aboutsummaryrefslogtreecommitdiffstats
path: root/buch
diff options
context:
space:
mode:
Diffstat (limited to 'buch')
-rw-r--r--buch/.gitignore26
-rwxr-xr-xbuch/Makefile15
-rw-r--r--buch/aufgaben1.tex13
-rw-r--r--buch/aufgaben2.tex11
-rw-r--r--buch/aufgaben3.tex7
-rw-r--r--buch/chapters/10-vektorenmatrizen/gruppen.tex6
-rw-r--r--buch/chapters/30-endlichekoerper/images/binomial2.tex650
-rw-r--r--buch/chapters/30-endlichekoerper/images/binomial5.tex874
-rw-r--r--buch/chapters/40-eigenwerte/chapter.tex101
-rw-r--r--buch/chapters/40-eigenwerte/images/Makefile88
-rw-r--r--buch/chapters/40-eigenwerte/images/minmax.tex268
-rw-r--r--buch/chapters/40-eigenwerte/normalformen.tex254
-rw-r--r--buch/chapters/40-eigenwerte/spektraltheorie.tex1604
-rw-r--r--buch/chapters/40-eigenwerte/uebungsaufgaben/4006.maxima121
-rw-r--r--buch/chapters/40-eigenwerte/uebungsaufgaben/4006.tex97
-rw-r--r--buch/chapters/50-permutationen/transpositionen.tex12
-rw-r--r--buch/chapters/60-gruppen/chapter.tex94
-rw-r--r--buch/chapters/60-gruppen/images/Makefile50
-rw-r--r--buch/chapters/60-gruppen/images/karten.tex224
-rw-r--r--buch/chapters/60-gruppen/images/kartenkreis.tex378
-rw-r--r--buch/chapters/60-gruppen/images/phasenraum.tex186
-rw-r--r--buch/chapters/60-gruppen/images/scherungen.tex314
-rw-r--r--buch/chapters/60-gruppen/images/sl2.tex292
-rw-r--r--buch/chapters/60-gruppen/images/torus.pov378
-rw-r--r--buch/chapters/60-gruppen/lie-algebren.tex1294
-rw-r--r--buch/chapters/60-gruppen/lie-gruppen.tex1762
-rw-r--r--buch/chapters/60-gruppen/symmetrien.tex1450
-rw-r--r--buch/chapters/60-gruppen/uebungsaufgaben/6001.tex466
-rw-r--r--buch/chapters/60-gruppen/uebungsaufgaben/6002.tex324
-rw-r--r--buch/chapters/70-graphen/Makefile.inc1
-rw-r--r--buch/chapters/70-graphen/beschreibung.tex2
-rw-r--r--buch/chapters/70-graphen/chapter.tex1
-rw-r--r--buch/chapters/70-graphen/images/Makefile53
-rw-r--r--buch/chapters/70-graphen/images/fundamental.tex108
-rw-r--r--buch/chapters/70-graphen/images/gh.pdfbin0 -> 26177 bytes
-rw-r--r--buch/chapters/70-graphen/images/gh.tex55
-rw-r--r--buch/chapters/70-graphen/images/nine.pdfbin0 -> 2136 bytes
-rw-r--r--buch/chapters/70-graphen/images/nine.tex67
-rw-r--r--buch/chapters/70-graphen/images/petersonchrind.pdfbin0 -> 15217 bytes
-rw-r--r--buch/chapters/70-graphen/images/petersonchrind.tex142
-rw-r--r--buch/chapters/70-graphen/spektral.tex663
-rw-r--r--buch/chapters/70-graphen/waerme.tex184
-rw-r--r--buch/chapters/70-graphen/wavelets.tex458
-rw-r--r--buch/chapters/80-wahrscheinlichkeit/parrondo.tex8
-rw-r--r--buch/chapters/90-crypto/aes.tex866
-rw-r--r--buch/chapters/90-crypto/arith.tex590
-rw-r--r--buch/chapters/90-crypto/chapter.tex62
-rw-r--r--buch/chapters/90-crypto/ff.tex1328
-rw-r--r--buch/chapters/90-crypto/images/Makefile58
-rw-r--r--buch/chapters/90-crypto/images/keys.tex242
-rw-r--r--buch/chapters/90-crypto/images/multiplikation.tex928
-rw-r--r--buch/chapters/90-crypto/images/sbox.m104
-rw-r--r--buch/chapters/90-crypto/images/sbox.tex482
-rw-r--r--buch/chapters/90-crypto/images/schieberegister.tex240
-rw-r--r--buch/chapters/90-crypto/images/shift.tex262
-rw-r--r--buch/chapters/90-crypto/uebungsaufgaben/9001.tex62
-rw-r--r--buch/chapters/references.bib276
-rw-r--r--buch/common/test-common.tex (renamed from buch/test2.tex)24
-rw-r--r--buch/common/test1.tex21
-rw-r--r--buch/common/test2.tex21
-rw-r--r--buch/common/test3.tex21
-rw-r--r--buch/papers/clifford/0_ElevatorPitch.tex2
-rw-r--r--buch/papers/clifford/10_Quaternionen.tex61
-rw-r--r--buch/papers/clifford/1_Vektordarstellung.tex71
-rw-r--r--buch/papers/clifford/2_QuadratVektoren.tex110
-rw-r--r--buch/papers/clifford/3_MultiplikationVektoren.tex175
-rw-r--r--buch/papers/clifford/4_GeometrischesProdukt.tex59
-rw-r--r--buch/papers/clifford/5_PolareDarstellung.tex29
-rw-r--r--buch/papers/clifford/6_Dirac-Matrizen.tex7
-rw-r--r--buch/papers/clifford/7_Reflektion.tex33
-rw-r--r--buch/papers/clifford/8_Rotation.tex100
-rw-r--r--buch/papers/clifford/9_KomplexeZahlen.tex28
-rw-r--r--buch/papers/clifford/Makefile.inc20
-rw-r--r--buch/papers/clifford/main.tex39
-rw-r--r--buch/papers/clifford/packages.tex1
-rw-r--r--buch/papers/clifford/papers/clifford/teil0.tex0
-rw-r--r--buch/papers/clifford/teil0.tex22
-rw-r--r--buch/papers/clifford/teil1.tex55
-rw-r--r--buch/papers/clifford/teil2.tex40
-rw-r--r--buch/papers/clifford/teil3.tex40
-rw-r--r--buch/papers/erdbeben/Apperatur.jpgbin0 -> 66346 bytes
-rw-r--r--buch/papers/erdbeben/Gausskurve2.pdfbin0 -> 26978 bytes
-rw-r--r--buch/papers/erdbeben/Gausskurve2.tex39
-rw-r--r--buch/papers/erdbeben/Gausskurve3.pdfbin0 -> 27445 bytes
-rw-r--r--buch/papers/erdbeben/Gausskurve3.tex47
-rw-r--r--buch/papers/erdbeben/teil1.tex289
-rw-r--r--buch/papers/punktgruppen/Makefile.inc16
-rw-r--r--buch/papers/punktgruppen/crystals.tex16
-rw-r--r--buch/papers/punktgruppen/intro.tex10
-rw-r--r--buch/papers/punktgruppen/main.tex35
-rw-r--r--buch/papers/punktgruppen/packages.tex5
-rw-r--r--buch/papers/punktgruppen/piezo.tex1
-rw-r--r--buch/papers/punktgruppen/references.bib46
-rw-r--r--buch/papers/punktgruppen/symmetry.tex182
-rw-r--r--buch/papers/punktgruppen/teil0.tex22
-rw-r--r--buch/papers/punktgruppen/teil1.tex55
-rw-r--r--buch/papers/punktgruppen/teil2.tex40
-rw-r--r--buch/papers/punktgruppen/teil3.tex40
-rw-r--r--buch/papers/spannung/Einleitung.tex89
-rw-r--r--buch/papers/spannung/Grafiken/Bild1.pngbin0 -> 17190 bytes
-rw-r--r--buch/papers/spannung/Grafiken/Bild2.pngbin0 -> 26255 bytes
-rw-r--r--buch/papers/spannung/Grafiken/Bild3.pngbin0 -> 45727 bytes
-rw-r--r--buch/papers/spannung/Grafiken/Bild4.pngbin0 -> 72520 bytes
-rw-r--r--buch/papers/spannung/Grafiken/Bild5.pngbin0 -> 34721 bytes
-rw-r--r--buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.pngbin0 -> 23361 bytes
-rw-r--r--buch/papers/spannung/Grafiken/infinitesimalerWuerfel.pngbin0 -> 27082 bytes
-rw-r--r--buch/papers/spannung/main.tex23
-rw-r--r--buch/papers/spannung/references.bib49
-rw-r--r--buch/papers/spannung/teil0.tex98
-rw-r--r--buch/papers/spannung/teil1.tex75
-rw-r--r--buch/papers/spannung/teil2.tex527
-rw-r--r--buch/papers/spannung/teil3.tex139
-rw-r--r--buch/papers/spannung/teil4.tex79
-rw-r--r--buch/papers/verkehr/Makefile.inc12
-rw-r--r--buch/papers/verkehr/figures/chart_Vr1.pngbin0 -> 74176 bytes
-rw-r--r--buch/papers/verkehr/figures/chart_Vr2.pngbin0 -> 64237 bytes
-rw-r--r--buch/papers/verkehr/figures/chart_pathDiff.pngbin0 -> 36673 bytes
-rw-r--r--buch/papers/verkehr/figures/dist_display6.pngbin0 -> 399354 bytes
-rw-r--r--buch/papers/verkehr/figures/network_aStar.pngbin0 -> 79386 bytes
-rw-r--r--buch/papers/verkehr/figures/network_dij.pngbin0 -> 77108 bytes
-rw-r--r--buch/papers/verkehr/main.tex30
-rw-r--r--buch/papers/verkehr/section1.tex70
-rw-r--r--buch/papers/verkehr/section2.tex55
-rw-r--r--buch/papers/verkehr/section3.tex8
-rw-r--r--buch/papers/verkehr/teil0.tex22
-rw-r--r--buch/papers/verkehr/teil1.tex55
-rw-r--r--buch/papers/verkehr/teil2.tex40
-rw-r--r--buch/papers/verkehr/teil3.tex40
-rw-r--r--buch/test1.tex93
-rw-r--r--buch/test3.tex91
130 files changed, 12423 insertions, 9595 deletions
diff --git a/buch/.gitignore b/buch/.gitignore
index 4600c1a..5d8a46e 100644
--- a/buch/.gitignore
+++ b/buch/.gitignore
@@ -1,12 +1,16 @@
-buch*.aux
-buch*.bbl
-buch*.bib
-buch*.blg
-buch*.idx
-buch*.ilg
-buch*.ind
-buch*.log
-buch*.out
+*.aux
+*.bbl
+*.bib
+*.blg
+*.idx
+*.ilg
+*.ind
+*.log
+*.out
+*.rpt
buch*.pdf
-buch*.run.xml
-buch*.toc
+*.run.xml
+*.toc
+.build/
+*.synctex.gz
+*.DS_Store
diff --git a/buch/Makefile b/buch/Makefile
index 722c177..1cd50dd 100755
--- a/buch/Makefile
+++ b/buch/Makefile
@@ -28,8 +28,19 @@ buch.ind: buch.idx
separate: buch.aux buch.pdf
bash splitpapers
-numerik.pdf:
- pdfjam --outfile numerik.pdf \
+matrizen.pdf:
+ pdfjam --outfile matrizen.pdf \
../cover/front.pdf 1,{} \
buch.pdf 1-504 \
../cover/back.pdf {},1
+
+tests: test1.pdf test2.pdf test3.pdf
+
+test1.pdf: common/test-common.tex common/test1.tex aufgaben1.tex
+ pdflatex common/test1.tex
+
+test2.pdf: common/test-common.tex common/test1.tex aufgaben2.tex
+ pdflatex common/test2.tex
+
+test3.pdf: common/test-common.tex common/test1.tex aufgaben3.tex
+ pdflatex common/test3.tex
diff --git a/buch/aufgaben1.tex b/buch/aufgaben1.tex
new file mode 100644
index 0000000..9348019
--- /dev/null
+++ b/buch/aufgaben1.tex
@@ -0,0 +1,13 @@
+%
+% aufgaben1.tex -- Aufgaben für Test 1
+%
+% (c) 2012 Prof. Dr. Andreas Mueller, HSR
+%
+
+\item
+\input chapters/30-endlichekoerper/uebungsaufgaben/3003.tex
+\item
+\input chapters/30-endlichekoerper/uebungsaufgaben/3004.tex
+\item
+\input chapters/30-endlichekoerper/uebungsaufgaben/3005.tex
+
diff --git a/buch/aufgaben2.tex b/buch/aufgaben2.tex
new file mode 100644
index 0000000..dc4fc59
--- /dev/null
+++ b/buch/aufgaben2.tex
@@ -0,0 +1,11 @@
+%
+% aufgaben2.tex -- Aufgaben für Test 2
+%
+% (c) 2021 Prof. Dr. Andreas Mueller, OST
+%
+
+\item
+\input chapters/40-eigenwerte/uebungsaufgaben/4004.tex
+\item
+\input chapters/40-eigenwerte/uebungsaufgaben/4005.tex
+
diff --git a/buch/aufgaben3.tex b/buch/aufgaben3.tex
new file mode 100644
index 0000000..23c9153
--- /dev/null
+++ b/buch/aufgaben3.tex
@@ -0,0 +1,7 @@
+%
+% aufgaben3.tex -- Aufgaben für Test 3
+%
+% (c) 2021 Prof. Dr. Andreas Mueller, OST
+%
+\item
+\input chapters/60-gruppen/uebungsaufgaben/6001.tex
diff --git a/buch/chapters/10-vektorenmatrizen/gruppen.tex b/buch/chapters/10-vektorenmatrizen/gruppen.tex
index 9848469..cb37d05 100644
--- a/buch/chapters/10-vektorenmatrizen/gruppen.tex
+++ b/buch/chapters/10-vektorenmatrizen/gruppen.tex
@@ -182,7 +182,7 @@ begegnet, wo wir nur gezeigt haben, dass $AA^{-1}=E$ ist.
Da aber die invertierbaren Matrizen eine Gruppe
bilden, folgt jetzt aus dem Satz automatisch, dass auch $A^{-1}A=E$.
-\subsubsection{Homomorphismen}
+\subsubsection{Homomorphismen} \label{buch:gruppen:subsection:homomorphismen}
Lineare Abbildung zwischen Vektorräumen zeichnen sich dadurch aus,
dass sie die algebraische Struktur des Vektorraumes respektieren.
Für eine Abbildung zwischen Gruppen heisst dies, dass die Verknüpfung,
@@ -313,14 +313,14 @@ auf einem geeigneten Vektorraum.
\begin{definition}
\label{buch:vektorenmatrizen:def:darstellung}
Eine Darstellung einer Gruppe $G$ ist ein Homomorphismus
-$G\to\operatorname{GL}_(\mathbb{R})$.
+$G\to\operatorname{GL}_n(\mathbb{R})$.
\index{Darstellung}
\end{definition}
\begin{beispiel}
Die Gruppen $\operatorname{GL}_n(\mathbb{Z})$,
$\operatorname{SL}_n(\mathbb{Z})$ oder $\operatorname{SO}(n)$
-sind alle Teilmengen von $\operatorname{GL}_n(\mathbb{R}$.
+sind alle Teilmengen von $\operatorname{GL}_n(\mathbb{R})$.
Die Einbettungsabbildung $G\hookrightarrow \operatorname{GL}_n(\mathbb{R})$
ist damit automatisch eine Darstellung, sie heisst auch die
{\em reguläre Darstellung} der Gruppe $G$.
diff --git a/buch/chapters/30-endlichekoerper/images/binomial2.tex b/buch/chapters/30-endlichekoerper/images/binomial2.tex
index e816b36..1856844 100644
--- a/buch/chapters/30-endlichekoerper/images/binomial2.tex
+++ b/buch/chapters/30-endlichekoerper/images/binomial2.tex
@@ -1,325 +1,325 @@
-%
-% binomial2.tex -- Parität der Binomialkoeffizienten
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{1}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-
-\def\s{0.37}
-\pgfmathparse{\s*sqrt(3)/2}
-\xdef\ys{\pgfmathresult}
-\pgfmathparse{\s/2}
-\xdef\xs{\pgfmathresult}
-
-%
-% #1 = n
-% #2 = k
-%
-\def\dreieck#1#2{
- \fill[color=black] ({\xs*(-#1+2*#2)},{-\ys*#1})
- -- ({\xs*(-#1+2*#2-1)},{-\ys*(#1+1)})
- -- ({\xs*(-#1+2*#2+1)},{-\ys*(#1+1)}) -- cycle;
-}
-\def\zeile#1{
- \fill[color=red!40]
- ({\xs*(-#1)},{-\ys*#1})
- -- ({\xs*(-#1-1)},{-\ys*(#1+1)})
- -- ({\xs*(#1+1)},{-\ys*(#1+1)})
- -- ({\xs*(#1)},{-\ys*#1}) -- cycle;
-}
-
-\zeile{2}
-\zeile{4}
-\zeile{8}
-\zeile{16}
-\zeile{32}
-
-\dreieck{0}{0}
-
-\dreieck{1}{0}
-\dreieck{1}{1}
-
-\dreieck{2}{0}
-\dreieck{2}{2}
-
-\dreieck{3}{0}
-\dreieck{3}{1}
-\dreieck{3}{2}
-\dreieck{3}{3}
-
-\dreieck{4}{0}
-\dreieck{4}{4}
-
-\dreieck{5}{0}
-\dreieck{5}{1}
-\dreieck{5}{4}
-\dreieck{5}{5}
-
-\dreieck{6}{0}
-\dreieck{6}{2}
-\dreieck{6}{4}
-\dreieck{6}{6}
-
-\dreieck{7}{0}
-\dreieck{7}{1}
-\dreieck{7}{2}
-\dreieck{7}{3}
-\dreieck{7}{4}
-\dreieck{7}{5}
-\dreieck{7}{6}
-\dreieck{7}{7}
-
-\dreieck{8}{0}
-\dreieck{8}{8}
-
-\dreieck{9}{0}
-\dreieck{9}{1}
-\dreieck{9}{8}
-\dreieck{9}{9}
-
-\dreieck{10}{0}
-\dreieck{10}{2}
-\dreieck{10}{8}
-\dreieck{10}{10}
-
-\dreieck{11}{0}
-\dreieck{11}{1}
-\dreieck{11}{2}
-\dreieck{11}{3}
-\dreieck{11}{8}
-\dreieck{11}{9}
-\dreieck{11}{10}
-\dreieck{11}{11}
-
-\dreieck{12}{0}
-\dreieck{12}{4}
-\dreieck{12}{8}
-\dreieck{12}{12}
-
-\dreieck{13}{0}
-\dreieck{13}{1}
-\dreieck{13}{4}
-\dreieck{13}{5}
-\dreieck{13}{8}
-\dreieck{13}{9}
-\dreieck{13}{12}
-\dreieck{13}{13}
-
-\dreieck{14}{0}
-\dreieck{14}{2}
-\dreieck{14}{4}
-\dreieck{14}{6}
-\dreieck{14}{8}
-\dreieck{14}{10}
-\dreieck{14}{12}
-\dreieck{14}{14}
-
-\dreieck{15}{0}
-\dreieck{15}{1}
-\dreieck{15}{2}
-\dreieck{15}{3}
-\dreieck{15}{4}
-\dreieck{15}{5}
-\dreieck{15}{6}
-\dreieck{15}{7}
-\dreieck{15}{8}
-\dreieck{15}{9}
-\dreieck{15}{10}
-\dreieck{15}{11}
-\dreieck{15}{12}
-\dreieck{15}{13}
-\dreieck{15}{14}
-\dreieck{15}{15}
-
-\dreieck{16}{0}
-\dreieck{16}{16}
-
-\dreieck{17}{0}
-\dreieck{17}{1}
-\dreieck{17}{16}
-\dreieck{17}{17}
-
-\dreieck{18}{0}
-\dreieck{18}{2}
-\dreieck{18}{16}
-\dreieck{18}{18}
-
-\dreieck{19}{0}
-\dreieck{19}{1}
-\dreieck{19}{2}
-\dreieck{19}{3}
-\dreieck{19}{16}
-\dreieck{19}{17}
-\dreieck{19}{18}
-\dreieck{19}{19}
-
-\dreieck{20}{0}
-\dreieck{20}{4}
-\dreieck{20}{16}
-\dreieck{20}{20}
-
-\dreieck{21}{0}
-\dreieck{21}{1}
-\dreieck{21}{4}
-\dreieck{21}{5}
-\dreieck{21}{16}
-\dreieck{21}{17}
-\dreieck{21}{20}
-\dreieck{21}{21}
-
