine markierte Null zu haben)
+\item Es bleiben jetzt einige Felder übrig, für die noch keine Zuordnung möglich ist. Die kleinste Ziffer wird dabei aus den noch nicht mit blau markierten Zahlen ausgewählt werden. Im Beispiel ist es die Zahl 1. Das Feld mit dem kleinsten Eintrag beinhaltet die Kosten, die unvermeidlich sind, wenn man für diese Felder auch noch eine Zuordnung machen will. Um neue Nullen zu bekommen, lagert man jetzt die Kosten auf die anderen Zeilen und Spalten um. Dies tut man, indem man in allen nicht abgedeckten Feldern die minimalen Kosten subtrahiert und in den blau markierten Kreuzungspunkten dazu addiert.
-\item Weiter werden die jeweiligen Zeilen eruiert, bei welchen keine markierte Null vorhanden sind. Diese kennzeichnet man mit einer blauen Fläche.
+\item in Schritt 4 sollen jetzt möglichst viele Nullen markiert werden, welche freistehend sind.
+Freistehend bedeutet, dass sowohl in der jeweiligen Zeile und Spalte keine andere markierte Null vorhanden ist.
-\item In der vorherigen, mit blauer Fläche markierten Zeile die 0 eruieren und dann die dazugehörige Spalte ebenfalls
-blau markieren.
+\item Alle markierten Nullen werden jetzt in eine 1 umgewandelt. Die restlichen Ziffern in der Matrix, exklusiv die einsen, sollen jetzt ignoriert und durch eine Null ersetzt werden.
-\item Im der selben Spalte die markierte Null eruieren und die dazugehörige
-Zeile ebenfalls blau kennzeichnen.
-
-\item Alle Zeilen mit einem gelben Balken durchstreichen, welche KEINE blauen Markierungen haben.
-
-\item Alle Spalten durchstreichen, welche eine Blaue Markierung besitzt!
-
-\item In den übrigen Zahlen soll nun die kleinste Ziffer ausgewählt werden, welche nicht schon durchgestrichen sind.
-(Im Beispiel ist es die Zahl 1 in rot markiert. (Bei diesem Schritt ist es egal, welche 1 man wählt)
-
-\item Die eruierte kleinste Ziffer, wird von den nicht durchgestrichenen Ziffern
-subtrahiert. Danach muss die Matrix wieder komplettiert werden. (inkl. Unterstreichen der Nullen)
-
-\item Jeweilige Zahlen eruieren, welche vorgängig doppelt mit einer gelben Fläche durchgestrichen wurden.
-
-\item Kleinste eruierte Ziffer aus Schritt 9, soll nun auf die zwei in rot markierten Ziffern aus Schritt 11 dazu addiert werden.
-
-\item In diesem Schritt sollen wiederum von neuem möglichst viele Nullen markiert werden,
-welche freistehend sind. Es werden nur die markierten Nullen betrachtet.
-
-\item Alle markierten Nullen werden jetzt in eine 1 umgewandelt.
-
-\item Die restlichen Ziffern in der Matrix, exklusiv die einsen, sollen jetzt ignoriert und durch eine Null ersetzt werden.
-
-\item Zu guter Letzt werden überall wo eine 1 steht, die Zahlen aus der Ausgangsmatrix eingefügt. Nach Einsetzen der Zahlen können die in rot markierten Zahlen aufsummiert werden. Es ergibt der minimalste Transportweg. Im erwähnten Beispiel sind es total 13 Kilometer.
+\item Zu guter Letzt werden überall wo eine 1 steht, die Zahlen aus der Ausgangsmatrix eingefügt. Nach Einsetzen der Zahlen können die in rot markierten Zahlen aufsummiert werden. Man erhält den minimalsten Transportweg von total 13 Kilometer.
\end{enumerate}
\begin{figure}
\centering
-\includegraphics[width=14cm]{papers/munkres/figures/Ungarische_Methode_Beispiel.png}
+\includegraphics[width=8cm]{papers/munkres/figures/Ungarische_Methode_Beispiel.png}
\caption{Händisches Beispiel des Munkres Algorithmus, minimalster Transportweg.}
\label{munkres:Vr2}
\end{figure}
@@ -95,6 +70,7 @@ welche freistehend sind. Es werden nur die markierten Nullen betrachtet.
