diff options
Diffstat (limited to 'buch')
-rw-r--r-- | buch/papers/punktgruppen/crystals.tex | 10 |
1 files changed, 4 insertions, 6 deletions
diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index ae48b0a..befdb46 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -143,13 +143,11 @@ Im vorausgegangenen Abschnitt wurde gezeigt, dass in einem zweidimensionalen Kri Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem zugehörigen Schönflies-Symbol bezeichnet. Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, welcher sich unter anderem mit der Klasifizierung der Punktgruppen auseinandergesetzt hat. Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen sind. - Da nicht alle Symmetriegruppen in Kristallen möglich sind, werden nicht alle Untergruppen von Schönflies verwendet. \begin{itemize} - \item Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\). - Für die eindeutige zuweisung in eine Kristallklasse werden noch identifizierende Merkmale als Subskript notiert. - Bei der Untergruppe \(C\) werden beispielsweise die möglichen Rotationssymmetrien gezeigt. - \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, weil das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. - Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. + \item In Kristallen ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\) zu finden. + Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nicht kompatibel mit der Translationssymmetrie eines Kristalles. + \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:Kristallkassen} auf \(C\) nur ganz bestimmte Subskripte folgen. Ist im Subskript eine Zahl \(n\) zu finden, symbolisiert \(n\), dass es sich um eine \(n\)-fache Symmetrie handelt. + Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} keine mögliche Rotationssymmetrie eines Kristalles ist. \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. \begin{itemize} \item Der Subskript \(h\) bezeichnet eine horizontale Spiegelebene, während \(v\) eine Symmetrieebene. Eine Symmetrieebene ist eine Spiegelebene, die sich mit der Symmetrie dreht. \(C_{3v}\) hat zum Beispiel eine vertikale Spiegelebene, die als 3 Spiegelebenen erscheint, weil es eine 3-fache Drehung gibt. |