-\dreieck{22}{0}
-\dreieck{22}{2}
-\dreieck{22}{4}
-\dreieck{22}{6}
-\dreieck{22}{16}
-\dreieck{22}{18}
-\dreieck{22}{20}
-\dreieck{22}{22}
-
-\dreieck{23}{0}
-\dreieck{23}{1}
-\dreieck{23}{2}
-\dreieck{23}{3}
-\dreieck{23}{4}
-\dreieck{23}{5}
-\dreieck{23}{6}
-\dreieck{23}{7}
-\dreieck{23}{16}
-\dreieck{23}{17}
-\dreieck{23}{18}
-\dreieck{23}{19}
-\dreieck{23}{20}
-\dreieck{23}{21}
-\dreieck{23}{22}
-\dreieck{23}{23}
-
-\dreieck{24}{0}
-\dreieck{24}{8}
-\dreieck{24}{16}
-\dreieck{24}{24}
-
-\dreieck{25}{0}
-\dreieck{25}{1}
-\dreieck{25}{8}
-\dreieck{25}{9}
-\dreieck{25}{16}
-\dreieck{25}{17}
-\dreieck{25}{24}
-\dreieck{25}{25}
-
-\dreieck{26}{0}
-\dreieck{26}{2}
-\dreieck{26}{8}
-\dreieck{26}{10}
-\dreieck{26}{16}
-\dreieck{26}{18}
-\dreieck{26}{24}
-\dreieck{26}{26}
-
-\dreieck{27}{0}
-\dreieck{27}{1}
-\dreieck{27}{2}
-\dreieck{27}{3}
-\dreieck{27}{8}
-\dreieck{27}{9}
-\dreieck{27}{10}
-\dreieck{27}{11}
-\dreieck{27}{16}
-\dreieck{27}{17}
-\dreieck{27}{18}
-\dreieck{27}{19}
-\dreieck{27}{24}
-\dreieck{27}{25}
-\dreieck{27}{26}
-\dreieck{27}{27}
-
-\dreieck{28}{0}
-\dreieck{28}{4}
-\dreieck{28}{8}
-\dreieck{28}{12}
-\dreieck{28}{16}
-\dreieck{28}{20}
-\dreieck{28}{24}
-\dreieck{28}{28}
-
-\dreieck{29}{0}
-\dreieck{29}{1}
-\dreieck{29}{4}
-\dreieck{29}{5}
-\dreieck{29}{8}
-\dreieck{29}{9}
-\dreieck{29}{12}
-\dreieck{29}{13}
-\dreieck{29}{16}
-\dreieck{29}{17}
-\dreieck{29}{20}
-\dreieck{29}{21}
-\dreieck{29}{24}
-\dreieck{29}{25}
-\dreieck{29}{28}
-\dreieck{29}{29}
-
-\foreach \k in {0,2,...,30}{
- \dreieck{30}{\k}
-}
-
-\foreach \k in {0,...,31}{
- \dreieck{31}{\k}
-}
-
-\dreieck{32}{0}
-\dreieck{32}{32}
-
-\dreieck{33}{0}
-\dreieck{33}{1}
-\dreieck{33}{32}
-\dreieck{33}{33}
-
-\dreieck{34}{0}
-\dreieck{34}{2}
-\dreieck{34}{32}
-\dreieck{34}{34}
-
-\dreieck{35}{0}
-\dreieck{35}{1}
-\dreieck{35}{2}
-\dreieck{35}{3}
-\dreieck{35}{32}
-\dreieck{35}{33}
-\dreieck{35}{34}
-\dreieck{35}{35}
-
-\def\etikett#1#2#3{
- \node at ({\xs*(-#1+2*#2)},{-\ys*(#1+0.5)}) {$#3$};
-}
-
-\etikett{0}{-2}{n=0}
-\etikett{2}{-2}{n=2}
-\etikett{4}{-2}{n=4}
-\etikett{8}{-2}{n=8}
-\etikett{16}{-2}{n=16}
-\etikett{32}{-2}{n=32}
-
-\def\exponent#1#2#3{
- \node at ({\xs*(-#1+2*#2)},{-\ys*(#1+0.5)}) [rotate=60] {$#3$};
-}
-
-\exponent{-2}{0}{k=0}
-\exponent{0}{2}{k=2}
-\exponent{2}{4}{k=4}
-\exponent{6}{8}{k=8}
-\exponent{14}{16}{k=16}
-\exponent{30}{32}{k=32}
-
-\end{tikzpicture}
-\end{document}
-
+%
+% binomial2.tex -- Parität der Binomialkoeffizienten
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\s{0.37}
+\pgfmathparse{\s*sqrt(3)/2}
+\xdef\ys{\pgfmathresult}
+\pgfmathparse{\s/2}
+\xdef\xs{\pgfmathresult}
+
+%
+% #1 = n
+% #2 = k
+%
+\def\dreieck#1#2{
+ \fill[color=black] ({\xs*(-#1+2*#2)},{-\ys*#1})
+ -- ({\xs*(-#1+2*#2-1)},{-\ys*(#1+1)})
+ -- ({\xs*(-#1+2*#2+1)},{-\ys*(#1+1)}) -- cycle;
+}
+\def\zeile#1{
+ \fill[color=red!40]
+ ({\xs*(-#1)},{-\ys*#1})
+ -- ({\xs*(-#1-1)},{-\ys*(#1+1)})
+ -- ({\xs*(#1+1)},{-\ys*(#1+1)})
+ -- ({\xs*(#1)},{-\ys*#1}) -- cycle;
+}
+
+\zeile{2}
+\zeile{4}
+\zeile{8}
+\zeile{16}
+\zeile{32}
+
+\dreieck{0}{0}
+
+\dreieck{1}{0}
+\dreieck{1}{1}
+
+\dreieck{2}{0}
+\dreieck{2}{2}
+
+\dreieck{3}{0}
+\dreieck{3}{1}
+\dreieck{3}{2}
+\dreieck{3}{3}
+
+\dreieck{4}{0}
+\dreieck{4}{4}
+
+\dreieck{5}{0}
+\dreieck{5}{1}
+\dreieck{5}{4}
+\dreieck{5}{5}
+
+\dreieck{6}{0}
+\dreieck{6}{2}
+\dreieck{6}{4}
+\dreieck{6}{6}
+
+\dreieck{7}{0}
+\dreieck{7}{1}
+\dreieck{7}{2}
+\dreieck{7}{3}
+\dreieck{7}{4}
+\dreieck{7}{5}
+\dreieck{7}{6}
+\dreieck{7}{7}
+
+\dreieck{8}{0}
+\dreieck{8}{8}
+
+\dreieck{9}{0}
+\dreieck{9}{1}
+\dreieck{9}{8}
+\dreieck{9}{9}
+
+\dreieck{10}{0}
+\dreieck{10}{2}
+\dreieck{10}{8}
+\dreieck{10}{10}
+
+\dreieck{11}{0}
+\dreieck{11}{1}
+\dreieck{11}{2}
+\dreieck{11}{3}
+\dreieck{11}{8}
+\dreieck{11}{9}
+\dreieck{11}{10}
+\dreieck{11}{11}
+
+\dreieck{12}{0}
+\dreieck{12}{4}
+\dreieck{12}{8}
+\dreieck{12}{12}
+
+\dreieck{13}{0}
+\dreieck{13}{1}
+\dreieck{13}{4}
+\dreieck{13}{5}
+\dreieck{13}{8}
+\dreieck{13}{9}
+\dreieck{13}{12}
+\dreieck{13}{13}
+
+\dreieck{14}{0}
+\dreieck{14}{2}
+\dreieck{14}{4}
+\dreieck{14}{6}
+\dreieck{14}{8}
+\dreieck{14}{10}
+\dreieck{14}{12}
+\dreieck{14}{14}
+
+\dreieck{15}{0}
+\dreieck{15}{1}
+\dreieck{15}{2}
+\dreieck{15}{3}
+\dreieck{15}{4}
+\dreieck{15}{5}
+\dreieck{15}{6}
+\dreieck{15}{7}
+\dreieck{15}{8}
+\dreieck{15}{9}
+\dreieck{15}{10}
+\dreieck{15}{11}
+\dreieck{15}{12}
+\dreieck{15}{13}
+\dreieck{15}{14}
+\dreieck{15}{15}
+
+\dreieck{16}{0}
+\dreieck{16}{16}
+
+\dreieck{17}{0}
+\dreieck{17}{1}
+\dreieck{17}{16}
+\dreieck{17}{17}
+
+\dreieck{18}{0}
+\dreieck{18}{2}
+\dreieck{18}{16}
+\dreieck{18}{18}
+
+\dreieck{19}{0}
+\dreieck{19}{1}
+\dreieck{19}{2}
+\dreieck{19}{3}
+\dreieck{19}{16}
+\dreieck{19}{17}
+\dreieck{19}{18}
+\dreieck{19}{19}
+
+\dreieck{20}{0}
+\dreieck{20}{4}
+\dreieck{20}{16}
+\dreieck{20}{20}
+
+\dreieck{21}{0}
+\dreieck{21}{1}
+\dreieck{21}{4}
+\dreieck{21}{5}
+\dreieck{21}{16}
+\dreieck{21}{17}
+\dreieck{21}{20}
+\dreieck{21}{21}
+
+\dreieck{22}{0}
+\dreieck{22}{2}
+\dreieck{22}{4}
+\dreieck{22}{6}
+\dreieck{22}{16}
+\dreieck{22}{18}
+\dreieck{22}{20}
+\dreieck{22}{22}
+
+\dreieck{23}{0}
+\dreieck{23}{1}
+\dreieck{23}{2}
+\dreieck{23}{3}
+\dreieck{23}{4}
+\dreieck{23}{5}
+\dreieck{23}{6}
+\dreieck{23}{7}
+\dreieck{23}{16}
+\dreieck{23}{17}
+\dreieck{23}{18}
+\dreieck{23}{19}
+\dreieck{23}{20}
+\dreieck{23}{21}
+\dreieck{23}{22}
+\dreieck{23}{23}
+
+\dreieck{24}{0}
+\dreieck{24}{8}
+\dreieck{24}{16}
+\dreieck{24}{24}
+
+\dreieck{25}{0}
+\dreieck{25}{1}
+\dreieck{25}{8}
+\dreieck{25}{9}
+\dreieck{25}{16}
+\dreieck{25}{17}
+\dreieck{25}{24}
+\dreieck{25}{25}
+
+\dreieck{26}{0}
+\dreieck{26}{2}
+\dreieck{26}{8}
+\dreieck{26}{10}
+\dreieck{26}{16}
+\dreieck{26}{18}
+\dreieck{26}{24}
+\dreieck{26}{26}
+
+\dreieck{27}{0}
+\dreieck{27}{1}
+\dreieck{27}{2}
+\dreieck{27}{3}
+\dreieck{27}{8}
+\dreieck{27}{9}
+\dreieck{27}{10}
+\dreieck{27}{11}
+\dreieck{27}{16}
+\dreieck{27}{17}
+\dreieck{27}{18}
+\dreieck{27}{19}
+\dreieck{27}{24}
+\dreieck{27}{25}
+\dreieck{27}{26}
+\dreieck{27}{27}
+
+\dreieck{28}{0}
+\dreieck{28}{4}
+\dreieck{28}{8}
+\dreieck{28}{12}
+\dreieck{28}{16}
+\dreieck{28}{20}
+\dreieck{28}{24}
+\dreieck{28}{28}
+
+\dreieck{29}{0}
+\dreieck{29}{1}
+\dreieck{29}{4}
+\dreieck{29}{5}
+\dreieck{29}{8}
+\dreieck{29}{9}
+\dreieck{29}{12}
+\dreieck{29}{13}
+\dreieck{29}{16}
+\dreieck{29}{17}
+\dreieck{29}{20}
+\dreieck{29}{21}
+\dreieck{29}{24}
+\dreieck{29}{25}
+\dreieck{29}{28}
+\dreieck{29}{29}
+
+\foreach \k in {0,2,...,30}{
+ \dreieck{30}{\k}
+}
+
+\foreach \k in {0,...,31}{
+ \dreieck{31}{\k}
+}
+
+\dreieck{32}{0}
+\dreieck{32}{32}
+
+\dreieck{33}{0}
+\dreieck{33}{1}
+\dreieck{33}{32}
+\dreieck{33}{33}
+
+\dreieck{34}{0}
+\dreieck{34}{2}
+\dreieck{34}{32}
+\dreieck{34}{34}
+
+\dreieck{35}{0}
+\dreieck{35}{1}
+\dreieck{35}{2}
+\dreieck{35}{3}
+\dreieck{35}{32}
+\dreieck{35}{33}
+\dreieck{35}{34}
+\dreieck{35}{35}
+
+\def\etikett#1#2#3{
+ \node at ({\xs*(-#1+2*#2)},{-\ys*(#1+0.5)}) {$#3$};
+}
+
+\etikett{0}{-2}{n=0}
+\etikett{2}{-2}{n=2}
+\etikett{4}{-2}{n=4}
+\etikett{8}{-2}{n=8}
+\etikett{16}{-2}{n=16}
+\etikett{32}{-2}{n=32}
+
+\def\exponent#1#2#3{
+ \node at ({\xs*(-#1+2*#2)},{-\ys*(#1+0.5)}) [rotate=60] {$#3$};
+}
+
+\exponent{-2}{0}{k=0}
+\exponent{0}{2}{k=2}
+\exponent{2}{4}{k=4}
+\exponent{6}{8}{k=8}
+\exponent{14}{16}{k=16}
+\exponent{30}{32}{k=32}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/30-endlichekoerper/images/binomial5.tex b/buch/chapters/30-endlichekoerper/images/binomial5.tex
index f5aac0a..815e611 100644
--- a/buch/chapters/30-endlichekoerper/images/binomial5.tex
+++ b/buch/chapters/30-endlichekoerper/images/binomial5.tex
@@ -1,437 +1,437 @@
-%
-% binomial2.tex -- Parität der Binomialkoeffizienten
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{1}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-
-\definecolor{farbe0}{rgb}{1,1,1}
-\input{farben.tex}
-
-\def\s{0.37}
-\pgfmathparse{\s*sqrt(3)/2}
-\xdef\ys{\pgfmathresult}
-\pgfmathparse{\s/2}
-\xdef\xs{\pgfmathresult}
-
-%
-% #1 = n
-% #2 = k
-%
-\def\dreieck#1#2#3{
- \fill[color=farbe#3] ({\xs*(-#1+2*#2)},{-\ys*#1})
- -- ({\xs*(-#1+2*#2-1)},{-\ys*(#1+1)})
- -- ({\xs*(-#1+2*#2+1)},{-\ys*(#1+1)}) -- cycle;
- \node[color=white] at ( ({\xs*(-#1+2*#2)},{-\ys*(#1+0.5)-0.03}) {$\scriptstyle #3$};
-}
-
-\definecolor{gelb}{rgb}{1,0.8,0.2}
-\def\zeile#1{
- \fill[color=gelb]
- ({\xs*(-#1)},{-\ys*#1})
- -- ({\xs*(-#1-1)},{-\ys*(#1+1)})
- -- ({\xs*(#1+1)},{-\ys*(#1+1)})
- -- ({\xs*(#1)},{-\ys*#1}) -- cycle;
-}
-
-\zeile{5}
-\zeile{25}
-
-\dreieck{0}{0}{1}
-
-\dreieck{1}{0}{1}
-\dreieck{1}{1}{1}
-
-\dreieck{2}{0}{1}
-\dreieck{2}{1}{2}
-\dreieck{2}{2}{1}
-
-\dreieck{3}{0}{1}
-\dreieck{3}{1}{3}
-\dreieck{3}{2}{3}
-\dreieck{3}{3}{1}
-
-\dreieck{4}{0}{1}
-\dreieck{4}{1}{4}
-\dreieck{4}{2}{1}
-\dreieck{4}{3}{4}
-\dreieck{4}{4}{1}
-
-\dreieck{5}{0}{1}
-\dreieck{5}{5}{1}
-
-\dreieck{6}{0}{1}
-\dreieck{6}{1}{1}
-\dreieck{6}{5}{1}
-\dreieck{6}{6}{1}
-
-\dreieck{7}{0}{1}
-\dreieck{7}{1}{2}
-\dreieck{7}{2}{1}
-\dreieck{7}{5}{1}
-\dreieck{7}{6}{2}
-\dreieck{7}{7}{1}
-
-\dreieck{8}{0}{1}
-\dreieck{8}{1}{3}
-\dreieck{8}{2}{3}
-\dreieck{8}{3}{1}
-\dreieck{8}{5}{1}
-\dreieck{8}{6}{3}
-\dreieck{8}{7}{3}
-\dreieck{8}{8}{1}
-
-\dreieck{9}{0}{1}
-\dreieck{9}{1}{4}
-\dreieck{9}{2}{1}
-\dreieck{9}{3}{4}
-\dreieck{9}{4}{1}
-\dreieck{9}{5}{1}
-\dreieck{9}{6}{4}
-\dreieck{9}{7}{1}
-\dreieck{9}{8}{4}
-\dreieck{9}{9}{1}
-
-\dreieck{10}{0}{1}
-\dreieck{10}{5}{2}
-\dreieck{10}{10}{1}
-
-\dreieck{11}{0}{1}
-\dreieck{11}{1}{1}
-\dreieck{11}{5}{2}
-\dreieck{11}{6}{2}
-\dreieck{11}{10}{1}
-\dreieck{11}{11}{1}
-
-\dreieck{12}{0}{1}
-\dreieck{12}{1}{2}
-\dreieck{12}{2}{1}
-\dreieck{12}{5}{2}
-\dreieck{12}{6}{4}
-\dreieck{12}{7}{2}
-\dreieck{12}{10}{1}
-\dreieck{12}{11}{2}
-\dreieck{12}{12}{1}
-
-\dreieck{13}{0}{1}
-\dreieck{13}{1}{3}
-\dreieck{13}{2}{3}
-\dreieck{13}{3}{1}
-\dreieck{13}{5}{2}
-\dreieck{13}{6}{1}
-\dreieck{13}{7}{1}
-\dreieck{13}{8}{2}
-\dreieck{13}{10}{1}
-\dreieck{13}{11}{3}
-\dreieck{13}{12}{3}
-\dreieck{13}{13}{1}
-
-\dreieck{14}{0}{1}
-\dreieck{14}{1}{4}
-\dreieck{14}{2}{1}
-\dreieck{14}{3}{4}
-\dreieck{14}{4}{1}
-\dreieck{14}{5}{2}
-\dreieck{14}{6}{3}
-\dreieck{14}{7}{2}
-\dreieck{14}{8}{3}
-\dreieck{14}{9}{2}
-\dreieck{14}{10}{1}
-\dreieck{14}{11}{4}
-\dreieck{14}{12}{1}
-\dreieck{14}{13}{4}
-\dreieck{14}{14}{1}
-
-\dreieck{15}{0}{1}
-\dreieck{15}{5}{3}
-\dreieck{15}{10}{3}
-\dreieck{15}{15}{1}
-
-\dreieck{16}{0}{1}
-\dreieck{16}{1}{1}
-\dreieck{16}{5}{3}
-\dreieck{16}{6}{3}
-\dreieck{16}{10}{3}
-\dreieck{16}{11}{3}
-\dreieck{16}{15}{1}
-\dreieck{16}{16}{3}
-
-\dreieck{17}{0}{1}
-\dreieck{17}{1}{2}
-\dreieck{17}{2}{1}
-\dreieck{17}{5}{3}
-\dreieck{17}{6}{1}
-\dreieck{17}{7}{3}
-\dreieck{17}{10}{3}
-\dreieck{17}{11}{1}
-\dreieck{17}{12}{3}
-\dreieck{17}{15}{1}
-\dreieck{17}{16}{2}
-\dreieck{17}{17}{1}
-
-\dreieck{18}{0}{1}
-\dreieck{18}{1}{3}
-\dreieck{18}{2}{3}
-\dreieck{18}{3}{1}
-\dreieck{18}{5}{3}
-\dreieck{18}{6}{4}
-\dreieck{18}{7}{4}
-\dreieck{18}{8}{3}
-\dreieck{18}{10}{3}
-\dreieck{18}{11}{4}
-\dreieck{18}{12}{4}
-\dreieck{18}{13}{3}
-\dreieck{18}{15}{1}
-\dreieck{18}{16}{3}
-\dreieck{18}{17}{3}
-\dreieck{18}{18}{1}
-
-\dreieck{19}{0}{1}
-\dreieck{19}{1}{4}
-\dreieck{19}{2}{1}
-\dreieck{19}{3}{4}
-\dreieck{19}{4}{1}
-\dreieck{19}{5}{3}
-\dreieck{19}{6}{2}
-\dreieck{19}{7}{3}
-\dreieck{19}{8}{2}
-\dreieck{19}{9}{3}
-\dreieck{19}{10}{3}
-\dreieck{19}{11}{2}
-\dreieck{19}{12}{3}
-\dreieck{19}{13}{2}
-\dreieck{19}{14}{3}
-\dreieck{19}{15}{1}
-\dreieck{19}{16}{4}
-\dreieck{19}{17}{1}
-\dreieck{19}{18}{4}
-\dreieck{19}{19}{1}
-
-\dreieck{20}{0}{1}
-\dreieck{20}{5}{4}
-\dreieck{20}{10}{1}
-\dreieck{20}{15}{4}
-\dreieck{20}{20}{1}
-
-\dreieck{21}{0}{1}
-\dreieck{21}{1}{1}
-\dreieck{21}{5}{4}
-\dreieck{21}{6}{4}
-\dreieck{21}{10}{1}
-\dreieck{21}{11}{1}
-\dreieck{21}{15}{4}
-\dreieck{21}{16}{4}
-\dreieck{21}{20}{1}
-\dreieck{21}{21}{1}
-
-\dreieck{22}{0}{1}
-\dreieck{22}{1}{2}
-\dreieck{22}{2}{1}
-\dreieck{22}{5}{4}
-\dreieck{22}{6}{3}
-\dreieck{22}{7}{4}
-\dreieck{22}{10}{1}
-\dreieck{22}{11}{2}
-\dreieck{22}{12}{1}
-\dreieck{22}{15}{4}
-\dreieck{22}{16}{3}
-\dreieck{22}{17}{4}
-\dreieck{22}{20}{1}
-\dreieck{22}{21}{2}
-\dreieck{22}{22}{1}
-
-\dreieck{23}{0}{1}
-\dreieck{23}{1}{3}
-\dreieck{23}{2}{3}
-\dreieck{23}{3}{1}
-\dreieck{23}{5}{4}
-\dreieck{23}{6}{2}
-\dreieck{23}{7}{2}
-\dreieck{23}{8}{4}
-\dreieck{23}{10}{1}
-\dreieck{23}{11}{3}
-\dreieck{23}{12}{3}
-\dreieck{23}{13}{1}
-\dreieck{23}{15}{4}
-\dreieck{23}{16}{2}
-\dreieck{23}{17}{2}
-\dreieck{23}{18}{4}
-\dreieck{23}{20}{1}
-\dreieck{23}{21}{3}
-\dreieck{23}{22}{3}
-\dreieck{23}{23}{1}
-
-\dreieck{24}{0}{1}
-\dreieck{24}{1}{4}
-\dreieck{24}{2}{1}
-\dreieck{24}{3}{4}
-\dreieck{24}{4}{1}
-\dreieck{24}{5}{4}
-\dreieck{24}{6}{1}
-\dreieck{24}{7}{4}
-\dreieck{24}{8}{1}
-\dreieck{24}{9}{4}
-\dreieck{24}{10}{1}
-\dreieck{24}{11}{4}
-\dreieck{24}{12}{1}
-\dreieck{24}{13}{4}
-\dreieck{24}{14}{1}
-\dreieck{24}{15}{4}
-\dreieck{24}{16}{1}
-\dreieck{24}{17}{4}
-\dreieck{24}{18}{1}
-\dreieck{24}{19}{4}
-\dreieck{24}{20}{1}
-\dreieck{24}{21}{4}
-\dreieck{24}{22}{1}
-\dreieck{24}{23}{4}
-\dreieck{24}{24}{1}
-
-\dreieck{25}{0}{1}
-\dreieck{25}{25}{1}
-
-\dreieck{26}{0}{1}
-\dreieck{26}{1}{1}
-\dreieck{26}{25}{1}
-\dreieck{26}{26}{1}
-
-\dreieck{27}{0}{1}
-\dreieck{27}{1}{2}
-\dreieck{27}{2}{1}
-\dreieck{27}{25}{1}
-\dreieck{27}{26}{2}
-\dreieck{27}{27}{1}
-
-\dreieck{28}{0}{1}
-\dreieck{28}{1}{3}
-\dreieck{28}{2}{3}
-\dreieck{28}{3}{1}
-\dreieck{28}{25}{1}
-\dreieck{28}{26}{3}
-\dreieck{28}{27}{3}
-\dreieck{28}{28}{1}
-
-\dreieck{29}{0}{1}
-\dreieck{29}{1}{4}
-\dreieck{29}{2}{1}
-\dreieck{29}{3}{4}
-\dreieck{29}{4}{1}
-\dreieck{29}{25}{1}
-\dreieck{29}{26}{4}
-\dreieck{29}{27}{1}
