aboutsummaryrefslogtreecommitdiffstats
path: root/buch
diff options
context:
space:
mode:
Diffstat (limited to 'buch')
-rw-r--r--buch/chapters/10-vektorenmatrizen/gruppen.tex2
-rw-r--r--buch/papers/punktgruppen/Makefile.inc4
-rw-r--r--buch/papers/punktgruppen/crystals.tex16
-rw-r--r--buch/papers/punktgruppen/intro.tex10
-rw-r--r--buch/papers/punktgruppen/main.tex35
-rw-r--r--buch/papers/punktgruppen/packages.tex2
-rw-r--r--buch/papers/punktgruppen/piezo.tex1
-rw-r--r--buch/papers/punktgruppen/references.bib46
-rw-r--r--buch/papers/punktgruppen/symmetry.tex182
-rw-r--r--buch/papers/verkehr/Makefile.inc12
-rw-r--r--buch/papers/verkehr/figures/chart_Vr1.pngbin0 -> 74176 bytes
-rw-r--r--buch/papers/verkehr/figures/chart_Vr2.pngbin0 -> 64237 bytes
-rw-r--r--buch/papers/verkehr/figures/chart_pathDiff.pngbin0 -> 36673 bytes
-rw-r--r--buch/papers/verkehr/figures/dist_display6.pngbin0 -> 399354 bytes
-rw-r--r--buch/papers/verkehr/figures/network_aStar.pngbin0 -> 79386 bytes
-rw-r--r--buch/papers/verkehr/figures/network_dij.pngbin0 -> 77108 bytes
-rw-r--r--buch/papers/verkehr/main.tex30
-rw-r--r--buch/papers/verkehr/section1.tex55
-rw-r--r--buch/papers/verkehr/section2.tex55
-rw-r--r--buch/papers/verkehr/section3.tex8
-rw-r--r--buch/papers/verkehr/teil0.tex22
-rw-r--r--buch/papers/verkehr/teil1.tex55
-rw-r--r--buch/papers/verkehr/teil2.tex40
-rw-r--r--buch/papers/verkehr/teil3.tex40
24 files changed, 374 insertions, 241 deletions
diff --git a/buch/chapters/10-vektorenmatrizen/gruppen.tex b/buch/chapters/10-vektorenmatrizen/gruppen.tex
index dfa7ab9..cb37d05 100644
--- a/buch/chapters/10-vektorenmatrizen/gruppen.tex
+++ b/buch/chapters/10-vektorenmatrizen/gruppen.tex
@@ -182,7 +182,7 @@ begegnet, wo wir nur gezeigt haben, dass $AA^{-1}=E$ ist.
Da aber die invertierbaren Matrizen eine Gruppe
bilden, folgt jetzt aus dem Satz automatisch, dass auch $A^{-1}A=E$.
-\subsubsection{Homomorphismen}
+\subsubsection{Homomorphismen} \label{buch:gruppen:subsection:homomorphismen}
Lineare Abbildung zwischen Vektorräumen zeichnen sich dadurch aus,
dass sie die algebraische Struktur des Vektorraumes respektieren.
Für eine Abbildung zwischen Gruppen heisst dies, dass die Verknüpfung,
diff --git a/buch/papers/punktgruppen/Makefile.inc b/buch/papers/punktgruppen/Makefile.inc
index 629abca..b6a76c1 100644
--- a/buch/papers/punktgruppen/Makefile.inc
+++ b/buch/papers/punktgruppen/Makefile.inc
@@ -6,5 +6,9 @@
dependencies-punktgruppen = \
papers/punktgruppen/packages.tex \
papers/punktgruppen/main.tex \
+ papers/punktgruppen/intro.tex \
+ papers/punktgruppen/symmetry.tex \
+ papers/punktgruppen/crystals.tex \
+ papers/punktgruppen/piezo.tex \
papers/punktgruppen/references.bib
diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex
new file mode 100644
index 0000000..6de2bca
--- /dev/null
+++ b/buch/papers/punktgruppen/crystals.tex
@@ -0,0 +1,16 @@
+\section{Kristalle}
+Unter dem Begriff Kristall sollte sich jeder ein Bild machen können.
+Wir werden uns aber nicht auf sein Äusseres fokussieren, sondern was ihn im Inneren ausmacht.
+Die Innereien eines Kristalles sind glücklicherweise relativ einfach definiert.
+\begin{definition}[Kristall]
+ Ein Kristall besteht aus Atomen, welche sich in einem Muster arrangieren, welches sich in drei Dimensionen periodisch wiederholt.
+\end{definition}
+
+
+Ein Zweidimensionales Beispiel eines solchen Muster ist Abbildung \ref{fig:punktgruppen:lattce-grid}.
+Für die Überschaubarkeit haben wir ein simples Muster eines einzelnen XgrauenX Punktes gewählt in nur Zwei Dimensionen.
+Die eingezeichneten Vektoren a und b sind die kleinstmöglichen Schritte im Raum bis sich das Kristallgitter wiederholt.
+Dadurch können von einem einzelnen XGrauenX Gitterpunkt in \ref{fig:punktgruppen:lattce-grid} können mit einer ganzzahligen Linearkombination von a und b alle anderen Gitterpunkte des Kristalles erreicht werden.