\subsection{Zuordnung der Kräne
\label{munkres:subsection:malorum}}
+Als Resultat des Munkres-Algorithmus kann man jetzt die folgende Zuordnung aus der Matrix ablesen:
\begin{itemize}
\item Der Kran von Baustelle A1 soll zur Baustelle B2.
\item Der Kran von Baustelle A2 soll zur Baustelle B3.
@@ -107,4 +83,6 @@ welche freistehend sind. Es werden nur die markierten Nullen betrachtet.
\includegraphics[width=3cm]{papers/munkres/figures/Ungarische_Methode_Beispiel_Zuw.png}
\caption{Händisches Beispiel des Munkres Algorithmus, Zuweisung der Kräne }
\label{munkres:Vr2}
-\end{figure} Wie in Abbildung 21.6 ersichtlich, kann somit dank der Ungarischen Methode sowohl der minimalste Transportweg als auch die optimalste Zuweisung der Kräne auf die neuen Standorte ermittelt werden. \ No newline at end of file
+\end{figure}
+
+In Abbildung 21.6 ist nebst dem minimalsten Transportweg auch ersichtlich, wie die optimalste Zuweisung der Kräne auf die neuen Standorte erfolgen soll. \ No newline at end of file
diff --git a/buch/papers/reedsolomon/tikz/Makefile b/buch/papers/reedsolomon/tikz/Makefile
new file mode 100644
index 0000000..1753f37
--- /dev/null
+++ b/buch/papers/reedsolomon/tikz/Makefile
@@ -0,0 +1,7 @@
+#
+# Makefile
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+fourier.pdf: fourier.tex
+ pdflatex fourier.tex
diff --git a/buch/papers/reedsolomon/tikz/fourier.pdf b/buch/papers/reedsolomon/tikz/fourier.pdf
new file mode 100644
index 0000000..6491f08
--- /dev/null
+++ b/buch/papers/reedsolomon/tikz/fourier.pdf
Binary files differ
diff --git a/buch/papers/reedsolomon/tikz/fourier.tex b/buch/papers/reedsolomon/tikz/fourier.tex
new file mode 100644
index 0000000..bbe0508
--- /dev/null
+++ b/buch/papers/reedsolomon/tikz/fourier.tex
@@ -0,0 +1,145 @@
+%
+% Plot der Übertrangungsabfolge ins FFT und zurück mit IFFT
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{pgfplots}
+\usepackage{pgfplotstable}
+\usepackage{csvsimple}
+\usepackage{filecontents}
+
+\def\plotwidth{7.5cm}
+\def\plotheight{5.5cm}
+\def\xverschiebung{4.5cm}
+\def\yverschiebung{-7cm}
+\def\yyverschiebung{-14cm}
+
+\def\marke#1{
+ \coordinate (M) at (-0.8,4.6);
+ \fill[color=lightgray] (M) circle[radius=0.3];
+ \draw (M) circle[radius=0.3];
+ \node at (M) {#1};
+}
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\begin{document}
+\begin{tikzpicture}[>=latex,thick]
+
+\fill[color=blue!10] (-5.7,-14.5) rectangle (2.6,5.0);
+\fill[color=darkgreen!10] (2.6,-14.5) rectangle (11.1,5.0);
+
+\draw[dashed,line width=2pt,color=lightgray] (2.6,4.4) -- (2.6,-14.3);
+\coordinate (B) at (2.6,-1.3);
+\node[color=gray] at (B) [rotate=90,above] {Zeitbereich\strut};
+\node[color=gray] at (B) [rotate=90,below] {Frequenzbereich\strut};
+
+\begin{scope}[xshift=-\xverschiebung,yshift=0cm]
+ \begin{axis}
+ [title = {\large Signal\strut},
+ xtick={0,32,64,96},
+ axis background/.style={fill=white},
+ width=\plotwidth,height=\plotheight]
+ \addplot[blue,line width=1pt] table[col sep=comma]
+ {tikz/signal.txt};
+ \end{axis}
+ \marke{1}
+\end{scope}