-\dreieck{29}{28}{4}
-\dreieck{29}{29}{1}
-
-\dreieck{30}{0}{1}
-\dreieck{30}{5}{1}
-\dreieck{30}{25}{1}
-\dreieck{30}{30}{1}
-
-\dreieck{31}{0}{1}
-\dreieck{31}{1}{1}
-\dreieck{31}{5}{1}
-\dreieck{31}{6}{1}
-\dreieck{31}{25}{1}
-\dreieck{31}{26}{1}
-\dreieck{31}{30}{1}
-\dreieck{31}{31}{1}
-
-\dreieck{32}{0}{1}
-\dreieck{32}{1}{2}
-\dreieck{32}{2}{1}
-\dreieck{32}{5}{1}
-\dreieck{32}{6}{2}
-\dreieck{32}{7}{1}
-\dreieck{32}{25}{1}
-\dreieck{32}{26}{2}
-\dreieck{32}{27}{1}
-\dreieck{32}{30}{1}
-\dreieck{32}{31}{2}
-\dreieck{32}{32}{1}
-
-\dreieck{33}{0}{1}
-\dreieck{33}{1}{3}
-\dreieck{33}{2}{3}
-\dreieck{33}{3}{1}
-\dreieck{33}{5}{1}
-\dreieck{33}{6}{3}
-\dreieck{33}{7}{3}
-\dreieck{33}{8}{1}
-\dreieck{33}{25}{1}
-\dreieck{33}{26}{3}
-\dreieck{33}{27}{3}
-\dreieck{33}{28}{1}
-\dreieck{33}{30}{1}
-\dreieck{33}{31}{3}
-\dreieck{33}{32}{3}
-\dreieck{33}{33}{1}
-
-\dreieck{34}{0}{1}
-\dreieck{34}{1}{4}
-\dreieck{34}{2}{1}
-\dreieck{34}{3}{4}
-\dreieck{34}{4}{1}
-\dreieck{34}{5}{1}
-\dreieck{34}{6}{4}
-\dreieck{34}{7}{1}
-\dreieck{34}{8}{4}
-\dreieck{34}{9}{1}
-\dreieck{34}{25}{1}
-\dreieck{34}{26}{4}
-\dreieck{34}{27}{1}
-\dreieck{34}{28}{4}
-\dreieck{34}{29}{1}
-\dreieck{34}{30}{1}
-\dreieck{34}{31}{4}
-\dreieck{34}{32}{1}
-\dreieck{34}{33}{4}
-\dreieck{34}{34}{1}
-
-\dreieck{35}{0}{1}
-\dreieck{35}{5}{2}
-\dreieck{35}{10}{1}
-\dreieck{35}{25}{1}
-\dreieck{35}{30}{2}
-\dreieck{35}{35}{1}
-
-\dreieck{36}{0}{1}
-\dreieck{36}{1}{1}
-\dreieck{36}{5}{2}
-\dreieck{36}{6}{2}
-\dreieck{36}{10}{1}
-\dreieck{36}{11}{1}
-\dreieck{36}{25}{1}
-\dreieck{36}{26}{1}
-\dreieck{36}{30}{2}
-\dreieck{36}{31}{2}
-\dreieck{36}{35}{1}
-\dreieck{36}{36}{1}
-
-\def\etikett#1#2#3{
- \node at ({\xs*(-#1+2*#2)},{-\ys*(#1+0.5)}) {$#3$};
-}
-
-\etikett{0}{-2}{n=0}
-\etikett{5}{-2}{n=5}
-\etikett{25}{-2}{n=25}
-
-\def\exponent#1#2#3{
- \node at ({\xs*(-#1+2*#2)},{-\ys*(#1+0.5)}) [rotate=60] {$#3$};
-}
-
-\exponent{-2}{0}{k=0}
-\exponent{3}{5}{k=5}
-\exponent{23}{25}{k=25}
-
-\end{tikzpicture}
-\end{document}
-
+%
+% binomial2.tex -- Parität der Binomialkoeffizienten
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{farbe0}{rgb}{1,1,1}
+\input{farben.tex}
+
+\def\s{0.37}
+\pgfmathparse{\s*sqrt(3)/2}
+\xdef\ys{\pgfmathresult}
+\pgfmathparse{\s/2}
+\xdef\xs{\pgfmathresult}
+
+%
+% #1 = n
+% #2 = k
+%
+\def\dreieck#1#2#3{
+ \fill[color=farbe#3] ({\xs*(-#1+2*#2)},{-\ys*#1})
+ -- ({\xs*(-#1+2*#2-1)},{-\ys*(#1+1)})
+ -- ({\xs*(-#1+2*#2+1)},{-\ys*(#1+1)}) -- cycle;
+ \node[color=white] at ( ({\xs*(-#1+2*#2)},{-\ys*(#1+0.5)-0.03}) {$\scriptstyle #3$};
+}
+
+\definecolor{gelb}{rgb}{1,0.8,0.2}
+\def\zeile#1{
+ \fill[color=gelb]
+ ({\xs*(-#1)},{-\ys*#1})
+ -- ({\xs*(-#1-1)},{-\ys*(#1+1)})
+ -- ({\xs*(#1+1)},{-\ys*(#1+1)})
+ -- ({\xs*(#1)},{-\ys*#1}) -- cycle;
+}
+
+\zeile{5}
+\zeile{25}
+
+\dreieck{0}{0}{1}
+
+\dreieck{1}{0}{1}
+\dreieck{1}{1}{1}
+
+\dreieck{2}{0}{1}
+\dreieck{2}{1}{2}
+\dreieck{2}{2}{1}
+
+\dreieck{3}{0}{1}
+\dreieck{3}{1}{3}
+\dreieck{3}{2}{3}
+\dreieck{3}{3}{1}
+
+\dreieck{4}{0}{1}
+\dreieck{4}{1}{4}
+\dreieck{4}{2}{1}
+\dreieck{4}{3}{4}
+\dreieck{4}{4}{1}
+
+\dreieck{5}{0}{1}
+\dreieck{5}{5}{1}
+
+\dreieck{6}{0}{1}
+\dreieck{6}{1}{1}
+\dreieck{6}{5}{1}
+\dreieck{6}{6}{1}
+
+\dreieck{7}{0}{1}
+\dreieck{7}{1}{2}
+\dreieck{7}{2}{1}
+\dreieck{7}{5}{1}
+\dreieck{7}{6}{2}
+\dreieck{7}{7}{1}
+
+\dreieck{8}{0}{1}
+\dreieck{8}{1}{3}
+\dreieck{8}{2}{3}
+\dreieck{8}{3}{1}
+\dreieck{8}{5}{1}
+\dreieck{8}{6}{3}
+\dreieck{8}{7}{3}
+\dreieck{8}{8}{1}
+
+\dreieck{9}{0}{1}
+\dreieck{9}{1}{4}
+\dreieck{9}{2}{1}
+\dreieck{9}{3}{4}
+\dreieck{9}{4}{1}
+\dreieck{9}{5}{1}
+\dreieck{9}{6}{4}
+\dreieck{9}{7}{1}
+\dreieck{9}{8}{4}
+\dreieck{9}{9}{1}
+
+\dreieck{10}{0}{1}
+\dreieck{10}{5}{2}
+\dreieck{10}{10}{1}
+
+\dreieck{11}{0}{1}
+\dreieck{11}{1}{1}
+\dreieck{11}{5}{2}
+\dreieck{11}{6}{2}
+\dreieck{11}{10}{1}
+\dreieck{11}{11}{1}
+
+\dreieck{12}{0}{1}
+\dreieck{12}{1}{2}
+\dreieck{12}{2}{1}
+\dreieck{12}{5}{2}
+\dreieck{12}{6}{4}
+\dreieck{12}{7}{2}
+\dreieck{12}{10}{1}
+\dreieck{12}{11}{2}
+\dreieck{12}{12}{1}
+
+\dreieck{13}{0}{1}
+\dreieck{13}{1}{3}
+\dreieck{13}{2}{3}
+\dreieck{13}{3}{1}
+\dreieck{13}{5}{2}
+\dreieck{13}{6}{1}
+\dreieck{13}{7}{1}
+\dreieck{13}{8}{2}
+\dreieck{13}{10}{1}
+\dreieck{13}{11}{3}
+\dreieck{13}{12}{3}
+\dreieck{13}{13}{1}
+
+\dreieck{14}{0}{1}
+\dreieck{14}{1}{4}
+\dreieck{14}{2}{1}
+\dreieck{14}{3}{4}
+\dreieck{14}{4}{1}
+\dreieck{14}{5}{2}
+\dreieck{14}{6}{3}
+\dreieck{14}{7}{2}
+\dreieck{14}{8}{3}
+\dreieck{14}{9}{2}
+\dreieck{14}{10}{1}
+\dreieck{14}{11}{4}
+\dreieck{14}{12}{1}
+\dreieck{14}{13}{4}
+\dreieck{14}{14}{1}
+
+\dreieck{15}{0}{1}
+\dreieck{15}{5}{3}
+\dreieck{15}{10}{3}
+\dreieck{15}{15}{1}
+
+\dreieck{16}{0}{1}
+\dreieck{16}{1}{1}
+\dreieck{16}{5}{3}
+\dreieck{16}{6}{3}
+\dreieck{16}{10}{3}
+\dreieck{16}{11}{3}
+\dreieck{16}{15}{1}
+\dreieck{16}{16}{3}
+
+\dreieck{17}{0}{1}
+\dreieck{17}{1}{2}
+\dreieck{17}{2}{1}
+\dreieck{17}{5}{3}
+\dreieck{17}{6}{1}
+\dreieck{17}{7}{3}
+\dreieck{17}{10}{3}
+\dreieck{17}{11}{1}
+\dreieck{17}{12}{3}
+\dreieck{17}{15}{1}
+\dreieck{17}{16}{2}
+\dreieck{17}{17}{1}
+
+\dreieck{18}{0}{1}
+\dreieck{18}{1}{3}
+\dreieck{18}{2}{3}
+\dreieck{18}{3}{1}
+\dreieck{18}{5}{3}
+\dreieck{18}{6}{4}
+\dreieck{18}{7}{4}
+\dreieck{18}{8}{3}
+\dreieck{18}{10}{3}
+\dreieck{18}{11}{4}
+\dreieck{18}{12}{4}
+\dreieck{18}{13}{3}
+\dreieck{18}{15}{1}
+\dreieck{18}{16}{3}
+\dreieck{18}{17}{3}
+\dreieck{18}{18}{1}
+
+\dreieck{19}{0}{1}
+\dreieck{19}{1}{4}
+\dreieck{19}{2}{1}
+\dreieck{19}{3}{4}
+\dreieck{19}{4}{1}
+\dreieck{19}{5}{3}
+\dreieck{19}{6}{2}
+\dreieck{19}{7}{3}
+\dreieck{19}{8}{2}
+\dreieck{19}{9}{3}
+\dreieck{19}{10}{3}
+\dreieck{19}{11}{2}
+\dreieck{19}{12}{3}
+\dreieck{19}{13}{2}
+\dreieck{19}{14}{3}
+\dreieck{19}{15}{1}
+\dreieck{19}{16}{4}
+\dreieck{19}{17}{1}
+\dreieck{19}{18}{4}
+\dreieck{19}{19}{1}
+
+\dreieck{20}{0}{1}
+\dreieck{20}{5}{4}
+\dreieck{20}{10}{1}
+\dreieck{20}{15}{4}
+\dreieck{20}{20}{1}
+
+\dreieck{21}{0}{1}
+\dreieck{21}{1}{1}
+\dreieck{21}{5}{4}
+\dreieck{21}{6}{4}
+\dreieck{21}{10}{1}
+\dreieck{21}{11}{1}
+\dreieck{21}{15}{4}
+\dreieck{21}{16}{4}
+\dreieck{21}{20}{1}
+\dreieck{21}{21}{1}
+
+\dreieck{22}{0}{1}
+\dreieck{22}{1}{2}
+\dreieck{22}{2}{1}
+\dreieck{22}{5}{4}
+\dreieck{22}{6}{3}
+\dreieck{22}{7}{4}
+\dreieck{22}{10}{1}
+\dreieck{22}{11}{2}
+\dreieck{22}{12}{1}
+\dreieck{22}{15}{4}
+\dreieck{22}{16}{3}
+\dreieck{22}{17}{4}
+\dreieck{22}{20}{1}
+\dreieck{22}{21}{2}
+\dreieck{22}{22}{1}
+
+\dreieck{23}{0}{1}
+\dreieck{23}{1}{3}
+\dreieck{23}{2}{3}
+\dreieck{23}{3}{1}
+\dreieck{23}{5}{4}
+\dreieck{23}{6}{2}
+\dreieck{23}{7}{2}
+\dreieck{23}{8}{4}
+\dreieck{23}{10}{1}
+\dreieck{23}{11}{3}
+\dreieck{23}{12}{3}
+\dreieck{23}{13}{1}
+\dreieck{23}{15}{4}
+\dreieck{23}{16}{2}
+\dreieck{23}{17}{2}
+\dreieck{23}{18}{4}
+\dreieck{23}{20}{1}
+\dreieck{23}{21}{3}
+\dreieck{23}{22}{3}
+\dreieck{23}{23}{1}
+
+\dreieck{24}{0}{1}
+\dreieck{24}{1}{4}
+\dreieck{24}{2}{1}
+\dreieck{24}{3}{4}
+\dreieck{24}{4}{1}
+\dreieck{24}{5}{4}
+\dreieck{24}{6}{1}
+\dreieck{24}{7}{4}
+\dreieck{24}{8}{1}
+\dreieck{24}{9}{4}
+\dreieck{24}{10}{1}
+\dreieck{24}{11}{4}
+\dreieck{24}{12}{1}
+\dreieck{24}{13}{4}
+\dreieck{24}{14}{1}
+\dreieck{24}{15}{4}
+\dreieck{24}{16}{1}
+\dreieck{24}{17}{4}
+\dreieck{24}{18}{1}
+\dreieck{24}{19}{4}
+\dreieck{24}{20}{1}
+\dreieck{24}{21}{4}
+\dreieck{24}{22}{1}
+\dreieck{24}{23}{4}
+\dreieck{24}{24}{1}
+
+\dreieck{25}{0}{1}
+\dreieck{25}{25}{1}
+
+\dreieck{26}{0}{1}
+\dreieck{26}{1}{1}
+\dreieck{26}{25}{1}
+\dreieck{26}{26}{1}
+
+\dreieck{27}{0}{1}
+\dreieck{27}{1}{2}
+\dreieck{27}{2}{1}
+\dreieck{27}{25}{1}
+\dreieck{27}{26}{2}
+\dreieck{27}{27}{1}
+
+\dreieck{28}{0}{1}
+\dreieck{28}{1}{3}
+\dreieck{28}{2}{3}
+\dreieck{28}{3}{1}
+\dreieck{28}{25}{1}
+\dreieck{28}{26}{3}
+\dreieck{28}{27}{3}
+\dreieck{28}{28}{1}
+
+\dreieck{29}{0}{1}
+\dreieck{29}{1}{4}
+\dreieck{29}{2}{1}
+\dreieck{29}{3}{4}
+\dreieck{29}{4}{1}
+\dreieck{29}{25}{1}
+\dreieck{29}{26}{4}
+\dreieck{29}{27}{1}
+\dreieck{29}{28}{4}
+\dreieck{29}{29}{1}
+
+\dreieck{30}{0}{1}
+\dreieck{30}{5}{1}
+\dreieck{30}{25}{1}
+\dreieck{30}{30}{1}
+
+\dreieck{31}{0}{1}
+\dreieck{31}{1}{1}
+\dreieck{31}{5}{1}
+\dreieck{31}{6}{1}
+\dreieck{31}{25}{1}
+\dreieck{31}{26}{1}
+\dreieck{31}{30}{1}
+\dreieck{31}{31}{1}
+
+\dreieck{32}{0}{1}
+\dreieck{32}{1}{2}
+\dreieck{32}{2}{1}
+\dreieck{32}{5}{1}
+\dreieck{32}{6}{2}
+\dreieck{32}{7}{1}
+\dreieck{32}{25}{1}
+\dreieck{32}{26}{2}
+\dreieck{32}{27}{1}
+\dreieck{32}{30}{1}
+\dreieck{32}{31}{2}
+\dreieck{32}{32}{1}
+
+\dreieck{33}{0}{1}
+\dreieck{33}{1}{3}
+\dreieck{33}{2}{3}
+\dreieck{33}{3}{1}
+\dreieck{33}{5}{1}
+\dreieck{33}{6}{3}
+\dreieck{33}{7}{3}
+\dreieck{33}{8}{1}
+\dreieck{33}{25}{1}
+\dreieck{33}{26}{3}
+\dreieck{33}{27}{3}
+\dreieck{33}{28}{1}
+\dreieck{33}{30}{1}
+\dreieck{33}{31}{3}
+\dreieck{33}{32}{3}
+\dreieck{33}{33}{1}
+
+\dreieck{34}{0}{1}
+\dreieck{34}{1}{4}
+\dreieck{34}{2}{1}
+\dreieck{34}{3}{4}
+\dreieck{34}{4}{1}
+\dreieck{34}{5}{1}
+\dreieck{34}{6}{4}
+\dreieck{34}{7}{1}
+\dreieck{34}{8}{4}
+\dreieck{34}{9}{1}
+\dreieck{34}{25}{1}
+\dreieck{34}{26}{4}
+\dreieck{34}{27}{1}
+\dreieck{34}{28}{4}
+\dreieck{34}{29}{1}
+\dreieck{34}{30}{1}
+\dreieck{34}{31}{4}
+\dreieck{34}{32}{1}
+\dreieck{34}{33}{4}
+\dreieck{34}{34}{1}
+
+\dreieck{35}{0}{1}
+\dreieck{35}{5}{2}
+\dreieck{35}{10}{1}
+\dreieck{35}{25}{1}
+\dreieck{35}{30}{2}
+\dreieck{35}{35}{1}
+
+\dreieck{36}{0}{1}
+\dreieck{36}{1}{1}
+\dreieck{36}{5}{2}
+\dreieck{36}{6}{2}
+\dreieck{36}{10}{1}
+\dreieck{36}{11}{1}
+\dreieck{36}{25}{1}
+\dreieck{36}{26}{1}
+\dreieck{36}{30}{2}
+\dreieck{36}{31}{2}
+\dreieck{36}{35}{1}
+\dreieck{36}{36}{1}
+
+\def\etikett#1#2#3{
+ \node at ({\xs*(-#1+2*#2)},{-\ys*(#1+0.5)}) {$#3$};
+}
+
+\etikett{0}{-2}{n=0}
+\etikett{5}{-2}{n=5}
+\etikett{25}{-2}{n=25}
+
+\def\exponent#1#2#3{
+ \node at ({\xs*(-#1+2*#2)},{-\ys*(#1+0.5)}) [rotate=60] {$#3$};
+}
+
+\exponent{-2}{0}{k=0}
+\exponent{3}{5}{k=5}
+\exponent{23}{25}{k=25}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/40-eigenwerte/chapter.tex b/buch/chapters/40-eigenwerte/chapter.tex
index 34c2444..24ea57d 100644
--- a/buch/chapters/40-eigenwerte/chapter.tex
+++ b/buch/chapters/40-eigenwerte/chapter.tex
@@ -1,50 +1,51 @@
-%
-% chapter.tex -- Kapitel über Eigenwerte und Eigenvektoren
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\chapter{Eigenwerte und Eigenvektoren
-\label{buch:chapter:eigenwerte-und-eigenvektoren}}
-\lhead{Eigenwerte und Eigenvektoren}
-\rhead{}
-Die algebraischen Eigenschaften einer Matrix $A$ sind eng mit der
-Frage nach linearen Beziehungen unter den Potenzen von $A^k$ verbunden.
-Im Allgemeinen ist die Berechnung dieser Potenzen eher unübersichtlich,
-es sei denn, die Matrix hat eine spezielle Form.
-Die Potenzen einer Diagonalmatrix erhält man, indem man die Diagonalelemente
-potenziert.
-Auch für Dreiecksmatrizen ist mindestens die Berechnung der Diagonalelemente
-von $A^k$ einfach.
-Die Theorie der Eigenwerte und Eigenvektoren ermöglicht, Matrizen in
-eine solche besonders einfache Form zu bringen.
-
-In Abschnitt~\ref{buch:section:grundlagen} werden die grundlegenden
-Definitionen der Eigenwerttheorie in Erinnerung gerufen.
-Damit kann dann in Abschnitt~\ref{buch:section:normalformen}
-gezeigt werden, wie Matrizen in besonders einfache Form gebracht
-werden können.
-Die Eigenwerte bestimmen auch die Eigenschaften von numerischen
-Algorithmen, wie in den Abschnitten~\ref{buch:section:spektralradius}
-und \ref{buch:section:numerisch} dargestellt wird.
-Für viele Funktionen kann man auch den Wert $f(A)$ berechnen, unter
-geeigneten Voraussetzungen an den Spektralradius.
-Dies wird in Abschnitt~\ref{buch:section:spektraltheorie} beschrieben.
-
-
-\input{chapters/40-eigenwerte/grundlagen.tex}
-\input{chapters/40-eigenwerte/normalformen.tex}
-\input{chapters/40-eigenwerte/spektralradius.tex}
-\input{chapters/40-eigenwerte/spektraltheorie.tex}
-%\input{chapters/40-eigenwerte/numerisch.tex}
-
-\section*{Übungsaufgaben}
-\rhead{Übungsaufgaben}
-\aufgabetoplevel{chapters/40-eigenwerte/uebungsaufgaben}
-\begin{uebungsaufgaben}
-\uebungsaufgabe{4001}
-\uebungsaufgabe{4002}
-\uebungsaufgabe{4003}
-\uebungsaufgabe{4004}
-\uebungsaufgabe{4005}
-\end{uebungsaufgaben}
-
+%
+% chapter.tex -- Kapitel über Eigenwerte und Eigenvektoren
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\chapter{Eigenwerte und Eigenvektoren
+\label{buch:chapter:eigenwerte-und-eigenvektoren}}
+\lhead{Eigenwerte und Eigenvektoren}
+\rhead{}
+Die algebraischen Eigenschaften einer Matrix $A$ sind eng mit der
+Frage nach linearen Beziehungen unter den Potenzen von $A^k$ verbunden.
+Im Allgemeinen ist die Berechnung dieser Potenzen eher unübersichtlich,
+es sei denn, die Matrix hat eine spezielle Form.
+Die Potenzen einer Diagonalmatrix erhält man, indem man die Diagonalelemente
+potenziert.
+Auch für Dreiecksmatrizen ist mindestens die Berechnung der Diagonalelemente
+von $A^k$ einfach.
+Die Theorie der Eigenwerte und Eigenvektoren ermöglicht, Matrizen in
+eine solche besonders einfache Form zu bringen.
+
+In Abschnitt~\ref{buch:section:grundlagen} werden die grundlegenden
+Definitionen der Eigenwerttheorie in Erinnerung gerufen.
+Damit kann dann in Abschnitt~\ref{buch:section:normalformen}
+gezeigt werden, wie Matrizen in besonders einfache Form gebracht
+werden können.
+Die Eigenwerte bestimmen auch die Eigenschaften von numerischen
+Algorithmen, wie in den Abschnitten~\ref{buch:section:spektralradius}
+und \ref{buch:section:numerisch} dargestellt wird.
+Für viele Funktionen kann man auch den Wert $f(A)$ berechnen, unter
+geeigneten Voraussetzungen an den Spektralradius.
+Dies wird in Abschnitt~\ref{buch:section:spektraltheorie} beschrieben.