+Ein Kristallgitter kann eindeutig mit a und b und deren winkeln beschrieben werden weswegen a und b auch Gitterparameter genannt werden.
+Im Dreidimensionalen-Raum können alle Gitterpunkte mit derselben Idee und einem zusätzlichen Vektor also FRMEL FÜR TRANSLATIONSVEKTOR erreicht werden.
+Da sich das Ganze Kristallgitter wiederholt, wiederholen sich auch die Eigenschaften eines Gitterpunktes Periodisch mit eiem
diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex
new file mode 100644
index 0000000..10dea79
--- /dev/null
+++ b/buch/papers/punktgruppen/intro.tex
@@ -0,0 +1,10 @@
+\section{Einleitung}
+Es gibt viele möglichkeiten sich in Kristallen zu verlieren.
+Auch wen man nur die Mathematischen möglichkeiten in betracht zieht, hat man noch viel zu viele Möglichkeiten sich mit kristallen zu beschäftigen.
+In diesem Articel ist daher der Fokus "nur" auf die Symmetrie gelegt.
+Im Abschitt über Symmetrien werden wir sehen, wie eine Symmetrie eines Objektes weit
+2.ter versuch:
+Die Kristallographie ist ein grosses Thema, Symmetrien auch.
+Für beide bestehen schon bewährte Mathematische Modelle und Definitionen.
+Die
+
diff --git a/buch/papers/punktgruppen/main.tex b/buch/papers/punktgruppen/main.tex
index 603f293..d88e221 100644
--- a/buch/papers/punktgruppen/main.tex
+++ b/buch/papers/punktgruppen/main.tex
@@ -8,33 +8,14 @@
\begin{refsection}
\chapterauthor{Tim T\"onz, Naoki Pross}
-%% TODO: remove
-%% Some ideas to motivate the topic:
-%% - Physics in a crystal lattice structure
-%% - Birifrencenge and scattering of light / Xray in Crystals
-%% - Electron density function in a lattice
-%% - Heat diffusion with lattice model
-%% - Ising model for ferromagnetism (?? => H.D. Lang)
-%%
-%% - Homomorphic encryption (or lattice based cryptography)
-%% + Q: Is it possible to edit encrypted data without decrypting it first?
-
-%% TODO: translated and move into a file {{{
-
-\section{Motivation}
-% birifrengence
-
-\section{Math}
-% lattice group
-% symmetry
-% space group
-
-\section{Physics}
-\subsection{Electromagnetic Waves}
-\subsection{Crystal Lattice}
-
-
-%% }}}
+\input{papers/punktgruppen/intro}
+\input{papers/punktgruppen/symmetry}
+\input{papers/punktgruppen/crystals}
+\input{papers/punktgruppen/piezo}
+
+\nocite{punktgruppen:pinter-algebra}
+\nocite{punktgruppen:sands-crystal}
+\nocite{punktgruppen:lang-elt2}
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/punktgruppen/packages.tex b/buch/papers/punktgruppen/packages.tex
index 9953339..a6efdbf 100644
--- a/buch/papers/punktgruppen/packages.tex
+++ b/buch/papers/punktgruppen/packages.tex
@@ -4,4 +4,4 @@
% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\usepackage{tikz-3dplot}
+\usepackage{dsfont}
diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex
new file mode 100644
index 0000000..7ee4174
--- /dev/null
+++ b/buch/papers/punktgruppen/piezo.tex
@@ -0,0 +1 @@
+\section{Piezoelektrizit\"at}
diff --git a/buch/papers/punktgruppen/references.bib b/buch/papers/punktgruppen/references.bib
index aa7eb14..9edb8bd 100644
--- a/buch/papers/punktgruppen/references.bib
+++ b/buch/papers/punktgruppen/references.bib
@@ -4,32 +4,32 @@
% (c) 2020 Autor, Hochschule Rapperswil
%
-@online{punktgruppen:bibtex,
- title = {BibTeX},
- url = {https://de.wikipedia.org/wiki/BibTeX},
- date = {2020-02-06},
- year = {2020},
- month = {2},
- day = {6}
+@book{punktgruppen:pinter-algebra,
+ title = {A Book of Abstract Algebra},
+ author = {Charles C. Pinter},
+ publisher = {Dover Publications Inc.; 2. Edition},
+ year = {2010},
+ month = {1},
+ day = {10},
+ isbn = {978-0-486-47417-5},
+ inseries = {Dover Books on Mathematics},
}
-@book{punktgruppen:numerical-analysis,
- title = {Numerical Analysis},
- author = {David Kincaid and Ward Cheney},
- publisher = {American Mathematical Society},
- year = {2002},
- isbn = {978-8-8218-4788-6},
- inseries = {Pure and applied undegraduate texts},
- volume = {2}
+@book{punktgruppen:sands-crystal,
+ title = {Introduction to Crystallography},
+ author = {Donald E. Sands},
+ publisher = {Dover Publications Inc.},
+ year = {1993},
+ isbn = {978-0-486-67839-9},
+ inseries = {Dover Books on Science},
}
-@article{punktgruppen:mendezmueller,
- author = { Tabea Méndez and Andreas Müller },
- title = { Noncommutative harmonic analysis and image registration },
- journal = { Appl. Comput. Harmon. Anal.},
- year = 2019,
- volume = 47,
- pages = {607--627},
- url = {https://doi.org/10.1016/j.acha.2017.11.004}
+@book{punktgruppen:lang-elt2,
+ title = {Elektrotechnik 2},
+ author = {Hans-Dieter Lang},
+ publisher = {Fachhochschule Ostschweiz Rapperswil},
+ year = {2020},
+ month = {2},
+ inseries = {Vorlesungsskript zum Modul ELT},
}
diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex
new file mode 100644
index 0000000..db05ff5
--- /dev/null
+++ b/buch/papers/punktgruppen/symmetry.tex
@@ -0,0 +1,182 @@
+\section{Symmetrie}
+Das Wort Symmetrie ist sehr alt und hat sich seltsamerweise von seinem
+ursprünglichen griechischen Wort
+\(\mathrm{\sigma\nu\mu\mu\varepsilon\tau\rho\iota\alpha}\)
+\footnote{\emph{Simmetr\'ia}: ein gemeinsames Mass habend, gleichmässig,
+verhältnismässig} fast nicht verändert. In der Alltagssprache mag es ein
+locker definierter Begriff sein, aber in der Mathematik hat Symmetrie eine sehr
+präzise Bedeutung.