+
+\begin{scope}[xshift=\xverschiebung,yshift=0cm]
+ \begin{axis}[axis x line= none, axis y line*=right,ytick={0},
+ axis background/.style={fill=white},
+ width=\plotwidth,height=\plotheight]
+ \addplot[color=white] {0};
+ \end{axis}
+
+ \begin{axis}[title = {\large Codiert\strut}, axis y line*=left,
+ xtick={0,32,64,96},
+ axis background/.style={fill=white},
+ width=\plotwidth,height=\plotheight]
+ \addplot[color=black!60!green,line width=1pt]
+ table[col sep=comma]
+ {tikz/codiert.txt};
+ \end{axis}
+ \marke{2}
+ \draw[->,line width=1pt] (3,-0.4) -- node[right] {Übertragung} (3,-2.2);
+\end{scope}
+
+\definecolor{pink}{rgb}{0.6,0.2,1}
+
+\begin{scope}[xshift=-\xverschiebung,yshift=\yverschiebung]
+ %\fill[color=pink!20] (4.65,0.35) ellipse (1.1cm and 0.5cm);
+ \begin{axis}[title = {\large Decodiert\strut},
+ xtick={0,32,64,96},
+ axis background/.style={fill=white},
+ width=\plotwidth,height=\plotheight]
+ \addplot[blue,line width=1pt]
+ table[col sep=comma] {tikz/decodiert.txt};
+ \end{axis}
+ \marke{4}
+ \draw[color=pink] (4.65,0.35) ellipse (1.1cm and 0.5cm);
+ \draw[->,color=pink,line width=1pt]
+ (4.65,-0.15) to[out=-90,in=90] (3,-2.2);
+\end{scope}
+
+\begin{scope}[xshift=\xverschiebung,yshift=\yverschiebung]
+ \begin{axis}[title = {\large Empfangen {\color{red} mit Fehler}\strut},
+ xtick={0,96},
+ axis background/.style={fill=white},
+ axis y line*=left,
+ width=\plotwidth,height=\plotheight]
+ \addplot[color=black!60!green,line width=1pt]
+ table[col sep=comma]
+ {tikz/empfangen.txt};
+ \end{axis}
+ \begin{axis}[xtick={6,20,74}, axis y line*=right,
+ width=\plotwidth,height=\plotheight]
+ \addplot[red,line width=1pt]
+ table[col sep=comma] {tikz/fehler.txt};
+ \end{axis}
+ \marke{3}
+\end{scope}
+
+\begin{scope}[xshift=-\xverschiebung,yshift=\yyverschiebung]
+ \begin{axis}[title = {\large \color{pink}Syndrom\strut},
+ xtick={0,32,64,96},
+ axis background/.style={fill=white},
+ width=\plotwidth,height=\plotheight]
+ \addplot[pink,line width=1pt]
+ table[col sep=comma] {tikz/syndrom.txt};
+ \end{axis}
+ \marke{5}
+\end{scope}
+
+\begin{scope}[xshift=\xverschiebung,yshift=\yyverschiebung]
+ % Beschriftung Rechts
+ \begin{axis}[axis x line= none, axis y line*=right, ytick={0.3},
+ xtick={0,32,64,96},
+ axis background/.style={fill=white},
+ width=\plotwidth,height=\plotheight]
+ \addplot[color=black!60,line width=1pt] {0.3};
+ \end{axis}
+ \begin{axis}[title = {\large Locator\strut},axis y line*=left,
+ xtick={0,6,20,74,96},
+ width=\plotwidth,height=\plotheight]
+ \addplot[gray,line width=1pt]
+ table[col sep=comma] {tikz/locator.txt};
+ \end{axis}
+ \marke{6}
+\end{scope}
+
+% Fourier-Transformations-Pfeile
+
+\draw[->,line width=1pt] (1.8,2) -- node[above] {DFT\strut} (3.8,2);
+
+\begin{scope}[yshift=\yverschiebung]
+\draw[<-,line width=1pt] (1.8,2) -- node[above] {DFT$\mathstrut^{-1}$} (3.8,2);
+\end{scope}
+
+\begin{scope}[yshift=\yyverschiebung]
+\draw[->,line width=1pt] (1.8,2) -- node[above] {DFT\strut} (3.8,2);
+\end{scope}
+
+\end{tikzpicture}
+\end{document}