+
+
+\input{chapters/40-eigenwerte/grundlagen.tex}
+\input{chapters/40-eigenwerte/normalformen.tex}
+\input{chapters/40-eigenwerte/spektralradius.tex}
+\input{chapters/40-eigenwerte/spektraltheorie.tex}
+%\input{chapters/40-eigenwerte/numerisch.tex}
+
+\section*{Übungsaufgaben}
+\rhead{Übungsaufgaben}
+\aufgabetoplevel{chapters/40-eigenwerte/uebungsaufgaben}
+\begin{uebungsaufgaben}
+\uebungsaufgabe{4001}
+\uebungsaufgabe{4002}
+\uebungsaufgabe{4003}
+\uebungsaufgabe{4004}
+\uebungsaufgabe{4005}
+\uebungsaufgabe{4006}
+\end{uebungsaufgaben}
+
diff --git a/buch/chapters/40-eigenwerte/images/Makefile b/buch/chapters/40-eigenwerte/images/Makefile
index 4d882f0..54b36d5 100644
--- a/buch/chapters/40-eigenwerte/images/Makefile
+++ b/buch/chapters/40-eigenwerte/images/Makefile
@@ -1,44 +1,44 @@
-#
-# Makefile
-#
-# (c) 2020 Prof Dr Andreas Müller, Hochschule Rappersil
-#
-all: sp.pdf nilpotent.pdf kernbild.pdf kombiniert.pdf \
- wurzelapprox.pdf wurzel.pdf dimjk.pdf jknilp.pdf \
- normalform.pdf minmax.pdf
-
-sp.pdf: sp.tex sppaths.tex
- pdflatex sp.tex
-
-sppaths.tex: spbeispiel.m
- octave spbeispiel.m
-
-nilpotent.pdf: nilpotent.tex
- pdflatex nilpotent.tex
-
-kernbild.pdf: kernbild.tex bild2.jpg kern2.jpg
- pdflatex kernbild.tex
-
-kombiniert.pdf: kombiniert.tex kombiniert.jpg
- pdflatex kombiniert.tex
-
-wurzelapprox.pdf: wurzelapprox.tex wa.tex
- pdflatex wurzelapprox.tex
-
-wa.tex: wa.m
- octave wa.m
-
-wurzel.pdf: wurzel.tex
- pdflatex wurzel.tex
-
-dimjk.pdf: dimjk.tex
- pdflatex dimjk.tex
-
-jknilp.pdf: jknilp.tex
- pdflatex jknilp.tex
-
-normalform.pdf: normalform.tex
- pdflatex normalform.tex
-
-minmax.pdf: minmax.tex
- pdflatex minmax.tex
+#
+# Makefile
+#
+# (c) 2020 Prof Dr Andreas Müller, Hochschule Rappersil
+#
+all: sp.pdf nilpotent.pdf kernbild.pdf kombiniert.pdf \
+ wurzelapprox.pdf wurzel.pdf dimjk.pdf jknilp.pdf \
+ normalform.pdf minmax.pdf
+
+sp.pdf: sp.tex sppaths.tex
+ pdflatex sp.tex
+
+sppaths.tex: spbeispiel.m
+ octave spbeispiel.m
+
+nilpotent.pdf: nilpotent.tex
+ pdflatex nilpotent.tex
+
+kernbild.pdf: kernbild.tex bild2.jpg kern2.jpg
+ pdflatex kernbild.tex
+
+kombiniert.pdf: kombiniert.tex kombiniert.jpg
+ pdflatex kombiniert.tex
+
+wurzelapprox.pdf: wurzelapprox.tex wa.tex
+ pdflatex wurzelapprox.tex
+
+wa.tex: wa.m
+ octave wa.m
+
+wurzel.pdf: wurzel.tex
+ pdflatex wurzel.tex
+
+dimjk.pdf: dimjk.tex
+ pdflatex dimjk.tex
+
+jknilp.pdf: jknilp.tex
+ pdflatex jknilp.tex
+
+normalform.pdf: normalform.tex
+ pdflatex normalform.tex
+
+minmax.pdf: minmax.tex
+ pdflatex minmax.tex
diff --git a/buch/chapters/40-eigenwerte/images/minmax.tex b/buch/chapters/40-eigenwerte/images/minmax.tex
index cf81834..f661d5b 100644
--- a/buch/chapters/40-eigenwerte/images/minmax.tex
+++ b/buch/chapters/40-eigenwerte/images/minmax.tex
@@ -1,134 +1,134 @@
-%
-% minmax.tex -- minimum und maximum
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{1}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-
-\definecolor{darkgreen}{rgb}{0,0.5,0}
-
-\def\mittellinie{
- plot[domain=0:6.2832,samples=400]
- ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159))})
-}
-
-\begin{scope}
- \fill[color=darkgreen!20]
- plot[domain=0:6.2832,samples=360]
- ({\x},{sin(180*\x/3.1415)})
- --
- plot[domain=6.2832:0,samples=360]
- ({\x},{cos(180*\x/3.1415)})
- -- cycle;
- \foreach \x in {0.5,1,...,6}{
- \draw[color=darkgreen]
- ({\x},{sin(180*\x/3.1415)})
- --
- ({\x},{cos(180*\x/3.1415)});
- }
-
- \node[color=darkgreen] at (2,-0.8) [left] {$|f(x)-g(x)|$};
- \draw[color=darkgreen,line width=0.3pt] (2,-0.8) -- (2.5,-0.7);
-
- \draw[color=blue,line width=1.4pt] plot[domain=0:6.29,samples=360]
- ({\x},{sin(180*\x/3.1415)});
- \draw[color=red,line width=1.4pt] plot[domain=0:6.29,samples=360]
- ({\x},{cos(180*\x/3.1415)});
- \draw[color=purple!50,line width=1.4pt] \mittellinie;
- \node[color=purple!50] at (6.2832,0.5) [right] {$\frac12(f(x)+g(x))$};
-
- \draw[->] (-0.1,0) -- (6.5,0) coordinate[label={below:$x$}];
- \draw[->] (0,-1.1) -- (0,1.3) coordinate[label={right:$y$}];
-
-
- \xdef\x{2}
- \node[color=blue] at (\x,{sin(180*\x/3.1415)}) [above right] {$f(x)$};
- \pgfmathparse{2.5*3.14159-\x}
- \xdef\x{\pgfmathresult}
- \node[color=red] at (\x,{cos(180*\x/3.1415)}) [above left] {$g(x)$};
-
-\end{scope}
-
-\draw[->,line width=4pt,color=gray!40] ({3.1415-1},-1.3) -- ({3.1415-2.3},-3);
-\draw[->,line width=4pt,color=gray!40] ({3.1415+1},-1.3) -- ({3.1415+2.3},-3);
-
-\node at ({3.1415-1.75},-2.15) [left] {$\frac12(f(x)+g(x))+\frac12|f(x)-g(x)|$};
-\node at ({3.1415+1.75},-2.15) [right] {$\frac12(f(x)+g(x))-\frac12|f(x)-g(x)|$};
-
-\def\s{(-0.1)}
-
-\begin{scope}[xshift=-3.4cm,yshift=-4.6cm]
- \fill[color=darkgreen!20]
- \mittellinie
- --
- plot[domain=6.2832:0,samples=400]
- ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)+abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))})
- -- cycle;
- \foreach \x in {0.5,1,...,6}{
- \draw[color=darkgreen]
- ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)+abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))})
- --
- ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159))});
- }
- \draw[color=darkgreen,line width=1.4pt]
- plot[domain=6.2832:0,samples=400]
- ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)+abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))});
-
- \node[color=darkgreen] at (2,-0.3) [left] {$|f(x)-g(x)|$};
- \draw[color=darkgreen,line width=0.3pt] (2,-0.3) -- (2.5,0.2);
-
- \draw[color=purple!50,line width=1.4pt] \mittellinie;
- \pgfmathparse{0.75*3.1415+\s}
- \xdef\x{\pgfmathresult}
- \node[color=darkgreen] at (\x,{sin(180*\x/3.1415)}) [above right]
- {$\max(f(x),g(x))$};
- \node[color=purple!50] at ({1.25*3.1415},-0.7) [below]
- {$\frac12(f(x)+g(x))$};
- \draw[->] (-0.1,0) -- (6.5,0) coordinate[label={$x$}];
- \draw[->] (0,-1.1) -- (0,1.3) coordinate[label={right:$y$}];
-\end{scope}
-
-
-\begin{scope}[xshift=+3.4cm,yshift=-4.6cm]
- \fill[color=darkgreen!20]
- \mittellinie
- --
- plot[domain=6.2832:0,samples=400]
- ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)-abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))})
- -- cycle;
- \foreach \x in {0.5,1,...,6}{
- \draw[color=darkgreen]
- ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)-abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))})
- --
- ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159))});
- }
- \draw[color=darkgreen,line width=1.4pt]
- plot[domain=6.2832:0,samples=400]
- ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)-abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))});
-
- \node[color=darkgreen] at (3,0.3) [right] {$|f(x)-g(x)|$};
- \draw[color=darkgreen,line width=0.3pt] (3,0.3) -- (2.5,-0.4);
-
- \draw[color=purple!50,line width=1.4pt] \mittellinie;
- \pgfmathparse{0.75*3.1415-\s}
- \xdef\x{\pgfmathresult}
- \node[color=darkgreen] at (\x,{cos(180*\x/3.1415)}) [below left]
- {$\min(f(x),g(x))$};
- \node[color=purple!50] at ({0.25*3.1415},0.7) [above right]
- {$\frac12(f(x)+g(x))$};
- \draw[->] (-0.1,0) -- (6.5,0) coordinate[label={$x$}];
- \draw[->] (0,-1.1) -- (0,1.3) coordinate[label={right:$y$}];
-\end{scope}
-
-\end{tikzpicture}
-\end{document}
-
+%
+% minmax.tex -- minimum und maximum
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.5,0}
+
+\def\mittellinie{
+ plot[domain=0:6.2832,samples=400]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159))})
+}
+
+\begin{scope}
+ \fill[color=darkgreen!20]
+ plot[domain=0:6.2832,samples=360]
+ ({\x},{sin(180*\x/3.1415)})
+ --
+ plot[domain=6.2832:0,samples=360]
+ ({\x},{cos(180*\x/3.1415)})
+ -- cycle;
+ \foreach \x in {0.5,1,...,6}{
+ \draw[color=darkgreen]
+ ({\x},{sin(180*\x/3.1415)})
+ --
+ ({\x},{cos(180*\x/3.1415)});
+ }
+
+ \node[color=darkgreen] at (2,-0.8) [left] {$|f(x)-g(x)|$};
+ \draw[color=darkgreen,line width=0.3pt] (2,-0.8) -- (2.5,-0.7);
+
+ \draw[color=blue,line width=1.4pt] plot[domain=0:6.29,samples=360]
+ ({\x},{sin(180*\x/3.1415)});
+ \draw[color=red,line width=1.4pt] plot[domain=0:6.29,samples=360]
+ ({\x},{cos(180*\x/3.1415)});
+ \draw[color=purple!50,line width=1.4pt] \mittellinie;
+ \node[color=purple!50] at (6.2832,0.5) [right] {$\frac12(f(x)+g(x))$};
+
+ \draw[->] (-0.1,0) -- (6.5,0) coordinate[label={below:$x$}];
+ \draw[->] (0,-1.1) -- (0,1.3) coordinate[label={right:$y$}];
+
+
+ \xdef\x{2}
+ \node[color=blue] at (\x,{sin(180*\x/3.1415)}) [above right] {$f(x)$};
+ \pgfmathparse{2.5*3.14159-\x}
+ \xdef\x{\pgfmathresult}
+ \node[color=red] at (\x,{cos(180*\x/3.1415)}) [above left] {$g(x)$};
+
+\end{scope}
+
+\draw[->,line width=4pt,color=gray!40] ({3.1415-1},-1.3) -- ({3.1415-2.3},-3);
+\draw[->,line width=4pt,color=gray!40] ({3.1415+1},-1.3) -- ({3.1415+2.3},-3);
+
+\node at ({3.1415-1.75},-2.15) [left] {$\frac12(f(x)+g(x))+\frac12|f(x)-g(x)|$};
+\node at ({3.1415+1.75},-2.15) [right] {$\frac12(f(x)+g(x))-\frac12|f(x)-g(x)|$};
+
+\def\s{(-0.1)}
+
+\begin{scope}[xshift=-3.4cm,yshift=-4.6cm]
+ \fill[color=darkgreen!20]
+ \mittellinie
+ --
+ plot[domain=6.2832:0,samples=400]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)+abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))})
+ -- cycle;
+ \foreach \x in {0.5,1,...,6}{
+ \draw[color=darkgreen]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)+abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))})
+ --
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159))});
+ }
+ \draw[color=darkgreen,line width=1.4pt]
+ plot[domain=6.2832:0,samples=400]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)+abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))});
+
+ \node[color=darkgreen] at (2,-0.3) [left] {$|f(x)-g(x)|$};
+ \draw[color=darkgreen,line width=0.3pt] (2,-0.3) -- (2.5,0.2);
+
+ \draw[color=purple!50,line width=1.4pt] \mittellinie;
+ \pgfmathparse{0.75*3.1415+\s}
+ \xdef\x{\pgfmathresult}
+ \node[color=darkgreen] at (\x,{sin(180*\x/3.1415)}) [above right]
+ {$\max(f(x),g(x))$};
+ \node[color=purple!50] at ({1.25*3.1415},-0.7) [below]
+ {$\frac12(f(x)+g(x))$};
+ \draw[->] (-0.1,0) -- (6.5,0) coordinate[label={$x$}];
+ \draw[->] (0,-1.1) -- (0,1.3) coordinate[label={right:$y$}];
+\end{scope}
+
+
+\begin{scope}[xshift=+3.4cm,yshift=-4.6cm]
+ \fill[color=darkgreen!20]
+ \mittellinie
+ --
+ plot[domain=6.2832:0,samples=400]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)-abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))})
+ -- cycle;
+ \foreach \x in {0.5,1,...,6}{
+ \draw[color=darkgreen]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)-abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))})
+ --
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159))});
+ }
+ \draw[color=darkgreen,line width=1.4pt]
+ plot[domain=6.2832:0,samples=400]
+ ({\x},{0.5*(sin(180*\x/3.14159)+cos(180*\x/3.14159)-abs(sin(180*\x/3.14159)-cos(180*\x/3.14159)))});
+
+ \node[color=darkgreen] at (3,0.3) [right] {$|f(x)-g(x)|$};
+ \draw[color=darkgreen,line width=0.3pt] (3,0.3) -- (2.5,-0.4);
+
+ \draw[color=purple!50,line width=1.4pt] \mittellinie;
+ \pgfmathparse{0.75*3.1415-\s}
+ \xdef\x{\pgfmathresult}
+ \node[color=darkgreen] at (\x,{cos(180*\x/3.1415)}) [below left]
+ {$\min(f(x),g(x))$};
+ \node[color=purple!50] at ({0.25*3.1415},0.7) [above right]
+ {$\frac12(f(x)+g(x))$};
+ \draw[->] (-0.1,0) -- (6.5,0) coordinate[label={$x$}];
+ \draw[->] (0,-1.1) -- (0,1.3) coordinate[label={right:$y$}];
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/40-eigenwerte/normalformen.tex b/buch/chapters/40-eigenwerte/normalformen.tex
index c21c403..9169f65 100644
--- a/buch/chapters/40-eigenwerte/normalformen.tex
+++ b/buch/chapters/40-eigenwerte/normalformen.tex
@@ -330,9 +330,259 @@ Es ist das Polynom geringsten Grades über $\Bbbk'$, welches $m(A)=0$ erfüllt.
\subsection{Reelle Normalform
\label{buch:subsection:reelle-normalform}}
+Wenn eine reelle Matrix $A$ komplexe Eigenwerte hat, ist die Jordansche
+Normalform zwar möglich, aber die zugehörigen Basisvektoren werden ebenfalls
+komplexe Komponenten haben.
+Für eine rein reelle Rechnung ist dies nachteilig, da der Speicheraufwand
+dadurch verdoppelt und der Rechenaufwand für Multiplikationen vervierfacht
+wird.
-\subsection{Obere Hessenberg-Form
-\label{buch:subsection:obere-hessenberg-form}}
+Die nicht reellen Eigenwerte von $A$ treten in konjugiert komplexen Paaren
+$\lambda_i$ und $\overline{\lambda}_i$ auf.
+Wir betrachten im Folgenden nur ein einziges Paar $\lambda=a+ib$ und
+$\overline{\lambda}=a-ib$ von konjugiert komplexen Eigenwerten mit
+nur je einem einzigen $n\times n$-Jordan-Block $J$ und $\overline{J}$.
+Ist $\mathcal{B}=\{b_1,\dots,b_n\}$ die Basis für den Jordan-Block $J$,
+dann kann man die Vektoren
+$\overline{\mathcal{B}}=\{\overline{b}_1,\dots,\overline{b}_n\}$ als Basis für
+$\overline{J}$ verwenden.
+Die vereinigte Basis
+$\mathcal{C} = \mathcal{B}\cup\overline{\mathcal{B}}
+= \{b_1,\dots,b_n,\overline{b}_1,\dots,\overline{b}_n\}$
+erzeugen einen $2n$-dimensionalen Vektorraum,
+der direkte Summe der beiden von $\mathcal{B}$ und $\overline{\mathcal{B}}$
+erzeugen Vektorräume $V=\langle\mathcal{B}\rangle$ und
+$\overline{V}=\langle\overline{\mathcal{B}}\rangle$ ist.
+Es ist also
+\[
+U=\langle \mathcal{C}\rangle
+=
+V\oplus \overline{V}.
+\]
+Wir bezeichnen die lineare Abbildung mit den Jordan-Blöcken
+$J$ und $\overline{J}$ wieder mit $A$.
+
+Auf dem Vektorraum $U$ hat die lineare Abbildung in der Basis
+$\mathcal{C}$ die Matrix
+\[
+A=
+\begin{pmatrix}
+J&0\\
+0&\overline{J}
+\end{pmatrix}
+=
+\begin{pmatrix}
+\lambda& 1 & & & &&&&&\\
+ &\lambda& 1 & & &&&&&\\
+ & &\lambda&\ddots& &&&&&\\
+ & & &\ddots& 1 &&&&&\\
+ & & & &\lambda&&&&&\\
+&&&& &\overline{\lambda}&1&& & \\
+&&&& &&\overline{\lambda}&1& & \\
+&&&& &&&\overline{\lambda} &\dots& \\
+&&&& &&& &\dots&1\\
+&&&& &&& &&\overline{\lambda}\\
+\end{pmatrix}.
+\]
+
+Die Jordan-Normalform bedeutet, dass
+\[
+\begin{aligned}
+Ab_1&=\lambda b_1 &
+ A\overline{b}_1 &= \overline{\lambda} \overline{b}_1 \\
+Ab_2&=\lambda b_2 + b_1 &
+ A\overline{b}_2 &= \overline{\lambda} \overline{b}_2 +\overline{b_1}\\
+Ab_3&=\lambda b_3 + b_2 &
+ A\overline{b}_3 &= \overline{\lambda} \overline{b}_3 +\overline{b_2}\\
+ &\;\vdots &
+ &\;\vdots \\
+Ab_n&=\lambda b_n + b_{n-1} &
+ A\overline{b}_n &= \overline{\lambda} \overline{b}_n +\overline{b_{n-1}}
+\end{aligned}
+\]
+Für die Linearkombinationen
+\begin{equation}
+\begin{aligned}
+c_i &= \frac{b_i+\overline{b}_i}{\sqrt{2}},
+&
+d_i &= \frac{b_i-\overline{b}_i}{i\sqrt{2}}
+\end{aligned}
+\label{buch:eigenwerte:eqn:reellenormalformumrechnung}
+\end{equation}
+folgt dann für $k>1$
+\begin{align*}
+Ac_k
+&=
+\frac{Ab_k+A\overline{b}_k}{2}
+&
+Ad_k
+&=
+\frac{Ab_k-A\overline{b}_k}{2i}
+\\
+&=
+\frac1{\sqrt{2}}(\lambda b_k + b_{k-1}
++ \overline{\lambda}\overline{b}_k + \overline{b}_{k-1})
+&
+&=
+\frac1{i\sqrt{2}}(\lambda b_k + b_{k-1}
+- \overline{\lambda}\overline{b}_k - \overline{b}_{k-1})
+\\
+&=
+\frac1{\sqrt{2}}(\alpha b_k + i\beta b_k + \alpha \overline{b}_k -i\beta \overline{b}_k)
++
+c_{k-1}
+&
+&=
+\frac1{i\sqrt{2}}(
+\alpha b_k + i\beta b_k - \alpha \overline{b}_k +i\beta \overline{b}_k)
++
+d_{k-1}
+\\
+&=
+\alpha
+\frac{b_k+\overline{b}_k}{\sqrt{2}}
++
+i \beta \frac{b_k-\overline{b}_k}{\sqrt{2}}
++
+c_{k-1}
+&
+&=
+\alpha
+\frac{b_k-\overline{b}_k}{i\sqrt{2}}
++
+i \beta \frac{b_k+\overline{b}_k}{i\sqrt{2}}
++
+d_{k-1}
+\\
+&= \alpha c_k -\beta d_k
++
+c_{k-1}
+&
+&= \alpha d_k + \beta c_k
++
+d_{k-1}.
+\end{align*}
+Für $k=1$ fallen die Terme $c_{k-1}$ und $d_{k-1}$ weg.
+In der Basis $\mathcal{D}=\{c_1,d_1,\dots,c_n,d_n\}$ hat die Matrix
+also die {\em reelle Normalform}
+\begin{equation}
+\def\temp#1{\multicolumn{1}{|c}{#1\mathstrut}}
+\def\semp#1{\multicolumn{1}{c|}{#1\mathstrut}}
+A_{\text{reell}}
+=
+\left(
+\begin{array}{cccccccccccc}
+\cline{1-4}
+\temp{\alpha}& \beta&\temp{ 1}& 0&\temp{} & & & & & &&\\
+\temp{-\beta}&\alpha&\temp{ 0}& 1&\temp{} & & & & & &&\\
+\cline{1-6}
+ & &\temp{\alpha}& \beta&\temp{ 1}& 0&\temp{} & & & &&\\
+ & &\temp{-\beta}&\alpha&\temp{ 0}& 1&\temp{} & & & &&\\
+\cline{3-6}
+ & & & &\temp{\alpha}& \beta&\temp{} & & & &&\\
+ & & & &\temp{-\beta}&\alpha&\temp{} & & & &&\\
+\cline{5-8}
+ & & & & & &\temp{\phantom{0}}&\phantom{0}&\temp{ }& &&\\
+ & & & & & &\temp{\phantom{0}}&\phantom{0}&\temp{ }& &&\\
+\cline{7-12}
+ & & & & & & & &\temp{\alpha}& \beta&\temp{ 1}&\semp{ 0}\\
+ & & & & & & & &\temp{-\beta}&\alpha&\temp{ 0}&\semp{ 1}\\
+\cline{9-12}
+ & & & & & & & & & &\temp{\alpha}&\semp{ \beta}\\
+ & & & & & & & & & &\temp{-\beta}&\semp{\alpha}\\
+\cline{11-12}
+\end{array}\right).
+\label{buch:eigenwerte:eqn:reellenormalform}
+\end{equation}
+
+Wir bestimmen noch die Transformationsmatrix, die $A$ in die reelle
+Normalform bringt.