+\begin{definition}[Symmetrie]
+ Ein mathematisches Objekt wird als symmetrisch bezeichnet, wenn es unter einer
+ bestimmten Operation invariant ist.
+\end{definition}
+
+Wenn der Leser noch nicht mit der Gruppentheorie in Berührung gekommen ist, ist
+vielleicht nicht ganz klar, was eine Operation ist, aber die Definition sollte
+trotzdem Sinn machen. Die Formalisierung dieser Idee wird bald kommen, aber
+zunächst wollen wir eine Intuition aufbauen.
+
+\begin{figure}[h]
+ \centering
+ \begin{tikzpicture}[
+ node distance = 2cm,
+ shapetheme/.style = {
+ very thick, draw = black, fill = magenta!20!white,
+ minimum size = 2cm,
+ },
+ line/.style = {thick, draw = darkgray},
+ axis/.style = {line, dashed},
+ dot/.style = {
+ circle, draw = darkgray, fill = darkgray,
+ minimum size = 1mm, inner sep = 0, outer sep = 0,
+ },
+ ]
+
+ \node[
+ shapetheme,
+ rectangle
+ ] (R) {};
+ \node[dot] at (R) {};
+ \draw[axis] (R) ++(-1.5, 0) to ++(3, 0) node[right] {\(\sigma\)};
+
+ \node[
+ shapetheme,
+ regular polygon,
+ regular polygon sides = 5,
+ right = of R,
+ ] (Ps) {};
+ \node[dot] (P) at (Ps) {};
+ \draw[line, dotted] (P) to ++(18:1.5);
+ \draw[line, dotted] (P) to ++(90:1.5);
+ \draw[line, ->] (P) ++(18:1.2)
+ arc (18:90:1.2) node[midway, above right] {\(r, 72^\circ\)};
+
+ \node[
+ shapetheme,
+ circle, right = of P
+ ] (Cs) {};
+ \node[dot] (C) at (Cs) {};
+ \draw[line, dotted] (C) to ++(1.5,0);
+ \draw[line, dotted] (C) to ++(60:1.5);
+ \draw[line, ->] (C) ++(1.2,0)
+ arc (0:60:1.2) node[midway, above right] {\(r, \alpha\)};
+
+ \end{tikzpicture}
+ \caption{
+ Beispiele für geometrisch symmetrische Formen.
+ \label{fig:punktgruppen:geometry-example}
+ }
+\end{figure}
+
+Die intuitivsten Beispiele kommen aus der Geometrie, daher werden wir mit
+einigen geometrischen Beispielen beginnen. Wie wir jedoch später sehen werden,
+ist das Konzept der Symmetrie eigentlich viel allgemeiner. In Abbildung
+\ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die
+offensichtlich symmetrisch sind. Zum Beispiel hat ein Quadrat viele Achsen, um
+die es gedreht werden kann, ohne sein Aussehen zu verändern. Regelmässige
+Polygone mit \(n\) Seiten sind gute Beispiele, um eine diskrete
+Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um
+einen Punkt um einen bestimmten Winkel \(360^\circ/n\) sie unverändert lässt.
+Das letzte Beispiel auf der rechten Seite ist eine unendliche
+Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für
+\(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. Dies ist
+hoffentlich ausreichend, um die Bedeutung hinter der Notation zu verstehen, die
+nun eingeführt wird.
+
+\begin{definition}[Symmetriegruppe]
+ Sei \(g\) eine Operation, die ein mathematisches Objekt unverändert lässt.
+ Bei einer anderen Operation \(h\) definieren wir die Komposition \(h\circ g\)
+ als die Anwendung der Operationen nacheinander. Alle Operationen bilden unter
+ Komposition eine Gruppe, die Symmetriegruppe genannt wird.