+Dazu beachten wir, dass die Vektoren $c_k$ und $d_k$ in der Basis
+$\mathcal{B}$ nur in den Komponenten $k$ und $n+k$ von $0$ verschiedene
+Koordinaten haben, nämlich
+\[
+c_k
+=
+\frac1{\sqrt{2}}
+\left(
+\begin{array}{c}
+\vdots\\ 1 \\ \vdots\\\hline \vdots\\ 1\\\vdots
+\end{array}\right)
+\qquad\text{und}\qquad
+d_k
+=
+\frac1{i\sqrt{2}}
+\left(\begin{array}{c}
+\vdots\\ 1 \\ \vdots\\\hline\vdots\\-1\\\vdots
+\end{array}\right)
+=
+\frac1{\sqrt{2}}
+\left(\begin{array}{c}
+\vdots\\-i \\ \vdots\\\hline \vdots\\ i\\\vdots
+\end{array}\right)
+\]
+gemäss \eqref{buch:eigenwerte:eqn:reellenormalformumrechnung}.
+Die Umrechnung der Koordinaten von der Basis $\mathcal{B}$ in die Basis
+$\mathcal{D}$
+wird daher durch die Matrix
+\[
+S
+=
+\frac{1}{\sqrt{2}}
+\left(\begin{array}{cccccccccc}
+1&-i& & & & & & & & \\
+ & &1&-i& & & & & & \\
+ & & & &1&-i& & & & \\
+ & & & & & &\dots&\dots& & \\
+ & & & & & & & &1&-i\\
+\hline
+1& i& & & & & & & & \\
+ & &1& i& & & & & & \\
+ & & & &1& i& & & & \\
+ & & & & & &\dots&\dots& & \\
+ & & & & & & & &1& i\\
+\end{array}\right)
+\]
+vermittelt.
+Der Nenner $\sqrt{2}$ wurde so gewählt, dass die
+Zeilenvektoren der Matrix $S$ als komplexe Vektoren orthonormiert sind,
+die Matrix $S$ ist daher unitär und hat die Inverse
+\[
+S^{-1}
+=
+S^*
+=
+\frac{1}{\sqrt{2}}
+\left(\begin{array}{ccccc|ccccc}
+ 1& & & & & 1& & & & \\
+ i& & & & &-i& & & & \\
+ & 1& & & & & 1& & & \\
+ & i& & & & &-i& & & \\
+ & & 1& & & & & 1& & \\
+ & & i& & & & &-i& & \\
+ & & &\dots& & & & &\dots& \\
+ & & &\dots& & & & &\dots& \\
+ & & & & 1& & & & & 1\\
+ & & & & i& & & & &-i\\
+\end{array}\right).
+\]
+Insbesondere folgt jetzt
+\[
+A
+=
+S^{-1}A_{\text{reell}}S
+=
+S^*A_{\text{reell}}S
+\qquad\text{und}\qquad
+A_{\text{reell}}
+=
+SAS^{-1}
+=
+SAS^*.
+\]
+
+%\subsection{Obere Hessenberg-Form
+%\label{buch:subsection:obere-hessenberg-form}}
diff --git a/buch/chapters/40-eigenwerte/spektraltheorie.tex b/buch/chapters/40-eigenwerte/spektraltheorie.tex
index 367a4c9..466b99e 100644
--- a/buch/chapters/40-eigenwerte/spektraltheorie.tex
+++ b/buch/chapters/40-eigenwerte/spektraltheorie.tex
@@ -1,802 +1,802 @@
-%
-% spektraltheorie.tex
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Spektraltheorie
-\label{buch:section:spektraltheorie}}
-Aufgabe der Spektraltheorie ist, Bedingungen an eine Matrix $A$ und eine
-Funktion $f(z)$ zu finden, unter denen es möglich ist, $f(A)$ auf
-konsistente Art und Weise zu definieren.
-Weiter müssen Methoden entwickelt werden, mit denen $f(A)$ berechnet
-werden kann.
-Für ein Polynom $p(z)$ ist $p(A)$ durch einsetzen definiert.
-Für Funktionen, die sich nicht durch ein Polynom darstellen lassen,
-muss eine Approximation der Funktion durch Polynome verwendet werden.
-Sei also $p_n(z)$ eine Folge von Polynomen, die als Approximation der
-Funktion $f(z)$ verwendet werden soll.
-Das Ziel ist, $f(A)$ als den Grenzwert der Matrixfolge $p_n(A)$
-zu definieren.
-
-Zunächst ist nicht klar, wie eine solche Folge gewählt werden muss.
-Es muss eine Teilmenge von $K\subset\mathbb{C}$ spezifiziert werden,
-auf der die Funktionenfolge $p_n(z)$ konvergieren muss,
-damit auch die Konvergenz der Matrizenfolge $p_n(A)$ garantiert ist.
-Auch die Art der Konvergenz von $p_n(z)$ auf der Menge $K$ ist noch
-unklar.
-Da der Abstand zweier Matrizen $A$ und $B$ in der Operatornorm
-mit der grössten Abweichung $\|(A-B)v\|$ für Einheitsvektoren $v$
-gemessen wird, ist es einigermassen plausibel, dass
-die grösse Abweichung zwischen zwei Polynomen $|p(z) - q(z)|$ auf
-der Menge $K$ kleine sein muss, wenn $\|p(A)-q(A)\|$ klein
-sein soll.
-Da die Differenz $p(z)-q(z)$ für beliebige Polynome, die sich nicht
-nur um eine Konstante unterscheiden, mit $z$ über alle Grenzen wächst,
-muss $K$ beschränkt sein.
-Gesucht ist also eine kompakte Menge $K\subset\mathbb{C}$ und eine
-Folge $p_n(z)$ von Polynomen, die auf $K$ gleichmässig gegen $f(z)$
-konvergieren.
-Die Wahl von $K$ muss sicherstellen, dass für jede gleichmässig
-konvergente Folge von Polynomen $p_n(z)$ auch die Matrizenfolge
-$p_n(A)$ konvergiert.
-
-Es wird sich zeigen, dass die Menge $K$ das Spektrum von $A$ ist,
-also eine endliche Teilmenge von $\mathbb{C}$.
-Jede Funktion kann auf so einer Menge durch Polynome exakt wiedergegeben
-werden.
-Es gibt insbesondere Folgen von Polynomen, die eingeschränkt
-auf das Spektrum gleich sind, also $p_n(z)=p_m(z)$ für alle $z\in K$,
-die aber ausserhalb des Spektrums alle verschieden sind.
-Als Beispiel kann die Matrix
-\[
-N=\begin{pmatrix}0&1\\0&0\end{pmatrix}
-\]
-herangezogen werden.
-Ihr Spektrum ist $\operatorname{Sp}(N)=\{0\}\subset\mathbb{C}$.
-Zwei Polynome stimmen genau dann auf $\operatorname{Sp}(N)$ überein,
-wenn der konstante Koeffizient gleich ist.
-Die Polynome $p(z)=z$ und $q(z)=z^2$ stimmen daher auf dem Spektrum
-überein.
-Für die Matrizen gilt aber $p(N)=N$ und $q(N)=N^2=0$, die Matrizen
-stimmen also nicht überein.
-Es braucht also zusätzliche Bedingungen an die Matrix $A$, die
-sicherstellen, dass $p(A)=0$ ist, wann immer $p(z)=0$ für
-$z\in\operatorname{Sp}(A)$ gilt.
-
-In diesem Abschnitt sollen diese Fragen untersucht werden.
-In Abschnitt~\ref{buch:subsection:approximation-durch-polynome}
-wird gezeigt, wie sich Funktionen durch Polynome approximieren
-lassen, woraus sich dann Approximationen von $f(A)$ für diagonalisierbare
-Matrizen mit reellen Eigenwerten ergeben.
-
-Der Satz von Stone-Weierstrass, der in
-Abschnitt~\ref{buch:subsetion:stone-weierstrass} dargestellt wird,
-ist ein sehr allgemeines Approximationsresultat, welches nicht nur
-zeigt, dass die Approximation unter sehr natürlichen Voraussetzungen
-beliebig genau möglich ist, sondern uns im komplexen Fall auch
-weitere Einsicht dafür geben kann, welche Voraussetzungen an eine
-komplexe Matrix gestellt werden müssen, damit man damit rechnen kann,
-dass die Approximation zu einer konsistenten Definition von $f(A)$ führt.
-
-%
-% Approximation
-%
-\subsection{Approximation durch Polynome
-\label{buch:subsection:approximation-durch-polynome}}
-Die der Berechnung von $f(A)$ für eine beleibige stetige Funktion,
-die sich nicht als Potenzreihe schreiben lässt, verwendet Approximationen
-von Polynomen.
-Die numerische Mathematik hat eine grosse Menge von solchen
-Approximationsverfahren entwickelt, wovon zwei kurz (ohne Beweise)
-vorgestellt werden sollen.
-
-\subsubsection{Das Legendre-Interpolationspolynom}
-Zu vorgegebenen, verschiedenen Zahlen $z_i\in\mathbb{C}$, $0\le i\le n$,
-die auch die {\em Stützstellen} genannt werden,
-gibt es immer ein Polynom vom Grade $n$, welches in den $z_i$ vorgegebene
-Werte $f(z_i)$ annimmt.
-Ein solches Polynom lässt sich im Prinzip mit Hilfe eines linearen
-Gleichungssystems finden, man kann aber auch direkt eine Lösung
-konstruieren.
-Dazu bildet man erst die Polynome
-\begin{align*}
-l(z) &= (z-z_0)(z-z_1)\dots (z-z_n) \qquad\text{und}
-\\
-l_i(z) &= (z-z_0)\dots \widehat{(z-z_i)}\dots (z-z_n).
-\end{align*}
-Darin bedeutet der Hut, dass dieser Term weggelassen werden soll.
-Für $z\ne z_i$ ist $l_i(z)=l(z)/(z-z_i)$.
-Die Polynome
-\[
-k_i(z)
-=
-\frac{l_i(z)}{l_i(z_i)}
-=
-\frac{(z-z_0)\dots \widehat{(z-z_i)}\dots (z-z_n)}{(z_i-z_0)\dots \widehat{(z_i-z_i)}\dots (z_i-z_n)}
-\]
-haben die Eigenschaft
-$k_i(z_j)=\delta_{ij}$.
-Damit lässt sich jetzt ein Polynom
-\[
-p(z) = \sum_{j=0}^n f(z_j) \frac{l_j(z)}{l_j(z_j)}
-\]
-vom Grad $n$ konstruieren, welches die Werte
-\[
-p(z_i)
-=
-\sum_{j=0}^n f(z_j) \frac{l_j(z_i)}{l_j(z_j)}
-=
-\sum_{j=0}^n f(z_j) \delta_{ij}
-=
-f_(z_i)
-\]
-annimmt.
-Das Polynom $p(z)$ heisst das {\em Legendre-Interpolationspolynom}.
-
-Zwar lässt sich also für eine endliche Menge von komplexen Zahlen immer
-ein Polynom finden, welches vorgeschriebene Wert in allen diesen Zahlen
-annimmt, doch ist die Stabilität für grosse $n$ eher beschränkt.
-
-
-\subsubsection{Gleichmassige Approximation mit Bernstein-Polynomen}
-Das Legendre-Interpolationspolynom nimmt in den Stützstellen die
-verlangten Werte an, aber ausserhalb der Stützstellen ist nicht
-garantiert, dass man eine gute Approximation einer Funktion $f(z)$
-erhält.
-
-Für die Approximation auf einem reellen Interval $[a,b]$ hat
-Sergei Natanowitsch Bernstein ein
-Dazu werden zuerst die reellen Bernsteinpolynome vom Grad $n$
-durch
-\begin{align*}
-B_{i,n}(t) = \binom{n}{i} t^i(1-t)^{n-i}.
-\end{align*}
-definiert.
-Als Approximationspolynom für die auf dem Interval
-$[0,1]$ definierte, stetige Funktion $f(t)$ kann man dann
-\[
-B_n(f)(t)
-=
-\sum_{i=0}^n B_{i,n}(t) f\biggl(\frac{i}{n}\biggr)
-\]
-verwenden.
-Die Polynome $B_n(f)(t)$ konvergieren gleichmässig auf $[0,1]$
-gegen die Funktion $f(t)$.
-Über die Konvergenz ausserhalb des reellen Intervalls wird nichts
-ausgesagt.
-Die Approximation mit Bernstein-Polynomen ist daher nur sinnvoll,
-wenn man weiss, dass die Eigenwerte der Matrix reell sind, was im
-wesentlichen auf diagonalisierbare Matrizen führt.
-
-Für ein anderes Interval $[a,b]$ kann man ein Approximationspolynom
-erhalten, indem man die affine Transformation
-$s\mapsto (s-a)/(b-a)$
-von $[a,b]$ auf $[0,1]$
-verwendet.
-
-%
-% Der Satz von Stone-Weierstrass
-%
-\subsection{Der Satz von Stone-Weierstrasss
-\label{buch:subsetion:stone-weierstrass}}
-Der Satz von Stone-Weierstrass behandelt im Gegensatz zu den in
-Abschnitt~\ref{buch:subsection:approximation-durch-polynome}
-besprochenen Approximationsmethoden nicht nur Funktionen von
-reellen Variablen durch Polynome.
-Vielmehr kann das Definitionsgebiet irgend eine abgeschlossene
-und beschränkte Teilmenge eines reellen oder komplexen Vektorraumes
-sein und die Funktionen können Polynome aber auch viel allgemeinere
-Funktionen verwendet werden, wie zum Beispiel die Funktionen
-$x\mapsto \cos nx$ und $x\mapsto \sin nx$ definiert auf dem
-Intervall $[0,2\pi]$.
-In diesem Fall liefert der Satz von Stone-Weierstrass die Aussage,
-dass sich jede stetige periodische Funktion gleichmässig durch
-trigonometrische Polynome approximieren lässt.
-
-Die Aussage des Satz von Stone-Weierstrass über reelle Funktionen
-lässt sich nicht auf komplexe Funktionen erweitern.
-Von besonderem Interesse ist jedoch, dass der Beweis des Satz
-zeigt, warum solche Aussagen für komplexe Funktionen nicht mehr
-zutreffen.
-Im Falle der Approximation von komplexen Funktionen $f(z)$ durch Polynome
-zwecks Definition von $f(A)$ werden sich daraus Bedingungen an die
-Matrix ableiten lassen, die eine konsistente Definition überhaupt
-erst ermöglichen werden.
-
-\subsubsection{Punkte trennen}
-Aus den konstanten Funktionen lassen sich durch algebraische
-Operationen nur weitere konstante Funktionen erzeugen.
-Die konstanten Funktionen sind also nur dann eine genügend
-reichhaltige Menge, wenn die Menge $K$ nur einen einzigen Punkt
-enthält.
-Damit sich Funktionen approximieren lassen, die in zwei Punkten
-verschiedene Werte haben, muss es auch unter den zur Approximation
-zur Verfügung stehenden Funktionen solche haben, deren Werte sich
-in diesen Punkten unterscheiden.
-Diese Bedingung wird in der folgenden Definition formalisiert.
-
-\begin{definition}
-Sei $K$ eine beliebige Menge und $A$ eine Menge von Funktionen
-$K\to \mathbb{C}$.
-Man sagt, $A$ {\em trennt die Punkte von $K$}, wenn es für jedes Paar
-\index{Punkte trennen}%
-von Punkten $x,y\in K$ eine Funktion $f\in A$ gibt derart, dass
-$f(x)\ne f(y)$.
-\end{definition}
-
-Man kann sich die Funktionen $f$, die gemäss dieser Definition die Punkte
-von $K$ trennen, als eine Art Koordinaten der Punkte in $K$ vorstellen.
-Die Punkte der Teilmenge $K\subset \mathbb{R}^n$ werden zum Beispiel
-von den Koordinatenfunktionen $x\mapsto x_i$ getrennt.
-Wir schreiben für die $i$-Koordinate daher auch als Funktion $x_i(x)=x_i$.
-Zwei verschiedene Punkte $x,y\in K$ unterscheiden sich in mindestens
-einer Koordinate.
-Für diese Koordinate sind dann die Werte der zugehörigen
-Koordinatenfunktion $x_i=x_i(x)\ne x_i(y)=y_i$ verschieden, die
-Funktionen $x_1(x)$ bis $x_n(x)$ trennen also die Punkte.
-
-\begin{beispiel}
-Wir betrachten einen Kreis in der Ebene, also die Menge
-\[
-S^1
-=
-\{(x_1,x_2)\;|\; x_1^2 + x_2^2=1\}
-\]
-$S^1$ ist eine abgeschlossene und beschränkte Menge in $\mathbb{R}^2$.
-Die Funktion $x\mapsto x_1$ trennt die Punkte nicht, denn zu jedem
-Punkt $(x_1,x_2)\in S^2$ gibt es den an der ersten Achse
-gespiegelten Punkt $\sigma(x)=(x_1,-x_2)$, dessen erste Koordinate
-den gleichen Wert hat.
-Ebenso trennt die Koordinatenfunktion $x\mapsto x_2$ die Punkte nicht.
-Die Menge $A=\{ x_1(x), x_2(x)\}$ bestehend aus den beiden
-Koordinatenfunktionen trennt dagegen die Punkte von $S^1$, da die Punkte
-sich immer in mindestens einem Punkt unterscheiden.
-
-Man könnte auch versuchen, den Kreis in Polarkoordinaten zu beschreiben.
-Die Funktion $\varphi(x)$, die jedem Punkt $x\in S^1$ den Polarwinkel
-zuordnet, trennt sicher die Punkte des Kreises.
-Zwei verschiedene Punkte auf dem Kreis haben verschieden Polarwinkel.
-Die Menge $\{\varphi\}$ trennt also die Punkte von $S^1$.
-Allerdings ist die Funktion nicht stetig, was zwar der Definition
-nicht widerspricht aber ein Hindernis für spätere Anwendungen ist.
-\end{beispiel}
-
-
-\subsubsection{Der Satz von Stone-Weierstrass für reelle Funktionen}
-Die Beispiele von Abschnitt~\ref{buch:subsection:approximation-durch-polynome}
-haben bezeigt, dass sich reellwertige Funktionen einer reellen
-Variable durch Polynome beliebig genau approximieren lassen.
-Es wurde sogar eine Methode vorgestellt, die eine auf einem Intervall
-gleichmässig konvergente Polynomefolge produziert.
-Die Variable $x\in[a,b]$ trennt natürlich die Punkte, die Algebra der
-Polynome in der Variablen $x$ enthält also sicher Funktionen, die in
-verschiedenen Punkten des Intervalls auch verschiedene Werte annehmen.
-Nicht ganz so selbstverständlich ist aber, dass sich daraus bereits
-ergibt, dass jede beliebige Funktion sich als Polynome in $x$
-approximieren lässt.
-Dies ist der Inhalt des folgenden Satzes von Stone-Weierstrass.
-
-\begin{figure}
-\centering
-\includegraphics{chapters/40-eigenwerte/images/wurzel.pdf}
-\caption{Konstruktion einer monoton wachsenden Approximationsfolge für
-$\sqrt{a}$
-\label{buch:eigenwerte:fig:wurzelverfahren}}
-\end{figure}
-
-\begin{figure}
-\centering
-\includegraphics[width=\textwidth]{chapters/40-eigenwerte/images/wurzelapprox.pdf}
-\caption{Monoton wachsende Approximation der Funktion $t\mapsto\sqrt{t}$ mit
-Polynomen $u_n(t)$ nach
-\eqref{buch:eigenwerte:eqn:wurzelapproximation}
-(links) und der Fehler der Approximation
-(rechts).
-\label{buch:eigenwerte:fig:wurzelapproximation}}
-\end{figure}
-
-\begin{satz}[Stone-Weierstrass]
-\label{buch:satz:stone-weierstrass}
-Enthält eine $\mathbb{R}$-Algebra $A$ von stetigen, rellen Funktionen
-auf einer kompakten Menge $K$ die konstanten Funktionen und trennt sie
-Punkte, d.~h.~für zwei verschiedene Punkte $x,y\in K$ gibt es
-immer eine Funktion $f\in A$ mit $f(x)\ne f(y)$, dann ist jede stetige,
-reelle Funktion auf $K$ gleichmässig approximierbar durch Funktionen
-in $A$.
-\end{satz}
-
-Für den Beweis des Satzes wird ein Hilfsresultat benötigt, welches wir
-zunächst ableiten.
-Es besagt, dass sich die Wurzelfunktion $t\mapsto\sqrt{t}$
-auf dem Interval $[0,1]$ gleichmässig
-von unten durch Polynome approximieren lässt, die in
-Abbildung~\ref{buch:eigenwerte:fig:wurzelapproximation} dargestellt
-sind.
-
-\begin{satz}
-Die rekursiv definierte Folge von Polynomen
-\begin{equation}
-u_{n+1}(t)
-=
-u_n(t) + \frac12(t-u_n(t)^2),
-\qquad
-u_0(t)=0
-\label{buch:eigenwerte:eqn:wurzelapproximation}
-\end{equation}
-ist monoton wachsend und approximiert die Wurzelfunktion $t\mapsto\sqrt{t}$
-gleichmässig auf dem Intervall $[0,1]$.
-\end{satz}
-
-\begin{figure}
-\centering
-\includegraphics{chapters/40-eigenwerte/images/minmax.pdf}
-\caption{Graphische Erklärung der
-Identitäten~\eqref{buch:eigenwerte:eqn:minmax} für
-$\max(f(x),g(x))$ und $\min(f(x),g(x))$.
-Die purpurrote Kurve stellt den Mittelwert von $f(x)$ und $g(x)$ dar,
-die vertikalen grünen Linien haben die Länge der Differenz $|f(x)-g(x)|$.
-Das Maximum erhält man, indem man den halben Betrag der Differenz zum
-Mittelwert hinzuaddiert, das Minimum erhält man durch Subtraktion
-der selben Grösse.
-\label{buch:eigenwerte:fig:minmax}}
-\end{figure}
-
-\begin{proof}[Beweis]
-Wer konstruieren zunächst das in
-Abbildung~\ref{buch:eigenwerte:fig:wurzelverfahren}
-visualierte Verfahren, mit dem für jede Zahl $a\in[0,1]$
-die Wurzel $\sqrt{a}$ berechnet werden kann.
-Sei $u < \sqrt{a}$ eine Approximation der Wurzel.
-Die Approximation ist der exakte Wert der Lösung, wenn $a-u^2=0$.
-In jedem anderen Fall muss $u$ um einen Betrag $d$ vergrössert werden.
-Natürlich muss immer noch $u+d<\sqrt{a}$ sein.
-Man kann die maximal zulässige Korrektur $d$ geometrisch abschätzen,
-wie dies in Abbildung~\ref{buch:eigenwerte:fig:wurzelverfahren}
-skizziert ist.
-Die maximale Steigung des Graphen der Funktion $u\mapsto u^2$ ist $2$,
-daher darf man $u$ maximal um die Hälfte der Differenz $a-u^2$ (grün)
-vergrössern, also $d=\frac12(a-u^2)$.
-Die Rekursionsformel
-\[
-u_{n+1} = u_n + d = u_n + \frac12(a-u_n^2)
-\]
-mit dem Startwert $u_0=0$ liefert daher eine
-Folge, die gegen $\sqrt{a}$ konvergiert.
-\end{proof}
-
-\begin{proof}[Beweis des Satzes von Stone-Weierstrass]
-Da $A$ eine Algebra ist, ist mit jeder Funktion $f\in A$ für jedes Polynome
-$p\in\mathbb{R}[X]$ auch $p(f)$ eine Funktion in $A$.