+\end{definition}
+
+Mit dem oben Gesagten können wir das \(n\)-Gon Beispiel formalisieren. Wenn wir
+\(r\) eine Drehung von \(2\pi/n\) sein lassen, gibt es eine wohlbekannte Symmetriegruppe
+\[
+ C_n = \langle r \rangle
+ = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\}
+ = \mathbb{Z}/n\mathbb{Z},
+\]
+die Zyklische Gruppe heisst. Hier die Potenzen von \(r\) sind als wiederholte
+Komposition gemeint, d.h. \(r^n = r\circ r \circ \cdots r\circ r\). Die
+Schreibweise mit den spitzen Klammern wird als Erzeugendensystem bezeichnet.
+Das liegt daran, dass alle Elemente der Symmetriegruppe aus Kombinationen einer
+Teilmenge erzeugt werden, die als erzeugende Elemente bezeichnet werden. Die
+Reflexionssymmetriegruppe ist nicht so interessant, da sie nur
+\(\left\{\mathds{1}, \sigma\right\}\) enthält. Kombiniert man sie jedoch mit
+der Rotation, erhält man die so genannte Diedergruppe
+\[
+ D_n = \langle r, \sigma : r^{n-1} = \sigma^2 = (\sigma r)^2 = \mathds{1} \rangle
+ = \left\{
+ \mathds{1}, r, \ldots, r^{n-1}, \sigma, \sigma r, \ldots, \sigma r^{n-1}
+ \right\}.
+\]
+Diesmal muss die Generator-Notation die Beziehungen zwischen den beiden
+Operationen beinhalten. Die ersten beiden sind leicht zu erkennen, für die
+letzte empfehlen wir, sie an einem 2D-Quadrat auszuprobieren.
+
+Wir haben nun unseren Operationen Symbole gegeben, mit denen es tatsächlich
+möglich ist, eine nicht kommutative Algebra zu erstellen. Die naheliegende
+Frage ist dann, könnte es sein, dass wir bereits etwas haben, das dasselbe tut?
+Natürlich, ja. Dafür führen wir den Begriff der Darstellung ein.
+\begin{definition}[Darstellung einer Gruppe, Gruppenhomomorphismus]
+ Seien \(G\) und \(H\) Gruppe mit unterschiedlicher Operation \(\diamond\)
+ bzw. \(\star\). Ein Homomorphismus\footnote{ Für eine ausführlichere
+ Diskussion siehe \S\ref{buch:grundlagen:subsection:gruppen} im Buch.} ist
+ eine Funktion \(f: G \to H\), so dass für jedes \(a, b \in G\) gilt
+ \(f(a\diamond b) = f(a) \star f(b)\). Man sagt, dass der Homomorphismus
+ \(f\) \(G\) in \(H\) transformiert, oder dass \(H\) eine Darstellung von
+ \(G\) ist.
+\end{definition}
+\begin{beispiel}
+ Die Elemente \(r^k \in C_n\), wobei \(0 < k < n\), stellen abstrakt eine
+ Drehung von \(2\pi k/n\) um den Ursprung dar. Die mit der Matrix
+ \[
+ \Phi(r^k) = \begin{pmatrix}
+ \cos(2\pi k/n) & -\sin(2\pi k/n) \\
+ \sin(2\pi k/n) & \cos(2\pi k/n)
+ \end{pmatrix}
+ \]
+ definierte Funktion von \(C_n\) nach \(O(2)\) ist eine Darstellung von
+ \(C_n\). In diesem Fall ist die erste Gruppenoperation die Komposition und
+ die zweite die Matrixmultiplikation. Man kann überprüfen, dass \(\Phi(r^2
+ \circ r) = \Phi(r^2)\Phi(r)\).
+\end{beispiel}
+\begin{beispiel}
+ Die Rotationssymmetrie des Kreises \(C_\infty\), mit einem unendlichen
+ Kontinuum von Werten \(\alpha \in \mathbb{R}\), entspricht perfekt dem
+ komplexen Einheitskreis. Der Homomorphismus \(\phi: C_\infty \to \mathbb{C}\)
+ ist durch die Eulersche Formel \(\phi(r) = e^{i\alpha}\) gegeben.
+\end{beispiel}
+
+Die Symmetrien, die wir bis jetzt besprochen haben, haben immer mindestens
+einen Punkt unbesetzt gelassen. Im Fall der Rotation war es der Drehpunkt, bei
+der Spiegelung die Achse. Dies ist jedoch keine Voraussetzung für eine
+Symmetrie, da es Symmetrien gibt, die jeden Punkt zu einem anderen Punkt
+verschieben können. Ein aufmerksamer Leser wird bemerken, dass die
+unveränderten Punkte zum Eigenraum\footnote{Zur Erinnerung \(E_\lambda =
+\mathrm{null}(\Phi - \lambda I)\), \(\vec{v}\in E_\lambda \implies \Phi \vec{v}
+= \lambda\vec{v}\)} der Matrixdarstellung der Symmetrieoperation gehören.
+Diesen Spezialfall, bei dem mindestens ein Punkt unverändert bleibt, nennt man
+Punktsymmetrie.
+\begin{definition}[Punktgruppe]
+ Wenn jede Operation in einer Symmetriegruppe die Eigenschaft hat, mindestens
+ einen Punkt unverändert zu lassen, sagt man, dass die Symmetriegruppe eine
+ Punktgruppe ist.
+\end{definition}
+Um das Konzept zu illustrieren, werden wir den umgekehrten Fall diskutieren:
+eine Symmetrie, die keine Punktsymmetrie ist, die aber in der Physik sehr
+nützlich ist, nämlich die Translationssymmetrie. Von einem mathematischen
+Objekt \(U\) wird gesagt, dass es eine Translationssymmetrie \(Q(x) = x + a\)
+hat, wenn es die Gleichung
+\[
+ U(x) = U(Q(x)) = U(x + a),
+\]
+für ein gewisses \(a\), erfüllt. Zum Beispiel besagt das erste Newtonsche
+Gesetz, dass ein Objekt, auf das keine Kraft einwirkt, eine
+zeitranslationsinvariante Geschwindigkeit hat, d.h. wenn \(\vec{F} = \vec{0}\)
+dann \(\vec{v}(t) = \vec{v}(t + \tau)\).
+
+% \subsection{Sch\"onflies notation}
+
+% vim:ts=2 sw=2 spell spelllang=de:
diff --git a/buch/papers/verkehr/Makefile.inc b/buch/papers/verkehr/Makefile.inc
index 7bd8de1..876d0df 100644
--- a/buch/papers/verkehr/Makefile.inc
+++ b/buch/papers/verkehr/Makefile.inc
@@ -3,12 +3,10 @@
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-dependencies-verkehr = \
+dependencies-verkehr = \
papers/verkehr/packages.tex \
- papers/verkehr/main.tex \
- papers/verkehr/references.bib \
- papers/verkehr/teil0.tex \
- papers/verkehr/teil1.tex \
- papers/verkehr/teil2.tex \
- papers/verkehr/teil3.tex
+ papers/verkehr/main.tex \
+ papers/verkehr/section1.tex \
+ papers/verkehr/section2.tex \
+ papers/verkehr/references.bib
diff --git a/buch/papers/verkehr/figures/chart_Vr1.png b/buch/papers/verkehr/figures/chart_Vr1.png
new file mode 100644
index 0000000..14d4eca
--- /dev/null
+++ b/buch/papers/verkehr/figures/chart_Vr1.png
Binary files differ
diff --git a/buch/papers/verkehr/figures/chart_Vr2.png b/buch/papers/verkehr/figures/chart_Vr2.png
new file mode 100644
index 0000000..2d68681
--- /dev/null
+++ b/buch/papers/verkehr/figures/chart_Vr2.png
Binary files differ
diff --git a/buch/papers/verkehr/figures/chart_pathDiff.png b/buch/papers/verkehr/figures/chart_pathDiff.png
new file mode 100644
index 0000000..02bded7
--- /dev/null
+++ b/buch/papers/verkehr/figures/chart_pathDiff.png
Binary files differ
diff --git a/buch/papers/verkehr/figures/dist_display6.png b/buch/papers/verkehr/figures/dist_display6.png
new file mode 100644
index 0000000..3056f43
--- /dev/null
+++ b/buch/papers/verkehr/figures/dist_display6.png
Binary files differ
diff --git a/buch/papers/verkehr/figures/network_aStar.png b/buch/papers/verkehr/figures/network_aStar.png
new file mode 100644
index 0000000..5a681bd
--- /dev/null
+++ b/buch/papers/verkehr/figures/network_aStar.png
Binary files differ
diff --git a/buch/papers/verkehr/figures/network_dij.png b/buch/papers/verkehr/figures/network_dij.png
new file mode 100644
index 0000000..d9348d7
--- /dev/null
+++ b/buch/papers/verkehr/figures/network_dij.png
Binary files differ
diff --git a/buch/papers/verkehr/main.tex b/buch/papers/verkehr/main.tex
index 332ee7e..6348993 100644
--- a/buch/papers/verkehr/main.tex
+++ b/buch/papers/verkehr/main.tex
@@ -4,33 +4,13 @@
% (c) 2020 Hochschule Rapperswil
%
\chapter{Thema\label{chapter:verkehr}}
-\lhead{Thema}
+\lhead{Verkehrsfluss und Verkehrsnetze}
\begin{refsection}
-\chapterauthor{Hans Muster}
+\chapterauthor{Pascal Andreas Schmid und Robine Luchsinger}
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
-
-\input{papers/verkehr/teil0.tex}
-\input{papers/verkehr/teil1.tex}
-\input{papers/verkehr/teil2.tex}
-\input{papers/verkehr/teil3.tex}
+\input{papers/verkehr/section1.tex}
+\input{papers/verkehr/section2.tex}
+\input{papers/verkehr/section3.tex}
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/verkehr/section1.tex b/buch/papers/verkehr/section1.tex
new file mode 100644
index 0000000..638d9dd
--- /dev/null
+++ b/buch/papers/verkehr/section1.tex
@@ -0,0 +1,55 @@
+\section{Versuchsreihe}
+\label{section:verkehr/versuchsreihe}
+
+Um zwei der vorgestellten Suchalgorithmen zu vergleichen, wurden zwei Versuchsreihen erstellt. Dazu wurden in einem ersten Schritt zufällige Netzwerke generiert und anschliessend der \emph{Dijkstra}-, sowie der \emph{$A^*$}-Algorithmus auf das Netzwerk angewandt.