-\begin{enumerate}
-\item Schritt: Für jede Funktion $f\in A$ lässt sich auch $|f|$ durch
-Funktionen in $A$ beliebig genau durch eine monoton wachsende Folge
-von Funktionen approximieren.
-
-Da $A$ eine Algebra ist, ist $f^2\in A$.
-Sei ausserdem $m^2=\sup \{f(x)^2\;|\;x\in K\}$, so dass $f^2/m^2$ eine Funktion
-mit Werten im Intervall $[0,1]$ ist.
-Die Funktionen $f_n(x)=mu_n(f(x)^2/m^2)$ sind ebenfalls in $A$ und
-approximieren gleichmässig $\sqrt{f(x)^2}=|f(x)|$.
-\item Schritt: Für zwei Funktionen $f,g\in A$ gibt es eine monoton wachsende
-Folge, die $\max(f,g)$ gleichmässig beliebig genau approximiert
-und eine monoton fallende Folge, die $\min(f,g)$ gleichmässig beliebig
-genau approximiert.
-
-
-Diese Folgen können aus der Approximationsfolge für den Betrag einer
-Funktion und den Identitäten
-\begin{equation}
-\begin{aligned}
-\max(f,g) &= \frac12(f+g+|f-g|) \\
-\min(f,g) &= \frac12(f+g-|f-g|)
-\end{aligned}
-\label{buch:eigenwerte:eqn:minmax}
-\end{equation}
-gefunden werden, die in Abbildung~\ref{buch:eigenwerte:fig:minmax}
-graphisch erklärt werden.
-\item Schritt: Zu zwei beliebigen Punkten $x,y\in K$ und Werten
-$\alpha,\beta\in\mathbb{R}$ gibt es immer eine Funktion in $A$,
-die in den Punkten $x,y$ die vorgegebenen Werte $\alpha$ bzw.~$\beta$
-annimmt.
-Da $A$ die Punkte trennt, gibt es eine Funktion $f_0$ mit $f_0(x)\ne f_0(y)$.
-Dann ist die Funktion
-\[
-f(t)
-=
-\beta + \frac{f_0(t)-f_0(y)}{f_0(x)-f_0(y)}(\alpha-\beta)
-\]
-wohldefiniert und nimmt die verlangten Werte an.
-\item Schritt: Zu jeder stetigen Funktion $f\colon K\to\mathbb{R}$, jedem
-Punkt $x\in K$ und jedem $\varepsilon>0$ gibt es eine Funktion $g\in A$ derart,
-dass $g(x)=f(x)$ und $g(y) \le f(y)+\varepsilon$ für alle $y\in K$.
-
-Zu jedem $z\in K$ gibt es eine Funktion in $A$ mit
-$h_z(x)=f(x)$ und $h_z(z) \le f(z)+\frac12\varepsilon$.
-Wegen der Stetigkeit von $h_z$ gibt es eine Umgebung $V_z$ von $z$, in der
-immer noch gilt $h_z(y)\le f(y)+\varepsilon$ für $y\in V_z$.
-Wegen der Kompaktheit von $K$ kann man endlich viele Punkte $z_i$ wählen
-derart, dass die $V_{z_i}$ immer noch $K$ überdecken.
-Dann erfüllt die Funktion
-\(
-g(z) = \inf h_{z_i}
-\)
-die Bedingungen $g(x) = f(x)$ und für $z\in V_{z_i}$
-\[
-g(z) = \inf_{j} h_{z_j}(z) \le h_{z_i}(z) \le f(z)+\varepsilon.
-\]
-Ausserdem ist $g(z)$ nach dem zweiten Schritt beliebig genau durch
-Funktionen in $A$ approximierbar.
-\item Schritt: Jede stetige Funktion $f\colon K\to\mathbb{R}$ kann
-beliebig genau durch Funktionen in $A$ approximiert werden.
-Sei $\varepsilon > 0$.
-
-Nach dem vierten Schritt gibt es für jedes $y\in K$ eine Funktion $g_y$
-derart, dass $g_y(y)=f(y)$ und $g_y(x) \le f(x) + \varepsilon$ für
-$x\in K$.
-Da $g_y$ stetig ist, gilt ausserdem $g_y(x) \ge f(x) -\varepsilon$ in
-einer Umgebung $U_y$ von $y$.
-Da $K$ kompakt ist, kann man endlich viele $y_i$ derart, dass die $U_{y_i}$
-immer noch ganz $K$ überdecken.
-Die Funktion $g=\sup g_{y_i}$ erfüllt dann überall $g(x) \le f(x)+\varepsilon$,
-weil jede der Funktionen $g_y$ diese Ungleichung erfüllt.
-Ausserdem gilt für $x\in V_{x_j}$
-\[
-g(x) = \sup_i g_{x_i}(x) \ge g_{x_j}(x) \ge f(x)-\varepsilon.
-\]
-Somit ist
-\[
-|f(x)-g(x)| \le \varepsilon.
-\]
-Damit ist $f(x)$ beliebig nahe an der Funktion $g(x)$, die sich
-beliebig genau durch Funktionen aus $A$ approximieren lässt.
-\qedhere
-\end{enumerate}
-\end{proof}
-
-Im ersten Schritt des Beweises ist ganz entscheidend, dass man die
-Betragsfunktion konstruieren kann.
-Daraus leiten sich dann alle folgenden Konstruktionen ab.
-
-\subsubsection{Anwendung auf symmetrische und hermitesche Matrizen}
-Für symmetrische und hermitesche Matrizen $A$ ist bekannt, dass die
-Eigenwerte reell sind, also das Spektrum $\operatorname{A}\subset\mathbb{R}$
-ist.
-Für eine Funktion $\mathbb{R}\to \mathbb{R}$ lässt sich nach dem
-Satz~\ref{buch:satz:stone-weierstrass} immer eine Folge $p_n$ von
-approximierenden Polynomen in $x$ finden, die auf $\operatorname{Sp}(A)$
-gleichmässig konvergiert.
-Die Matrix $f(A)$ kann dann definiert werden also der Grenzwert
-\[
-f(A) = \lim_{n\to\infty} p_n(A).
-\]
-Da diese Matrizen auch diagonalisierbar sind, kann man eine Basis
-aus Eigenvektoren verwenden.
-Die Wirkung von $p_n(A)$ auf einem Eigenvektor $v$ zum Eigenwert $\lambda$
-ist
-\[
-p_n(A)v
-=
-(a_kA^k + a_{k-1}A^{k-1}+\dots +a_2A^2+a_1A+a_0I)v
-=
-(a_k\lambda^k + a_{k-1}\lambda^{k-1}+\dots + a_2\lambda^2 + a_1\lambda + a_0)v
-=
-p_n(\lambda)v.
-\]
-Im Grenzwert wirkt $f(A)$ daher durch Multiplikation eines Eigenvektors
-mit $f(\lambda)$, die Matrix $f(A)$ hat in der genannten Basis die
-Diagonalform
-\[
-A=\begin{pmatrix}
-\lambda_1& & & \\
- &\lambda_2& & \\
- & &\ddots& \\
- & & &\lambda_n
-\end{pmatrix}
-\qquad\Rightarrow\qquad
-f(A)=\begin{pmatrix}
-f(\lambda_1)& & & \\
- &f(\lambda_2)& & \\
- & &\ddots& \\
- & & &f(\lambda_n)
-\end{pmatrix}.
-\]
-
-\begin{satz}
-\label{buch:eigenwerte:satz:spektralsatz}
-Ist $A$ symmetrische oder selbstadjungiert Matrix und $f$ eine Funktion
-auf dem Spektrum $\operatorname{Sp}(A)$ von $A$.
-Dann gibt es genau eine Matrix $f(A)$, die Grenzwert jeder beliebigen
-Folge $p_n(A)$ für Polynomfolgen, die $\operatorname{Sp}(A)$ gleichmässig
-gegen $f$ konvergieren.
-\end{satz}
-
-\subsubsection{Unmöglichkeit der Approximation von $z\mapsto \overline{z}$
-in $\mathbb{C}[z]$}
-Der Satz~\ref{buch:satz:stone-weierstrass} von Stone-Weierstrass für
-reelle Funktionen gilt nicht für komplexe Funktionen.
-In diesem Abschnitt zeigen wir, dass sich die Funktion $z\mapsto\overline{z}$
-auf der Einheitskreisscheibe $K=\{z\in\mathbb{C}\;|\; |z|\le 1\}$ nicht
-gleichmässig durch Polynome $p(z)$ mit komplexen Koeffizienten approximieren
-lässt.
-
-Wäre eine solche Approximation möglich, dann könnte man $\overline{z}$
-auch durch eine Potenzreihe
-\[
-\overline{z}
-=
-\sum_{k=0}^\infty a_kz^k
-\]
-darstellen.
-Das Wegintegral beider Seiten über den Pfad $\gamma(t) = e^{it}$
-in der komplexen Ebene ist
-\begin{align*}
-\oint_\gamma z^k\,dz
-&=
-\int_0^{2\pi} e^{ikt} ie^{it}\,dt
-=
-i\int_0^{2\pi} e^{it(k+1)}\,dt
-=
-i\biggl[ \frac{1}{i(k+1)} e^{it(k+1)}\biggr]_0^{2\pi}
-=
-0
-\\
-\oint_\gamma
-\sum_{k=0}^\infty a_kz^k
-\,dz
-&=
-\sum_{k=0}^\infty a_k \oint_\gamma z^k\,dz
-=
-\sum_{k=0}^\infty a_k\cdot 0
-=
-0
-\\
-\oint_\gamma \overline{z}\,dz
-&=
-\int_0^{2\pi} e^{it} ie^{it}\,dt
-=
-i\int_0^{2\pi} \,dt = 2\pi i,
-\end{align*}
-dabei wurde $\overline{\gamma}(t)=e^{-it}$ verwendet.
-Insbesondere widersprechen sich die beiden Integrale.
-Die ursprüngliche Annahmen, $\overline{z}$ lasse sich durch Polynome
-gleichmässig approximieren, muss daher verworfen werden.
-
-\subsubsection{Der Satz von Stone-Weierstrass für komplexe Funktionen}
-Der Satz von Stone-Weierstrass kann nach dem vorangegangene Abschnitt
-also nicht gelten.
-Um den Beweis des Satzes~\ref{buch:satz:stone-weierstrass}
-auf komplexe Zahlen zu übertragen, muss im ersten Schritt ein Weg
-gefunden werden, den Betrag einer Funktion zu approximieren.
-
-Im reellen Fall geschah dies, indem zunächst eine Polynom-Approximation
-für die Quadratwurzel konstruiert wurde, die dann auf das Quadrat einer
-Funktion angewendet wurde.
-Der Betrag einer komplexen Zahl $z$ ist aber nicht allein aus $z$
-berechenbar, man braucht in irgend einer Form Zugang zu Real-
-und Imaginärteil.
-Zum Beispiel kann man Real- und Imaginärteil als
-$\Re z= \frac12(z+\overline{z})$ und $\Im z = \frac12(z-\overline{z})$
-bestimmen.
-Kenntnis von Real- und Imaginärteil ist als gleichbedeutend mit
-der Kenntnis der komplex Konjugierten $\overline{z}$.
-Der Betrag lässt sich daraus als $|z|^2 = z\overline{z}$ finden.
-Beide Beispiele zeigen, dass man den im Beweis benötigten Betrag
-nur dann bestimmen kann, wenn mit jeder Funktion aus $A$ auch die
-komplex konjugierte Funktion zur Verfügung steht.
-
-\begin{satz}[Stone-Weierstrass]
-Enthält eine $\mathbb{C}$-Algebra $A$ von stetigen, komplexwertigen
-Funktionen auf einer kompakten Menge $K$ die konstanten Funktionen,
-trennt sie Punkte und ist ausserdem mit jeder Funktion $f\in A$ auch
-die komplex konjugiert Funktion $\overline{f}\in A$,
-dann lässt sich jede stetige, komplexwertige Funktion
-auf $K$ gleichmässig durch Funktionen aus $A$ approximieren.
-\end{satz}
-
-Mit Hilfe der konjugiert komplexen Funktion lässt sich immer eine
-Approximation für die Betragsfunktion finden, so dass sich der
-Beweis des reellen Satzes von Stone-Weierstrass übertragen lässt.
-
-%
-% Normale Matrizen
-%
-\subsection{Normale Matrizen
-\label{buch:subsection:normale-matrizen}}
-Aus dem Satz von Stone-Weierstrass für komplexe Matrizen kann man
-jetzt einen Spektralsätze für eine etwas grössere Klasse von Matrizen
-ableiten, als im Satz~\ref{buch:eigenwerte:satz:spektralsatz}
-möglich war.
-Der Satz besagt, dass für eine beliebige Funktion $f$ auf dem Spektrum
-$\operatorname{Sp}(A)$ eine Folge von auf $\operatorname{Sp}(A)$
-gleichmässig konvergenten, approximierenden Polynomen
-$p_n(z,\overline{z})$ gefunden werden kann.
-Doch wie soll jetzt aus dieser Polynomfolge ein Kandidat von $f(A)$
-gefunden werden?
-
-Zunächst stellt sich die Frage, was für die Variable $\overline{z}$
-eingesetzt werden soll.
-$1\times 1$-Matrizen sind notwendigerweise diagonal, also muss
-man in diesem Fall die Matrix $\overline{A}$ für die Variable
-$\overline{z}$ eingesetzt werden.
-Dies erklärt aber noch nicht, wie für $n\times n$-Matrizen
-vorzugehen ist, wenn $n>1$ ist.
-
-Die Notwendigkeit, die Variable $\overline{z}$ hinzuzunehmen
-ergab sich aus der Anforderung, dass der Betrag aus $|z|^2=z\overline{z}$
-konstruiert werden können muss.
-Insbesondere muss beim Einsetzen eine Matrix entstehen, die nur
-positive Eigenwerte hat.
-Für eine beliebige komplexe $n\times n$-Matrix $A$ ist aber
-$A\overline{A}$ nicht notwendigerweise positiv, wie das Beispiel
-\[
-A
-=
-\begin{pmatrix}0&i\\i&0\end{pmatrix}
-\qquad
-\Rightarrow
-\qquad
-A\overline{A}
-=
-\begin{pmatrix}0&i\\-i&0\end{pmatrix}
-\begin{pmatrix}0&-i\\i&0\end{pmatrix}
-=
-\begin{pmatrix}
--1&0\\
- 0&-1
-\end{pmatrix}
-=
--I
-\]
-zeigt.
-Eine positive Matrix entsteht dagegen immer, wenn man statt
-$A$ die Adjungierte $A^*=\overline{A}^t$ verwendet.
-
-Die Substitution von $A$ für $z$ und $A^*$ für $\overline{z}$
-in einem Polynom $p(z,\overline{z})$ ist nicht unbedingt eindeutig.
-Schon das Polynom $p(z,\overline{z})=z\overline{z}$ kann man auch
-als $\overline{z}z$ schreiben.
-Damit die Substition eindeutig wird, muss man also fordern, dass
-$AA^* = A^*A$ ist.
-
-\begin{definition}
-Eine Matrix $A\in M_n(\mathbb{C})$ heisst {\em normal}, wenn $AA^*=A^*A$ gilt.
-\end{definition}
-
-\subsubsection{Beispiele normaler Matrizen}
-
-\begin{enumerate}
-\item
-Hermitesche und Antihermitesche Matrizen sind normal, denn solche
-Matrizen erfüllen $A^*=\pm A$ und damit
-\(
-AA^* = \pm A^2 = A^*A.
-\)
-\item
-Symmetrische und antisymmetrische Matrizen sind normal,
-denn aus $A=A^t$ folgt $A^*=\overline{A}^t$ und damit
-\begin{align*}
-AA^* &= A\overline{A}^t =
-\\
-A^*A &=
-\end{align*}
-\item
-Unitäre Matrizen $U$ sind normal, das $UU^*=I=U^*U$ gilt.
-\item
-Orthogonale Matrizen sind normal wegen $O(n) = U(n) \cap M_n(\mathbb{R})$.
-\end{enumerate}
-
-Jede Matrix lässt sich durch Wahl einer geeigneten Basis in Jordansche
-Normalform bringen.
-Allerdings sind Jordan-Blöcke keine normalen Matrizen, wie der folgende
-Satz zeigt.
-
-\begin{satz}
-Eine Dreiecksmatrix ist genau dann normal, wenn sie diagonal ist.
-\end{satz}
-
-\begin{proof}[Beweis]
-Sei $A$ eine obere Dreiecksmatrix, das Argument für eine untere Dreiecksmatrix
-funktioniert gleich.
-Wir berechnen ein Diagonalelement für beide Produkte $AA^*$ und $A^*A$.
-Dazu brauchen wir die Matrixelemente von $A$ und $A^*$.
-Bezeichnen wir die Matrixelemente von $A$ mit $a_{ij}$, dann hat $A^*$
-die Matrixelemente $(A^*)_{ij}=\overline{a}_{ji}$.
-Damit kann man die Diagonalelemente der Produkte als
-\begin{align*}
-(AA^*)_{ii}
-&=
-\sum_{j=1}^n a_{ij}\overline{a}_{ij}
-=
-\sum_{j=i}^n |a_{ij}|^2
-\\
-(A^*A)_{ii}
-&=
-\sum_{j=1}^n \overline{a}_{ji}a_{ji}
-=
-\sum_{j=1}^i |a_{ji}|^2
-\end{align*}
-ausrechnen.
-Der obere Ausdruck ist die quadrierte Länge der Zeile $i$ der Matrix $A$,
-der untere ist die quadrierte Länge der Spalte $i$.
-Da die Matrix eine obere Dreiecksmatrix ist, hat die erste Spalte höchstens
-ein einziges von $0$ verschiedenes Element.
-Daher kann auch die erste Zeile höchstens dieses eine Elemente haben.
-Die Matrix hat daher Blockstruktur mit einem $1\times 1$-Block in der
-linken obere Ecke und einem $n-1$-dimensionalen Block für den Rest.
-Durch Wiederholen des Arguments für den $(n-1)\times (n-1)$-Block
-kann man so schrittweise schliessen, dass die Matrix $A$ diagonal sein muss.
-\end{proof}
-
-
-\begin{satz}
-Sind $A$ und $B$ normale Matrizen und $AB^*=B^*A$, dann sind auch $A+B$
-und $AB$ normal.
-\end{satz}
-
-\begin{proof}[Beweis]
-Zunächst folgt aus $AB^*=B^*A$ auch
-$A^*B = (B^*A)^* = (AB^*)^* = BA^*$.
-Der Beweis erfolgt durch Nachrechnen:
-\begin{align*}
-(A+B)(A+B)^*
-&=
-AA^* + AB^* + BA^*+BB^*
-\\
-(A+B)^*(A+B)
-&=
-A^*A + A^*B + B^*A + B^*B
-\end{align*}
-Die ersten und letzten Terme auf der rechten Seite stimmen überein, weil
-$A$ und $B$ normal sind.
-Die gemischten Terme stimmen überein wegen der Vertauschbarkeit von
-$A$ und $B^*$.
-
-Für das Produkt rechnet man
-\begin{align*}
-(AB)(AB)^*
-&= ABB^*A^* = AB^*BA^*
-= B^*AA^*B
-=
-B^*A^*AB
-=
-(AB)^*(AB),
-\end{align*}
-was zeigt, dass auch $AB$ normal ist.
-\end{proof}
-
-\subsubsection{Äquivalente Bedingungen}
-Es gibt eine grosse Zahl äquivalenter Eigenschaften für normale Matrizen.
-Die folgenden Eigenschaften sind äquivalent:
-\begin{enumerate}
-\item
-Die Matrix $A$ ist mit einer unitären Matrix diagonalisierbar
-\item
-Es gibt eine orthonormale Basis von Eigenvektoren von $A$ für $\mathbb{C}^n$
-\item
-Für jeden Vektor $x\in\mathbb{C}^n$ gilt $\|Ax\|=\|A^*x\|$
-\item
-Die Forbenius-Norm der Matrix $A$ kann mit den Eigenwerten $\lambda_i$
-von $A$ berechnet werden:
-$\operatorname{Spur}(A^*A) = \sum_{i=1}^n |\lambda_i|^2$
-\item
-Der hermitesche Teil $\frac12(A+A^*)$ und der antihermitesche Teil
-$\frac12(A-A^*)$ von $A$ vertauschen.
-\item
-$A^*$ ist ein Polynom vom Grad $n-1$ in $A$.
-\item
-Es gibt eine unitäre Matrix $U$ derart, dass $A^*=AU$
-\item
-Es gibt eine Polarzerlegugn $A=UP$ mit einer unitären Matrix $U$ und
-einer postiv semidefiniten Matrix $P$, die untereinander vertauschen.
-\item
-Es gibt eine Matrix $N$ mit verschiedenen Eigenwerten, mit denen $A$
-vertauscht.
-\item
-Wenn $A$ die (absteigend geordneten) singulärwerte $\sigma_i$ und
-die absteigend geordneten Eigenwerte $\lambda_i$ hat,
-dann it $\sigma_i=|\lambda_i|$.
-\end{enumerate}
-
-
-
-
+%
+% spektraltheorie.tex
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Spektraltheorie
+\label{buch:section:spektraltheorie}}
+Aufgabe der Spektraltheorie ist, Bedingungen an eine Matrix $A$ und eine
+Funktion $f(z)$ zu finden, unter denen es möglich ist, $f(A)$ auf
+konsistente Art und Weise zu definieren.
+Weiter müssen Methoden entwickelt werden, mit denen $f(A)$ berechnet
+werden kann.
+Für ein Polynom $p(z)$ ist $p(A)$ durch einsetzen definiert.
+Für Funktionen, die sich nicht durch ein Polynom darstellen lassen,
+muss eine Approximation der Funktion durch Polynome verwendet werden.
+Sei also $p_n(z)$ eine Folge von Polynomen, die als Approximation der
+Funktion $f(z)$ verwendet werden soll.
+Das Ziel ist, $f(A)$ als den Grenzwert der Matrixfolge $p_n(A)$
+zu definieren.
+
+Zunächst ist nicht klar, wie eine solche Folge gewählt werden muss.
+Es muss eine Teilmenge von $K\subset\mathbb{C}$ spezifiziert werden,
+auf der die Funktionenfolge $p_n(z)$ konvergieren muss,
+damit auch die Konvergenz der Matrizenfolge $p_n(A)$ garantiert ist.
+Auch die Art der Konvergenz von $p_n(z)$ auf der Menge $K$ ist noch
+unklar.
+Da der Abstand zweier Matrizen $A$ und $B$ in der Operatornorm
+mit der grössten Abweichung $\|(A-B)v\|$ für Einheitsvektoren $v$
+gemessen wird, ist es einigermassen plausibel, dass
+die grösse Abweichung zwischen zwei Polynomen $|p(z) - q(z)|$ auf
+der Menge $K$ kleine sein muss, wenn $\|p(A)-q(A)\|$ klein
+sein soll.
+Da die Differenz $p(z)-q(z)$ für beliebige Polynome, die sich nicht
+nur um eine Konstante unterscheiden, mit $z$ über alle Grenzen wächst,
+muss $K$ beschränkt sein.
+Gesucht ist also eine kompakte Menge $K\subset\mathbb{C}$ und eine
+Folge $p_n(z)$ von Polynomen, die auf $K$ gleichmässig gegen $f(z)$
+konvergieren.
+Die Wahl von $K$ muss sicherstellen, dass für jede gleichmässig
+konvergente Folge von Polynomen $p_n(z)$ auch die Matrizenfolge
+$p_n(A)$ konvergiert.
+
+Es wird sich zeigen, dass die Menge $K$ das Spektrum von $A$ ist,
+also eine endliche Teilmenge von $\mathbb{C}$.
+Jede Funktion kann auf so einer Menge durch Polynome exakt wiedergegeben
+werden.
+Es gibt insbesondere Folgen von Polynomen, die eingeschränkt
+auf das Spektrum gleich sind, also $p_n(z)=p_m(z)$ für alle $z\in K$,
+die aber ausserhalb des Spektrums alle verschieden sind.
+Als Beispiel kann die Matrix
+\[
+N=\begin{pmatrix}0&1\\0&0\end{pmatrix}
+\]
+herangezogen werden.
+Ihr Spektrum ist $\operatorname{Sp}(N)=\{0\}\subset\mathbb{C}$.
+Zwei Polynome stimmen genau dann auf $\operatorname{Sp}(N)$ überein,
+wenn der konstante Koeffizient gleich ist.
+Die Polynome $p(z)=z$ und $q(z)=z^2$ stimmen daher auf dem Spektrum
+überein.
+Für die Matrizen gilt aber $p(N)=N$ und $q(N)=N^2=0$, die Matrizen
+stimmen also nicht überein.
+Es braucht also zusätzliche Bedingungen an die Matrix $A$, die
+sicherstellen, dass $p(A)=0$ ist, wann immer $p(z)=0$ für
+$z\in\operatorname{Sp}(A)$ gilt.
+
+In diesem Abschnitt sollen diese Fragen untersucht werden.
+In Abschnitt~\ref{buch:subsection:approximation-durch-polynome}
+wird gezeigt, wie sich Funktionen durch Polynome approximieren
+lassen, woraus sich dann Approximationen von $f(A)$ für diagonalisierbare
+Matrizen mit reellen Eigenwerten ergeben.
+
+Der Satz von Stone-Weierstrass, der in
+Abschnitt~\ref{buch:subsetion:stone-weierstrass} dargestellt wird,
+ist ein sehr allgemeines Approximationsresultat, welches nicht nur
+zeigt, dass die Approximation unter sehr natürlichen Voraussetzungen
+beliebig genau möglich ist, sondern uns im komplexen Fall auch
+weitere Einsicht dafür geben kann, welche Voraussetzungen an eine
+komplexe Matrix gestellt werden müssen, damit man damit rechnen kann,
+dass die Approximation zu einer konsistenten Definition von $f(A)$ führt.
+
+%
+% Approximation
+%
+\subsection{Approximation durch Polynome
+\label{buch:subsection:approximation-durch-polynome}}
+Die der Berechnung von $f(A)$ für eine beleibige stetige Funktion,
+die sich nicht als Potenzreihe schreiben lässt, verwendet Approximationen
+von Polynomen.
+Die numerische Mathematik hat eine grosse Menge von solchen
+Approximationsverfahren entwickelt, wovon zwei kurz (ohne Beweise)
+vorgestellt werden sollen.
+
+\subsubsection{Das Legendre-Interpolationspolynom}
+Zu vorgegebenen, verschiedenen Zahlen $z_i\in\mathbb{C}$, $0\le i\le n$,
+die auch die {\em Stützstellen} genannt werden,
+gibt es immer ein Polynom vom Grade $n$, welches in den $z_i$ vorgegebene
+Werte $f(z_i)$ annimmt.
+Ein solches Polynom lässt sich im Prinzip mit Hilfe eines linearen
+Gleichungssystems finden, man kann aber auch direkt eine Lösung
+konstruieren.
+Dazu bildet man erst die Polynome
+\begin{align*}
+l(z) &= (z-z_0)(z-z_1)\dots (z-z_n) \qquad\text{und}
+\\
+l_i(z) &= (z-z_0)\dots \widehat{(z-z_i)}\dots (z-z_n).
+\end{align*}
+Darin bedeutet der Hut, dass dieser Term weggelassen werden soll.
+Für $z\ne z_i$ ist $l_i(z)=l(z)/(z-z_i)$.
+Die Polynome
+\[
+k_i(z)
+=
+\frac{l_i(z)}{l_i(z_i)}
+=
+\frac{(z-z_0)\dots \widehat{(z-z_i)}\dots (z-z_n)}{(z_i-z_0)\dots \widehat{(z_i-z_i)}\dots (z_i-z_n)}
+\]
+haben die Eigenschaft
+$k_i(z_j)=\delta_{ij}$.
+Damit lässt sich jetzt ein Polynom
+\[
+p(z) = \sum_{j=0}^n f(z_j) \frac{l_j(z)}{l_j(z_j)}
+\]
+vom Grad $n$ konstruieren, welches die Werte
+\[
+p(z_i)
+=
+\sum_{j=0}^n f(z_j) \frac{l_j(z_i)}{l_j(z_j)}
+=
+\sum_{j=0}^n f(z_j) \delta_{ij}
+=
+f_(z_i)
+\]
+annimmt.
+Das Polynom $p(z)$ heisst das {\em Legendre-Interpolationspolynom}.
+
+Zwar lässt sich also für eine endliche Menge von komplexen Zahlen immer
+ein Polynom finden, welches vorgeschriebene Wert in allen diesen Zahlen
+annimmt, doch ist die Stabilität für grosse $n$ eher beschränkt.
+
+
+\subsubsection{Gleichmassige Approximation mit Bernstein-Polynomen}
+Das Legendre-Interpolationspolynom nimmt in den Stützstellen die
+verlangten Werte an, aber ausserhalb der Stützstellen ist nicht
+garantiert, dass man eine gute Approximation einer Funktion $f(z)$
+erhält.
+
+Für die Approximation auf einem reellen Interval $[a,b]$ hat
+Sergei Natanowitsch Bernstein ein
+Dazu werden zuerst die reellen Bernsteinpolynome vom Grad $n$
+durch
+\begin{align*}
+B_{i,n}(t) = \binom{n}{i} t^i(1-t)^{n-i}.
+\end{align*}
+definiert.
+Als Approximationspolynom für die auf dem Interval
+$[0,1]$ definierte, stetige Funktion $f(t)$ kann man dann
+\[
+B_n(f)(t)
+=
+\sum_{i=0}^n B_{i,n}(t) f\biggl(\frac{i}{n}\biggr)
+\]
+verwenden.
+Die Polynome $B_n(f)(t)$ konvergieren gleichmässig auf $[0,1]$
+gegen die Funktion $f(t)$.
+Über die Konvergenz ausserhalb des reellen Intervalls wird nichts
+ausgesagt.
+Die Approximation mit Bernstein-Polynomen ist daher nur sinnvoll,
+wenn man weiss, dass die Eigenwerte der Matrix reell sind, was im
+wesentlichen auf diagonalisierbare Matrizen führt.
+
+Für ein anderes Interval $[a,b]$ kann man ein Approximationspolynom
+erhalten, indem man die affine Transformation
+$s\mapsto (s-a)/(b-a)$
+von $[a,b]$ auf $[0,1]$
+verwendet.
+
+%
+% Der Satz von Stone-Weierstrass
+%
+\subsection{Der Satz von Stone-Weierstrasss
+\label{buch:subsetion:stone-weierstrass}}
+Der Satz von Stone-Weierstrass behandelt im Gegensatz zu den in
+Abschnitt~\ref{buch:subsection:approximation-durch-polynome}
+besprochenen Approximationsmethoden nicht nur Funktionen von
+reellen Variablen durch Polynome.
+Vielmehr kann das Definitionsgebiet irgend eine abgeschlossene
+und beschränkte Teilmenge eines reellen oder komplexen Vektorraumes
+sein und die Funktionen können Polynome aber auch viel allgemeinere
+Funktionen verwendet werden, wie zum Beispiel die Funktionen
+$x\mapsto \cos nx$ und $x\mapsto \sin nx$ definiert auf dem
+Intervall $[0,2\pi]$.
+In diesem Fall liefert der Satz von Stone-Weierstrass die Aussage,
+dass sich jede stetige periodische Funktion gleichmässig durch
+trigonometrische Polynome approximieren lässt.
+
+Die Aussage des Satz von Stone-Weierstrass über reelle Funktionen
+lässt sich nicht auf komplexe Funktionen erweitern.
+Von besonderem Interesse ist jedoch, dass der Beweis des Satz
+zeigt, warum solche Aussagen für komplexe Funktionen nicht mehr
+zutreffen.
+Im Falle der Approximation von komplexen Funktionen $f(z)$ durch Polynome
+zwecks Definition von $f(A)$ werden sich daraus Bedingungen an die
+Matrix ableiten lassen, die eine konsistente Definition überhaupt
+erst ermöglichen werden.
+
+\subsubsection{Punkte trennen}
+Aus den konstanten Funktionen lassen sich durch algebraische
+Operationen nur weitere konstante Funktionen erzeugen.
+Die konstanten Funktionen sind also nur dann eine genügend
+reichhaltige Menge, wenn die Menge $K$ nur einen einzigen Punkt
+enthält.
+Damit sich Funktionen approximieren lassen, die in zwei Punkten
+verschiedene Werte haben, muss es auch unter den zur Approximation
+zur Verfügung stehenden Funktionen solche haben, deren Werte sich
+in diesen Punkten unterscheiden.
+Diese Bedingung wird in der folgenden Definition formalisiert.
+
+\begin{definition}
+Sei $K$ eine beliebige Menge und $A$ eine Menge von Funktionen
+$K\to \mathbb{C}$.
+Man sagt, $A$ {\em trennt die Punkte von $K$}, wenn es für jedes Paar
+\index{Punkte trennen}%
+von Punkten $x,y\in K$ eine Funktion $f\in A$ gibt derart, dass
+$f(x)\ne f(y)$.
+\end{definition}
+
+Man kann sich die Funktionen $f$, die gemäss dieser Definition die Punkte
+von $K$ trennen, als eine Art Koordinaten der Punkte in $K$ vorstellen.
+Die Punkte der Teilmenge $K\subset \mathbb{R}^n$ werden zum Beispiel
+von den Koordinatenfunktionen $x\mapsto x_i$ getrennt.
+Wir schreiben für die $i$-Koordinate daher auch als Funktion $x_i(x)=x_i$.
+Zwei verschiedene Punkte $x,y\in K$ unterscheiden sich in mindestens
+einer Koordinate.
+Für diese Koordinate sind dann die Werte der zugehörigen
+Koordinatenfunktion $x_i=x_i(x)\ne x_i(y)=y_i$ verschieden, die
+Funktionen $x_1(x)$ bis $x_n(x)$ trennen also die Punkte.
+
+\begin{beispiel}
+Wir betrachten einen Kreis in der Ebene, also die Menge
+\[
+S^1
+=
+\{(x_1,x_2)\;|\; x_1^2 + x_2^2=1\}
+\]
+$S^1$ ist eine abgeschlossene und beschränkte Menge in $\mathbb{R}^2$.
+Die Funktion $x\mapsto x_1$ trennt die Punkte nicht, denn zu jedem
+Punkt $(x_1,x_2)\in S^2$ gibt es den an der ersten Achse
+gespiegelten Punkt $\sigma(x)=(x_1,-x_2)$, dessen erste Koordinate
+den gleichen Wert hat.
+Ebenso trennt die Koordinatenfunktion $x\mapsto x_2$ die Punkte nicht.
+Die Menge $A=\{ x_1(x), x_2(x)\}$ bestehend aus den beiden
+Koordinatenfunktionen trennt dagegen die Punkte von $S^1$, da die Punkte
+sich immer in mindestens einem Punkt unterscheiden.
+
+Man könnte auch versuchen, den Kreis in Polarkoordinaten zu beschreiben.
+Die Funktion $\varphi(x)$, die jedem Punkt $x\in S^1$ den Polarwinkel
+zuordnet, trennt sicher die Punkte des Kreises.
+Zwei verschiedene Punkte auf dem Kreis haben verschieden Polarwinkel.
+Die Menge $\{\varphi\}$ trennt also die Punkte von $S^1$.
+Allerdings ist die Funktion nicht stetig, was zwar der Definition
+nicht widerspricht aber ein Hindernis für spätere Anwendungen ist.
+\end{beispiel}
+
+
+\subsubsection{Der Satz von Stone-Weierstrass für reelle Funktionen}
+Die Beispiele von Abschnitt~\ref{buch:subsection:approximation-durch-polynome}
+haben bezeigt, dass sich reellwertige Funktionen einer reellen
+Variable durch Polynome beliebig genau approximieren lassen.
+Es wurde sogar eine Methode vorgestellt, die eine auf einem Intervall
+gleichmässig konvergente Polynomefolge produziert.
+Die Variable $x\in[a,b]$ trennt natürlich die Punkte, die Algebra der
+Polynome in der Variablen $x$ enthält also sicher Funktionen, die in
+verschiedenen Punkten des Intervalls auch verschiedene Werte annehmen.
+Nicht ganz so selbstverständlich ist aber, dass sich daraus bereits
+ergibt, dass jede beliebige Funktion sich als Polynome in $x$
+approximieren lässt.
+Dies ist der Inhalt des folgenden Satzes von Stone-Weierstrass.
+
+\begin{figure}
+\centering
+\includegraphics{chapters/40-eigenwerte/images/wurzel.pdf}
+\caption{Konstruktion einer monoton wachsenden Approximationsfolge für
+$\sqrt{a}$
+\label{buch:eigenwerte:fig:wurzelverfahren}}
+\end{figure}
+
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/40-eigenwerte/images/wurzelapprox.pdf}
+\caption{Monoton wachsende Approximation der Funktion $t\mapsto\sqrt{t}$ mit
+Polynomen $u_n(t)$ nach
+\eqref{buch:eigenwerte:eqn:wurzelapproximation}
+(links) und der Fehler der Approximation
+(rechts).
+\label{buch:eigenwerte:fig:wurzelapproximation}}
+\end{figure}
+
+\begin{satz}[Stone-Weierstrass]
+\label{buch:satz:stone-weierstrass}
+Enthält eine $\mathbb{R}$-Algebra $A$ von stetigen, rellen Funktionen
+auf einer kompakten Menge $K$ die konstanten Funktionen und trennt sie
+Punkte, d.~h.~für zwei verschiedene Punkte $x,y\in K$ gibt es
+immer eine Funktion $f\in A$ mit $f(x)\ne f(y)$, dann ist jede stetige,
+reelle Funktion auf $K$ gleichmässig approximierbar durch Funktionen
+in $A$.
+\end{satz}
+
+Für den Beweis des Satzes wird ein Hilfsresultat benötigt, welches wir
+zunächst ableiten.
+Es besagt, dass sich die Wurzelfunktion $t\mapsto\sqrt{t}$
+auf dem Interval $[0,1]$ gleichmässig
+von unten durch Polynome approximieren lässt, die in
+Abbildung~\ref{buch:eigenwerte:fig:wurzelapproximation} dargestellt
+sind.
+
+\begin{satz}
+Die rekursiv definierte Folge von Polynomen
+\begin{equation}
+u_{n+1}(t)
+=
+u_n(t) + \frac12(t-u_n(t)^2),
+\qquad
+u_0(t)=0
+\label{buch:eigenwerte:eqn:wurzelapproximation}
+\end{equation}
+ist monoton wachsend und approximiert die Wurzelfunktion $t\mapsto\sqrt{t}$
+gleichmässig auf dem Intervall $[0,1]$.
+\end{satz}
+
+\begin{figure}
+\centering
+\includegraphics{chapters/40-eigenwerte/images/minmax.pdf}
+\caption{Graphische Erklärung der
+Identitäten~\eqref{buch:eigenwerte:eqn:minmax} für
+$\max(f(x),g(x))$ und $\min(f(x),g(x))$.
+Die purpurrote Kurve stellt den Mittelwert von $f(x)$ und $g(x)$ dar,
+die vertikalen grünen Linien haben die Länge der Differenz $|f(x)-g(x)|$.
+Das Maximum erhält man, indem man den halben Betrag der Differenz zum
+Mittelwert hinzuaddiert, das Minimum erhält man durch Subtraktion
+der selben Grösse.
+\label{buch:eigenwerte:fig:minmax}}
+\end{figure}
+
+\begin{proof}[Beweis]
+Wer konstruieren zunächst das in
+Abbildung~\ref{buch:eigenwerte:fig:wurzelverfahren}
+visualierte Verfahren, mit dem für jede Zahl $a\in[0,1]$
+die Wurzel $\sqrt{a}$ berechnet werden kann.
+Sei $u < \sqrt{a}$ eine Approximation der Wurzel.
+Die Approximation ist der exakte Wert der Lösung, wenn $a-u^2=0$.
+In jedem anderen Fall muss $u$ um einen Betrag $d$ vergrössert werden.
+Natürlich muss immer noch $u+d<\sqrt{a}$ sein.
+Man kann die maximal zulässige Korrektur $d$ geometrisch abschätzen,
+wie dies in Abbildung~\ref{buch:eigenwerte:fig:wurzelverfahren}
+skizziert ist.
+Die maximale Steigung des Graphen der Funktion $u\mapsto u^2$ ist $2$,
+daher darf man $u$ maximal um die Hälfte der Differenz $a-u^2$ (grün)
+vergrössern, also $d=\frac12(a-u^2)$.
+Die Rekursionsformel
+\[
+u_{n+1} = u_n + d = u_n + \frac12(a-u_n^2)
+\]
+mit dem Startwert $u_0=0$ liefert daher eine
+Folge, die gegen $\sqrt{a}$ konvergiert.
+\end{proof}
+
+\begin{proof}[Beweis des Satzes von Stone-Weierstrass]
+Da $A$ eine Algebra ist, ist mit jeder Funktion $f\in A$ für jedes Polynome
+$p\in\mathbb{R}[X]$ auch $p(f)$ eine Funktion in $A$.
+\begin{enumerate}
+\item Schritt: Für jede Funktion $f\in A$ lässt sich auch $|f|$ durch
+Funktionen in $A$ beliebig genau durch eine monoton wachsende Folge
+von Funktionen approximieren.
+
+Da $A$ eine Algebra ist, ist $f^2\in A$.
+Sei ausserdem $m^2=\sup \{f(x)^2\;|\;x\in K\}$, so dass $f^2/m^2$ eine Funktion
+mit Werten im Intervall $[0,1]$ ist.
+Die Funktionen $f_n(x)=mu_n(f(x)^2/m^2)$ sind ebenfalls in $A$ und
+approximieren gleichmässig $\sqrt{f(x)^2}=|f(x)|$.
+\item Schritt: Für zwei Funktionen $f,g\in A$ gibt es eine monoton wachsende
+Folge, die $\max(f,g)$ gleichmässig beliebig genau approximiert
+und eine monoton fallende Folge, die $\min(f,g)$ gleichmässig beliebig
+genau approximiert.
+
+
+Diese Folgen können aus der Approximationsfolge für den Betrag einer
+Funktion und den Identitäten
+\begin{equation}
+\begin{aligned}
+\max(f,g) &= \frac12(f+g+|f-g|) \\
+\min(f,g) &= \frac12(f+g-|f-g|)
+\end{aligned}
+\label{buch:eigenwerte:eqn:minmax}
+\end{equation}
+gefunden werden, die in Abbildung~\ref{buch:eigenwerte:fig:minmax}
+graphisch erklärt werden.
+\item Schritt: Zu zwei beliebigen Punkten $x,y\in K$ und Werten
+$\alpha,\beta\in\mathbb{R}$ gibt es immer eine Funktion in $A$,
+die in den Punkten $x,y$ die vorgegebenen Werte $\alpha$ bzw.~$\beta$
+annimmt.
+Da $A$ die Punkte trennt, gibt es eine Funktion $f_0$ mit $f_0(x)\ne f_0(y)$.
+Dann ist die Funktion
+\[
+f(t)
+=
+\beta + \frac{f_0(t)-f_0(y)}{f_0(x)-f_0(y)}(\alpha-\beta)
+\]
+wohldefiniert und nimmt die verlangten Werte an.
+\item Schritt: Zu jeder stetigen Funktion $f\colon K\to\mathbb{R}$, jedem
+Punkt $x\in K$ und jedem $\varepsilon>0$ gibt es eine Funktion $g\in A$ derart,
+dass $g(x)=f(x)$ und $g(y) \le f(y)+\varepsilon$ für alle $y\in K$.
+
+Zu jedem $z\in K$ gibt es eine Funktion in $A$ mit
+$h_z(x)=f(x)$ und $h_z(z) \le f(z)+\frac12\varepsilon$.
+Wegen der Stetigkeit von $h_z$ gibt es eine Umgebung $V_z$ von $z$, in der
+immer noch gilt $h_z(y)\le f(y)+\varepsilon$ für $y\in V_z$.
+Wegen der Kompaktheit von $K$ kann man endlich viele Punkte $z_i$ wählen
+derart, dass die $V_{z_i}$ immer noch $K$ überdecken.
+Dann erfüllt die Funktion
+\(
+g(z) = \inf h_{z_i}
+\)
+die Bedingungen $g(x) = f(x)$ und für $z\in V_{z_i}$
+\[
+g(z) = \inf_{j} h_{z_j}(z) \le h_{z_i}(z) \le f(z)+\varepsilon.
+\]
+Ausserdem ist $g(z)$ nach dem zweiten Schritt beliebig genau durch
+Funktionen in $A$ approximierbar.
+\item Schritt: Jede stetige Funktion $f\colon K\to\mathbb{R}$ kann
+beliebig genau durch Funktionen in $A$ approximiert werden.
+Sei $\varepsilon > 0$.
+
+Nach dem vierten Schritt gibt es für jedes $y\in K$ eine Funktion $g_y$
+derart, dass $g_y(y)=f(y)$ und $g_y(x) \le f(x) + \varepsilon$ für
+$x\in K$.
+Da $g_y$ stetig ist, gilt ausserdem $g_y(x) \ge f(x) -\varepsilon$ in
+einer Umgebung $U_y$ von $y$.
+Da $K$ kompakt ist, kann man endlich viele $y_i$ derart, dass die $U_{y_i}$
+immer noch ganz $K$ überdecken.
+Die Funktion $g=\sup g_{y_i}$ erfüllt dann überall $g(x) \le f(x)+\varepsilon$,
+weil jede der Funktionen $g_y$ diese Ungleichung erfüllt.
+Ausserdem gilt für $x\in V_{x_j}$
+\[
+g(x) = \sup_i g_{x_i}(x) \ge g_{x_j}(x) \ge f(x)-\varepsilon.
+\]
+Somit ist
+\[
+|f(x)-g(x)| \le \varepsilon.
+\]
+Damit ist $f(x)$ beliebig nahe an der Funktion $g(x)$, die sich
+beliebig genau durch Funktionen aus $A$ approximieren lässt.
+\qedhere
+\end{enumerate}
+\end{proof}
+
+Im ersten Schritt des Beweises ist ganz entscheidend, dass man die
+Betragsfunktion konstruieren kann.
+Daraus leiten sich dann alle folgenden Konstruktionen ab.