+Dieser Vorgang wurde für die zufällig generierten Netzwerke mit einer Knotenzahl von 10, 20 50, 100, 200, 500 und 1000 je zehnmal repetiert.
+Die Anzahl der Knoten im abgesuchten Netzwerk wirkt sich direkt auf die Rechenzeit aus. Der \emph{Dijkstra}-Algorithmus weist eine Zeitkomplexität von $\mathcal{O}(E\log{}V)$ auf, wobei $E$ die Anzahl Kanten (engl. \emph{edges}) und $V$ die Anzahl Knoten (engl. \emph{vertices}) darstellt.
+Für den \emph{A*}-Algorithmus ist die Zeitkomplexität einerseits abhängig von der verwendeten Heuristik, andererseits aber auch vom vorliegenden Netzwerk selbst. Aus diesem Grund lässt sich keine defintive Angabe zu $\mathcal{O}$ machen.
+
+Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- und Zielknoten bei der ersten Versuchsreihe im Netzwerk diametral gegenüber liegen. Dadurch gehen viele Knoten verloren, welcher \emph{Dijkstra} als uninformierter Suchalgorithmus absuchen würde. In der zweiten Veruschsreihe werden hingegen Start- un Zielpunkt zufällig im Netzwerk ausgewählt. Es wird deshalb erwwartet, dass die Unterschiede in der Rechenzeit der beiden Algorithmen in der zweiten Versuchsreihe deutlich ausgeprägter sind.
+
+\subsection{Einfluss der Knotenzahl auf die Rechenzeit}
+\label{verkehr:Knotenzahl}
+
+\begin{figure}
+\centering
+\includegraphics[width=12cm]{papers/verkehr/figures/chart_Vr1.png}
+
+\caption{Gemessene Rechenzeiten der ersten Versuchsreihe in Abhängigkeit der Knotenzahl.}
+\label{verkehr:Vr1}
+\end{figure}
+
+In \ref{verkehr:Vr1} ist ersichtlich, dass der Unterschied in der Rechenzeit zwischen \emph{Dijkstra} und \emph{A*} erst aber einer Knotenzahl von ca. $n=500$ merklich ansteigt. Dieses etwas überraschende Resultat ist darauf zurückzuführen, dass bei steigender Knotenzahl die Abweichung des effektiven kürzesten Pfades von der Distanz der Luftlinie abnimmt.
+Die Effektivität von \emph{A*} mit euklidischer Heuristik ist wiederum grösser, wenn die Abweichung des kürzesten Pfads von der Luftlinie minimal ist.
+Bei Betrachtung von \ref{verkehr:pathDifference} wird dies ersichtlich, wobei die relative Abweichung erstaunlicherweise bei einer Knotenzahl von $n=100$ maximal ist und nach $n=500$ nur noch marginal abnimmt.
+
+\begin{figure}
+\centering
+\includegraphics[width=12cm]{papers/verkehr/figures/chart_pathDiff.png}
+
+\caption{Relative Abweichung des kürzesten Pfads von der Luftlinie.}
+\label{verkehr:pathDifference}
+\end{figure}
+
+
+\subsection{Einfluss der Position der Start- und Zielknoten auf die Rechenzeit}
+
+\begin{figure}
+\centering
+\includegraphics[width=12cm]{papers/verkehr/figures/chart_Vr2.png}\\
+\caption{Gemessene Rechenzeiten der zweiten Versuchsreihe in Abhängigkeit der Knotenzahl.}
+\label{verkehr:Vr2}
+\end{figure}
+
+Zum Vergleich der Resultate in \ref{verkehr:Knotenzahl} zeigt \ref{verkehr:Vr2} die Rechenzeiten der zweiten Versuchsreihe, in welcher die Start- und Zielknoten zufällig im Netzwerk ausgewählt wurden. Einerseits ist eine reduzierte durchschnittliche Rechenzeit festzustellen, was schlicht daran liegt, dass die zufällige Wahl der Knoten dazu führt, dass diese tendenziell weniger weit auseinander liegen.\\
+Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwischen \emph{Dijkstra} und \emph{A*} deutlich früher abzeichnen. Dieses Phänomen lässt sich leicht durch die zielgerichtete Suche des \emph{A*}-Algorithmus erklären.
+
+\begin{figure}
+\centering
+\includegraphics[width=6cm]{papers/verkehr/figures/network_dij.png}\qquad
+\includegraphics[width=6cm]{papers/verkehr/figures/network_aStar.png}
+\caption{Suchpfad in grün mit \emph{Dijkstra} (links), und \emph{A*} (rechts). Besuchte Knoten sind in blau, resp. rot markiert.}
+\label{verkehr:Comparison}
+\end{figure}
+
+In \ref{verkehr:Comparison} ist ersichtlich, dass bei einem im Netzwerk liegenden Startknoten die zielgerichtete Suche von \emph{A*} deutlich ausgeprägter zum Zuge kommt, als wenn dieser am Rand des Netzwerks liegen würde.
diff --git a/buch/papers/verkehr/section2.tex b/buch/papers/verkehr/section2.tex
new file mode 100644
index 0000000..638d9dd
--- /dev/null
+++ b/buch/papers/verkehr/section2.tex
@@ -0,0 +1,55 @@
+\section{Versuchsreihe}
+\label{section:verkehr/versuchsreihe}
+
+Um zwei der vorgestellten Suchalgorithmen zu vergleichen, wurden zwei Versuchsreihen erstellt. Dazu wurden in einem ersten Schritt zufällige Netzwerke generiert und anschliessend der \emph{Dijkstra}-, sowie der \emph{$A^*$}-Algorithmus auf das Netzwerk angewandt.
+Dieser Vorgang wurde für die zufällig generierten Netzwerke mit einer Knotenzahl von 10, 20 50, 100, 200, 500 und 1000 je zehnmal repetiert.
+Die Anzahl der Knoten im abgesuchten Netzwerk wirkt sich direkt auf die Rechenzeit aus. Der \emph{Dijkstra}-Algorithmus weist eine Zeitkomplexität von $\mathcal{O}(E\log{}V)$ auf, wobei $E$ die Anzahl Kanten (engl. \emph{edges}) und $V$ die Anzahl Knoten (engl. \emph{vertices}) darstellt.
+Für den \emph{A*}-Algorithmus ist die Zeitkomplexität einerseits abhängig von der verwendeten Heuristik, andererseits aber auch vom vorliegenden Netzwerk selbst. Aus diesem Grund lässt sich keine defintive Angabe zu $\mathcal{O}$ machen.
+
+Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- und Zielknoten bei der ersten Versuchsreihe im Netzwerk diametral gegenüber liegen. Dadurch gehen viele Knoten verloren, welcher \emph{Dijkstra} als uninformierter Suchalgorithmus absuchen würde. In der zweiten Veruschsreihe werden hingegen Start- un Zielpunkt zufällig im Netzwerk ausgewählt. Es wird deshalb erwwartet, dass die Unterschiede in der Rechenzeit der beiden Algorithmen in der zweiten Versuchsreihe deutlich ausgeprägter sind.
+
+\subsection{Einfluss der Knotenzahl auf die Rechenzeit}
+\label{verkehr:Knotenzahl}
+
+\begin{figure}
+\centering
+\includegraphics[width=12cm]{papers/verkehr/figures/chart_Vr1.png}
+
+\caption{Gemessene Rechenzeiten der ersten Versuchsreihe in Abhängigkeit der Knotenzahl.}
+\label{verkehr:Vr1}
+\end{figure}
+
+In \ref{verkehr:Vr1} ist ersichtlich, dass der Unterschied in der Rechenzeit zwischen \emph{Dijkstra} und \emph{A*} erst aber einer Knotenzahl von ca. $n=500$ merklich ansteigt. Dieses etwas überraschende Resultat ist darauf zurückzuführen, dass bei steigender Knotenzahl die Abweichung des effektiven kürzesten Pfades von der Distanz der Luftlinie abnimmt.
+Die Effektivität von \emph{A*} mit euklidischer Heuristik ist wiederum grösser, wenn die Abweichung des kürzesten Pfads von der Luftlinie minimal ist.
+Bei Betrachtung von \ref{verkehr:pathDifference} wird dies ersichtlich, wobei die relative Abweichung erstaunlicherweise bei einer Knotenzahl von $n=100$ maximal ist und nach $n=500$ nur noch marginal abnimmt.
+
+\begin{figure}
+\centering
+\includegraphics[width=12cm]{papers/verkehr/figures/chart_pathDiff.png}
+
+\caption{Relative Abweichung des kürzesten Pfads von der Luftlinie.}
+\label{verkehr:pathDifference}
+\end{figure}
+
+
+\subsection{Einfluss der Position der Start- und Zielknoten auf die Rechenzeit}
+
+\begin{figure}
+\centering
+\includegraphics[width=12cm]{papers/verkehr/figures/chart_Vr2.png}\\
+\caption{Gemessene Rechenzeiten der zweiten Versuchsreihe in Abhängigkeit der Knotenzahl.}
+\label{verkehr:Vr2}
+\end{figure}
+
+Zum Vergleich der Resultate in \ref{verkehr:Knotenzahl} zeigt \ref{verkehr:Vr2} die Rechenzeiten der zweiten Versuchsreihe, in welcher die Start- und Zielknoten zufällig im Netzwerk ausgewählt wurden. Einerseits ist eine reduzierte durchschnittliche Rechenzeit festzustellen, was schlicht daran liegt, dass die zufällige Wahl der Knoten dazu führt, dass diese tendenziell weniger weit auseinander liegen.\\
+Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwischen \emph{Dijkstra} und \emph{A*} deutlich früher abzeichnen. Dieses Phänomen lässt sich leicht durch die zielgerichtete Suche des \emph{A*}-Algorithmus erklären.
+
+\begin{figure}
+\centering
+\includegraphics[width=6cm]{papers/verkehr/figures/network_dij.png}\qquad
+\includegraphics[width=6cm]{papers/verkehr/figures/network_aStar.png}
+\caption{Suchpfad in grün mit \emph{Dijkstra} (links), und \emph{A*} (rechts). Besuchte Knoten sind in blau, resp. rot markiert.}
+\label{verkehr:Comparison}
+\end{figure}
+
+In \ref{verkehr:Comparison} ist ersichtlich, dass bei einem im Netzwerk liegenden Startknoten die zielgerichtete Suche von \emph{A*} deutlich ausgeprägter zum Zuge kommt, als wenn dieser am Rand des Netzwerks liegen würde.
diff --git a/buch/papers/verkehr/section3.tex b/buch/papers/verkehr/section3.tex
new file mode 100644
index 0000000..99a0d92
--- /dev/null
+++ b/buch/papers/verkehr/section3.tex
@@ -0,0 +1,8 @@
+\section{Ausblick}
+\subsection{Optimierungsprobleme bei Graphen}
+Das Finden eines kürzesten Pfades, sprich die Minimierung der Summe der Kantengewichte, ist nur eines der Optimierungsprobleme, die sich im Bereich von Grafen aufstellen lassen. Verschiedene, ähnliche Problemstellungen lassen sich teilweise mit denselben Algorithmen lösen.\\
+Im Bereich vom Computernetzwerken könnte zum Beispiel die Minimierung der Knotenzahl zur Datenübbertragung von Interesse sein. Dabei lässt sich dieses Problem einfach dadurch lösen, dass dem \emph{Dijkstra}, oder dem \emph{A*}-Algorithmus anstelle der Graph-Matrix (mit Kantengewichten als Einträgen) die Adjazenz-Matrix als Argument übergeben wird. Der gefundene kürzeste Pfad enstpricht der Anzahl benutzter Kanten, bzw. der Anzahl besuchter Knoten.
+
+\subsection{Wahl der Heuristik}
+Ein grundlegendes Problem bei der Anwendung des \emph{A*} oder ähnlicher informierter Suchalgorithmen ist die Wahl der Heurstik. Bei einem physischen Verkehrsnetz kann bspw. die euklidische Distanz problems ermittelt werde. Bei einem regionalen Netzwerk ist die Annahme eines orthogonalen X-Y-Koordinatenetzes absolut ausreichend. Dies gilt z.B. auch für das Vernessungsnetz der Schweiz\footnote{Die aktuelle Schweizer Referenzsystem LV95 benutzt ein E/N-Koordinatennetz, wobei aufgrund zunehmender Abweichung vom Referenzellipsoid bei grosser Entfernung vom Nullpunkt ein Korrekturfaktor für die Höhe angebracht werden muss.} Bei überregionalen Netzwerken (Beispiel: Flugverbindungen) ist hingegen eine Berechnung im dreidimensionalen Raum, oder vereinfacht als Projektion auf das Geoid notwendig. Anonsten ist der Ablauf bei der Ausführung des Algorithmus allerdings identisch.\\
+In nicht-physischen Netzwerken stellt sich jedoch eine zweite Problematik. Da eine physische Distanz entweder nicht ermittelt werden kann, oder aber nicht ausschlaggebend ist, sind andere Netzwerk-Eigenschaften zur Beurteilung beizuziehen. Die Zuverlässigkeit ist dabei aber in den meisten Fällen nicht vergleichbar hoch, wie bei der euklidischen Heuristik. Oftmals werden deshalb bei derartigen Problem auch Algorithmen angewendet, die eine deutlich optimierte Zeitkomplexität aufweisen, dafür aber nicht mit Sicherheit den effizienstesten Pfad finden.
diff --git a/buch/papers/verkehr/teil0.tex b/buch/papers/verkehr/teil0.tex
deleted file mode 100644
index 5031841..0000000
--- a/buch/papers/verkehr/teil0.tex
+++ /dev/null
@@ -1,22 +0,0 @@
-%
-% einleitung.tex -- Beispiel-File für die Einleitung
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 0\label{verkehr:section:teil0}}
-\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{verkehr:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
-
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
-
-
diff --git a/buch/papers/verkehr/teil1.tex b/buch/papers/verkehr/teil1.tex
deleted file mode 100644
index 855aef8..0000000
--- a/buch/papers/verkehr/teil1.tex
+++ /dev/null
@@ -1,55 +0,0 @@
-%
-% teil1.tex -- Beispiel-File für das Paper
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 1
-\label{verkehr:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{verkehr:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{verkehr:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{verkehr:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{verkehr:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
-
-
diff --git a/buch/papers/verkehr/teil2.tex b/buch/papers/verkehr/teil2.tex
deleted file mode 100644
index 5170ded..0000000
--- a/buch/papers/verkehr/teil2.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{verkehr:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{verkehr:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/verkehr/teil3.tex b/buch/papers/verkehr/teil3.tex
deleted file mode 100644
index 8f79154..0000000
--- a/buch/papers/verkehr/teil3.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil3.tex -- Beispiel-File für Teil 3
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 3
-\label{verkehr:section:teil3}}
-\rhead{Teil 3}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{verkehr:subsection:malorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-