+
+\subsubsection{Anwendung auf symmetrische und hermitesche Matrizen}
+Für symmetrische und hermitesche Matrizen $A$ ist bekannt, dass die
+Eigenwerte reell sind, also das Spektrum $\operatorname{A}\subset\mathbb{R}$
+ist.
+Für eine Funktion $\mathbb{R}\to \mathbb{R}$ lässt sich nach dem
+Satz~\ref{buch:satz:stone-weierstrass} immer eine Folge $p_n$ von
+approximierenden Polynomen in $x$ finden, die auf $\operatorname{Sp}(A)$
+gleichmässig konvergiert.
+Die Matrix $f(A)$ kann dann definiert werden also der Grenzwert
+\[
+f(A) = \lim_{n\to\infty} p_n(A).
+\]
+Da diese Matrizen auch diagonalisierbar sind, kann man eine Basis
+aus Eigenvektoren verwenden.
+Die Wirkung von $p_n(A)$ auf einem Eigenvektor $v$ zum Eigenwert $\lambda$
+ist
+\[
+p_n(A)v
+=
+(a_kA^k + a_{k-1}A^{k-1}+\dots +a_2A^2+a_1A+a_0I)v
+=
+(a_k\lambda^k + a_{k-1}\lambda^{k-1}+\dots + a_2\lambda^2 + a_1\lambda + a_0)v
+=
+p_n(\lambda)v.
+\]
+Im Grenzwert wirkt $f(A)$ daher durch Multiplikation eines Eigenvektors
+mit $f(\lambda)$, die Matrix $f(A)$ hat in der genannten Basis die
+Diagonalform
+\[
+A=\begin{pmatrix}
+\lambda_1& & & \\
+ &\lambda_2& & \\
+ & &\ddots& \\
+ & & &\lambda_n
+\end{pmatrix}
+\qquad\Rightarrow\qquad
+f(A)=\begin{pmatrix}
+f(\lambda_1)& & & \\
+ &f(\lambda_2)& & \\
+ & &\ddots& \\
+ & & &f(\lambda_n)
+\end{pmatrix}.
+\]
+
+\begin{satz}
+\label{buch:eigenwerte:satz:spektralsatz}
+Ist $A$ symmetrische oder selbstadjungiert Matrix und $f$ eine Funktion
+auf dem Spektrum $\operatorname{Sp}(A)$ von $A$.
+Dann gibt es genau eine Matrix $f(A)$, die Grenzwert jeder beliebigen
+Folge $p_n(A)$ für Polynomfolgen, die $\operatorname{Sp}(A)$ gleichmässig
+gegen $f$ konvergieren.
+\end{satz}
+
+\subsubsection{Unmöglichkeit der Approximation von $z\mapsto \overline{z}$
+in $\mathbb{C}[z]$}
+Der Satz~\ref{buch:satz:stone-weierstrass} von Stone-Weierstrass für
+reelle Funktionen gilt nicht für komplexe Funktionen.
+In diesem Abschnitt zeigen wir, dass sich die Funktion $z\mapsto\overline{z}$
+auf der Einheitskreisscheibe $K=\{z\in\mathbb{C}\;|\; |z|\le 1\}$ nicht
+gleichmässig durch Polynome $p(z)$ mit komplexen Koeffizienten approximieren
+lässt.
+
+Wäre eine solche Approximation möglich, dann könnte man $\overline{z}$
+auch durch eine Potenzreihe
+\[
+\overline{z}
+=
+\sum_{k=0}^\infty a_kz^k
+\]
+darstellen.
+Das Wegintegral beider Seiten über den Pfad $\gamma(t) = e^{it}$
+in der komplexen Ebene ist
+\begin{align*}
+\oint_\gamma z^k\,dz
+&=
+\int_0^{2\pi} e^{ikt} ie^{it}\,dt
+=
+i\int_0^{2\pi} e^{it(k+1)}\,dt
+=
+i\biggl[ \frac{1}{i(k+1)} e^{it(k+1)}\biggr]_0^{2\pi}
+=
+0
+\\
+\oint_\gamma
+\sum_{k=0}^\infty a_kz^k
+\,dz
+&=
+\sum_{k=0}^\infty a_k \oint_\gamma z^k\,dz
+=
+\sum_{k=0}^\infty a_k\cdot 0
+=
+0
+\\
+\oint_\gamma \overline{z}\,dz
+&=
+\int_0^{2\pi} e^{it} ie^{it}\,dt
+=
+i\int_0^{2\pi} \,dt = 2\pi i,
+\end{align*}
+dabei wurde $\overline{\gamma}(t)=e^{-it}$ verwendet.
+Insbesondere widersprechen sich die beiden Integrale.
+Die ursprüngliche Annahmen, $\overline{z}$ lasse sich durch Polynome
+gleichmässig approximieren, muss daher verworfen werden.
+
+\subsubsection{Der Satz von Stone-Weierstrass für komplexe Funktionen}
+Der Satz von Stone-Weierstrass kann nach dem vorangegangene Abschnitt
+also nicht gelten.
+Um den Beweis des Satzes~\ref{buch:satz:stone-weierstrass}
+auf komplexe Zahlen zu übertragen, muss im ersten Schritt ein Weg
+gefunden werden, den Betrag einer Funktion zu approximieren.
+
+Im reellen Fall geschah dies, indem zunächst eine Polynom-Approximation
+für die Quadratwurzel konstruiert wurde, die dann auf das Quadrat einer
+Funktion angewendet wurde.
+Der Betrag einer komplexen Zahl $z$ ist aber nicht allein aus $z$
+berechenbar, man braucht in irgend einer Form Zugang zu Real-
+und Imaginärteil.
+Zum Beispiel kann man Real- und Imaginärteil als
+$\Re z= \frac12(z+\overline{z})$ und $\Im z = \frac12(z-\overline{z})$
+bestimmen.
+Kenntnis von Real- und Imaginärteil ist als gleichbedeutend mit
+der Kenntnis der komplex Konjugierten $\overline{z}$.
+Der Betrag lässt sich daraus als $|z|^2 = z\overline{z}$ finden.
+Beide Beispiele zeigen, dass man den im Beweis benötigten Betrag
+nur dann bestimmen kann, wenn mit jeder Funktion aus $A$ auch die
+komplex konjugierte Funktion zur Verfügung steht.
+
+\begin{satz}[Stone-Weierstrass]
+Enthält eine $\mathbb{C}$-Algebra $A$ von stetigen, komplexwertigen
+Funktionen auf einer kompakten Menge $K$ die konstanten Funktionen,
+trennt sie Punkte und ist ausserdem mit jeder Funktion $f\in A$ auch
+die komplex konjugiert Funktion $\overline{f}\in A$,
+dann lässt sich jede stetige, komplexwertige Funktion
+auf $K$ gleichmässig durch Funktionen aus $A$ approximieren.
+\end{satz}
+
+Mit Hilfe der konjugiert komplexen Funktion lässt sich immer eine
+Approximation für die Betragsfunktion finden, so dass sich der
+Beweis des reellen Satzes von Stone-Weierstrass übertragen lässt.
+
+%
+% Normale Matrizen
+%
+\subsection{Normale Matrizen
+\label{buch:subsection:normale-matrizen}}
+Aus dem Satz von Stone-Weierstrass für komplexe Matrizen kann man
+jetzt einen Spektralsätze für eine etwas grössere Klasse von Matrizen
+ableiten, als im Satz~\ref{buch:eigenwerte:satz:spektralsatz}
+möglich war.
+Der Satz besagt, dass für eine beliebige Funktion $f$ auf dem Spektrum
+$\operatorname{Sp}(A)$ eine Folge von auf $\operatorname{Sp}(A)$
+gleichmässig konvergenten, approximierenden Polynomen
+$p_n(z,\overline{z})$ gefunden werden kann.
+Doch wie soll jetzt aus dieser Polynomfolge ein Kandidat von $f(A)$
+gefunden werden?
+
+Zunächst stellt sich die Frage, was für die Variable $\overline{z}$
+eingesetzt werden soll.
+$1\times 1$-Matrizen sind notwendigerweise diagonal, also muss
+man in diesem Fall die Matrix $\overline{A}$ für die Variable
+$\overline{z}$ eingesetzt werden.
+Dies erklärt aber noch nicht, wie für $n\times n$-Matrizen
+vorzugehen ist, wenn $n>1$ ist.
+
+Die Notwendigkeit, die Variable $\overline{z}$ hinzuzunehmen
+ergab sich aus der Anforderung, dass der Betrag aus $|z|^2=z\overline{z}$
+konstruiert werden können muss.
+Insbesondere muss beim Einsetzen eine Matrix entstehen, die nur
+positive Eigenwerte hat.
+Für eine beliebige komplexe $n\times n$-Matrix $A$ ist aber
+$A\overline{A}$ nicht notwendigerweise positiv, wie das Beispiel
+\[
+A
+=
+\begin{pmatrix}0&i\\i&0\end{pmatrix}
+\qquad
+\Rightarrow
+\qquad
+A\overline{A}
+=
+\begin{pmatrix}0&i\\-i&0\end{pmatrix}
+\begin{pmatrix}0&-i\\i&0\end{pmatrix}
+=
+\begin{pmatrix}
+-1&0\\
+ 0&-1
+\end{pmatrix}
+=
+-I
+\]
+zeigt.
+Eine positive Matrix entsteht dagegen immer, wenn man statt
+$A$ die Adjungierte $A^*=\overline{A}^t$ verwendet.
+
+Die Substitution von $A$ für $z$ und $A^*$ für $\overline{z}$
+in einem Polynom $p(z,\overline{z})$ ist nicht unbedingt eindeutig.
+Schon das Polynom $p(z,\overline{z})=z\overline{z}$ kann man auch
+als $\overline{z}z$ schreiben.
+Damit die Substition eindeutig wird, muss man also fordern, dass
+$AA^* = A^*A$ ist.
+
+\begin{definition}
+Eine Matrix $A\in M_n(\mathbb{C})$ heisst {\em normal}, wenn $AA^*=A^*A$ gilt.
+\end{definition}
+
+\subsubsection{Beispiele normaler Matrizen}
+
+\begin{enumerate}
+\item
+Hermitesche und Antihermitesche Matrizen sind normal, denn solche
+Matrizen erfüllen $A^*=\pm A$ und damit
+\(
+AA^* = \pm A^2 = A^*A.
+\)
+\item
+Symmetrische und antisymmetrische Matrizen sind normal,
+denn aus $A=A^t$ folgt $A^*=\overline{A}^t$ und damit
+\begin{align*}
+AA^* &= A\overline{A}^t =
+\\
+A^*A &=
+\end{align*}
+\item
+Unitäre Matrizen $U$ sind normal, das $UU^*=I=U^*U$ gilt.
+\item
+Orthogonale Matrizen sind normal wegen $O(n) = U(n) \cap M_n(\mathbb{R})$.
+\end{enumerate}
+
+Jede Matrix lässt sich durch Wahl einer geeigneten Basis in Jordansche
+Normalform bringen.
+Allerdings sind Jordan-Blöcke keine normalen Matrizen, wie der folgende
+Satz zeigt.
+
+\begin{satz}
+Eine Dreiecksmatrix ist genau dann normal, wenn sie diagonal ist.
+\end{satz}
+
+\begin{proof}[Beweis]
+Sei $A$ eine obere Dreiecksmatrix, das Argument für eine untere Dreiecksmatrix
+funktioniert gleich.
+Wir berechnen ein Diagonalelement für beide Produkte $AA^*$ und $A^*A$.
+Dazu brauchen wir die Matrixelemente von $A$ und $A^*$.
+Bezeichnen wir die Matrixelemente von $A$ mit $a_{ij}$, dann hat $A^*$
+die Matrixelemente $(A^*)_{ij}=\overline{a}_{ji}$.
+Damit kann man die Diagonalelemente der Produkte als
+\begin{align*}
+(AA^*)_{ii}
+&=
+\sum_{j=1}^n a_{ij}\overline{a}_{ij}
+=
+\sum_{j=i}^n |a_{ij}|^2
+\\
+(A^*A)_{ii}
+&=
+\sum_{j=1}^n \overline{a}_{ji}a_{ji}
+=
+\sum_{j=1}^i |a_{ji}|^2
+\end{align*}
+ausrechnen.
+Der obere Ausdruck ist die quadrierte Länge der Zeile $i$ der Matrix $A$,
+der untere ist die quadrierte Länge der Spalte $i$.
+Da die Matrix eine obere Dreiecksmatrix ist, hat die erste Spalte höchstens
+ein einziges von $0$ verschiedenes Element.
+Daher kann auch die erste Zeile höchstens dieses eine Elemente haben.
+Die Matrix hat daher Blockstruktur mit einem $1\times 1$-Block in der
+linken obere Ecke und einem $n-1$-dimensionalen Block für den Rest.
+Durch Wiederholen des Arguments für den $(n-1)\times (n-1)$-Block
+kann man so schrittweise schliessen, dass die Matrix $A$ diagonal sein muss.
+\end{proof}
+
+
+\begin{satz}
+Sind $A$ und $B$ normale Matrizen und $AB^*=B^*A$, dann sind auch $A+B$
+und $AB$ normal.
+\end{satz}
+
+\begin{proof}[Beweis]
+Zunächst folgt aus $AB^*=B^*A$ auch
+$A^*B = (B^*A)^* = (AB^*)^* = BA^*$.
+Der Beweis erfolgt durch Nachrechnen:
+\begin{align*}
+(A+B)(A+B)^*
+&=
+AA^* + AB^* + BA^*+BB^*
+\\
+(A+B)^*(A+B)
+&=
+A^*A + A^*B + B^*A + B^*B
+\end{align*}
+Die ersten und letzten Terme auf der rechten Seite stimmen überein, weil
+$A$ und $B$ normal sind.
+Die gemischten Terme stimmen überein wegen der Vertauschbarkeit von
+$A$ und $B^*$.
+
+Für das Produkt rechnet man
+\begin{align*}
+(AB)(AB)^*
+&= ABB^*A^* = AB^*BA^*
+= B^*AA^*B
+=
+B^*A^*AB
+=
+(AB)^*(AB),
+\end{align*}
+was zeigt, dass auch $AB$ normal ist.
+\end{proof}
+
+\subsubsection{Äquivalente Bedingungen}
+Es gibt eine grosse Zahl äquivalenter Eigenschaften für normale Matrizen.
+Die folgenden Eigenschaften sind äquivalent:
+\begin{enumerate}
+\item
+Die Matrix $A$ ist mit einer unitären Matrix diagonalisierbar
+\item
+Es gibt eine orthonormale Basis von Eigenvektoren von $A$ für $\mathbb{C}^n$
+\item
+Für jeden Vektor $x\in\mathbb{C}^n$ gilt $\|Ax\|=\|A^*x\|$
+\item
+Die Forbenius-Norm der Matrix $A$ kann mit den Eigenwerten $\lambda_i$
+von $A$ berechnet werden:
+$\operatorname{Spur}(A^*A) = \sum_{i=1}^n |\lambda_i|^2$
+\item
+Der hermitesche Teil $\frac12(A+A^*)$ und der antihermitesche Teil
+$\frac12(A-A^*)$ von $A$ vertauschen.
+\item
+$A^*$ ist ein Polynom vom Grad $n-1$ in $A$.
+\item
+Es gibt eine unitäre Matrix $U$ derart, dass $A^*=AU$
+\item
+Es gibt eine Polarzerlegugn $A=UP$ mit einer unitären Matrix $U$ und
+einer postiv semidefiniten Matrix $P$, die untereinander vertauschen.
+\item
+Es gibt eine Matrix $N$ mit verschiedenen Eigenwerten, mit denen $A$
+vertauscht.
+\item
+Wenn $A$ die (absteigend geordneten) singulärwerte $\sigma_i$ und
+die absteigend geordneten Eigenwerte $\lambda_i$ hat,
+dann it $\sigma_i=|\lambda_i|$.
+\end{enumerate}
+
+
+
+
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.maxima b/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.maxima
new file mode 100644
index 0000000..9c97a2b
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.maxima
@@ -0,0 +1,121 @@
+/*
+ * 4006.maxima
+ *
+ * (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+ */
+
+A: matrix([ a+b*%i, 1, 0, 0 ],
+ [ 0, a+b*%i, 0, 0 ],
+ [ 0, 0, a-b*%i, 1 ],
+ [ 0, 0, 0, a-b*%i ]);
+
+expand(charpoly(A, x));
+
+S: (1/sqrt(2)) * matrix([ 1, -%i, 0, 0 ],
+ [ 0, 0, 1, -%i ],
+ [ 1, %i, 0, 0 ],
+ [ 0, 0, 1, %i ]);
+
+B: expand(invert(S).A.S);
+
+
+C: subst(2, a, B);
+C: subst(3, b, C);
+A: subst(2, a, A);
+A: subst(3, b, A);
+
+U: matrix([ 1, 0, 1, 0 ],
+ [ 0, 1, 1, 2 ],
+ [ 0, 0, 1, 0 ],
+ [ 0, 0, 0, 1 ]);
+V: matrix([ 1, 0, 0, 0 ],
+ [ 0, 1, 0, 0 ],
+ [ 0, 1, 1, 0 ],
+ [ 1, 0, 0, 1 ]);
+T: U.V;
+invert(T);
+
+D: T.C.invert(T);
+
+p: expand(charpoly(D, x));
+
+factor(p);
+
+lambda: 2+3*%i;
+
+Dlambda: ratsimp(expand(D - lambda * identfor(D)));
+rank(Dlambda);
+/* D2: expand(Dlambda.Dlambda); */
+/* rank(D2); */
+
+load(functs);
+
+/*
+E: Dlambda;
+E[1]: (rational(1/E[1,1]))*E[1]$
+E[2]: E[2] - E[2,1] * E[1]$
+E[3]: E[3] - E[3,1] * E[1]$
+E[4]: E[4] - E[4,1] * E[1]$
+E: ratsimp(E)$
+
+E[2]: (rational(1/E[2,2])) * E[2]$
+E[3]: E[3] - E[3,2] * E[2]$
+E[4]: E[4] - E[4,2] * E[2]$
+E: ratsimp(E)$
+
+E[3]: (rational(1/E[3,3])) * E[3]$
+E[4]: E[4] - E[4,3] * E[3]$
+E: ratsimp(E)$
+
+E[2]: E[2] - E[2,3] * E[3]$
+E[1]: E[1] - E[1,3] * E[3]$
+E: ratsimp(E)$
+
+E[1]: E[1] - E[1,2] * E[2]$
+E: ratsimp(E)$
+
+E;
+*/
+
+b1: matrix([1+%i],[2+2*%i],[%i],[1]);
+ratsimp(D.b1 - lambda*b1);
+
+G: Dlambda;
+G: addcol(G, b1);
+G[1]: (rational(1/G[1,1]))*G[1]$
+G[2]: G[2] - G[2,1] * G[1]$
+G[3]: G[3] - G[3,1] * G[1]$
+G[4]: G[4] - G[4,1] * G[1]$
+G: ratsimp(G)$
+
+G[2]: (rational(1/G[2,2])) * G[2]$
+G[3]: G[3] - G[3,2] * G[2]$
+G[4]: G[4] - G[4,2] * G[2]$
+G: ratsimp(G)$
+
+G[3]: (rational(1/G[3,3])) * G[3]$
+G[4]: G[4] - G[4,3] * G[3]$
+G: ratsimp(G)$
+
+G[2]: G[2] - G[2,3] * G[3]$
+G[1]: G[1] - G[1,3] * G[3]$
+G: ratsimp(G)$
+
+G[1]: G[1] - G[1,2] * G[2]$
+G: ratsimp(G)$
+
+G;
+
+b2: matrix([ G[1,5] ], [ G[2,5] ], [ G[3,5] ], [ G[4,5] ]);
+
+expand(D.b2 - lambda * b2 - b1);
+
+c1: 2 * realpart(b1);
+d1: 2 * imagpart(b1);
+c2: 2 * realpart(b2);
+d2: 2 * imagpart(b2);
+
+D.c1 - 2 * c1 + 3 * d1;
+D.d1 - 3 * c1 - 2 * d1;
+D.c2 - 2 * c2 + 3 * d2 - c1;
+D.d2 - 3 * c2 - 2 * d2 - d1;
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.tex
new file mode 100644
index 0000000..7ccc065
--- /dev/null
+++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4006.tex
@@ -0,0 +1,97 @@
+Man findet eine Basis, in der die Matrix
+\[
+A=\begin{pmatrix*}[r]
+ -5& 2& 6& 0\\
+-11& 12& -3& -15\\
+ -7& 0& 9& 4\\
+ 0& 5& -7& -8
+\end{pmatrix*}
+\]
+die relle Normalform bekommt.
+
+\begin{loesung}
+Das charakteristische Polynom der Matrix ist
+\[
+\chi_{A}(\lambda)
+=
+\lambda^4-8\lambda^3+42\lambda^2-104\lambda+169
+=
+(\lambda^2-4\lambda+13)^2.
+\]
+Es hat die doppelten Nullstellen
+\[
+\lambda_\pm
+=
+2\pm \sqrt{4-13}
+=
+2\pm \sqrt{-9}
+=
+2\pm 3i.
+\]
+Zur Bestimmung der Basis muss man jetzt zunächst den Kern von
+$A_+=A-\lambda_+I$ bestimmen, zum Beispiel mit Hilfe des Gauss-Algorithmus,
+man findet
+\[
+b_1
+=
+\begin{pmatrix}
+1+i\\
+2+2i\\
+i\\
+1
+\end{pmatrix}.
+\]
+Als nächstes braucht man einen Vektor $b_1\in \ker A_+^2$, der
+$b_1$ auf $b_1+\lambda_+b_2$ abbildet.
+Durch Lösen des Gleichungssystems $Ab_2-\lambda_+ b_2=b_1$ findet man
+\[
+b_2
+=
+\begin{pmatrix}
+2-i\\3\\2\\0
+\end{pmatrix}
+\qquad\text{und damit weiter}\qquad
+\overline{b}_1
+=
+\begin{pmatrix}
+1-i\\
+2-2i\\
+-i\\
+1
+\end{pmatrix},\quad
+\overline{b}_2
+=
+\begin{pmatrix}
+2+i\\3\\2\\0
+\end{pmatrix}.
+\]
+Als Basis für die reelle Normalform von $A$ kann man jetzt die Vektoren
+\begin{align*}
+c_1
+&=
+b_1+\overline{b}_1 = \begin{pmatrix}2\\4\\0\\2\end{pmatrix},&
+d_1
+&=
+\frac{1}{i}(b_1-\overline{b}_1) = \begin{pmatrix}2\\4\\2\\0\end{pmatrix},&
+c_2
+&=
+b_2+\overline{b}_2 = \begin{pmatrix}4\\6\\4\\0\end{pmatrix},&
+d_2
+&=
+\frac{1}{i}(b_2-\overline{b}_2) = \begin{pmatrix}-2\\0\\0\\0\end{pmatrix}
+\end{align*}
+verwenden.
+In dieser Basis hat $A$ die Matrix
+\[
+A'
+=
+\begin{pmatrix*}[r]
+ 2& 3& 1& 0\\
+-3& 2& 0& 1\\
+ 0& 0& 2& 3\\
+ 0& 0&-3& 2
+\end{pmatrix*},
+\]
+wie man einfach nachrechnen kann.
+\end{loesung}
+
diff --git a/buch/chapters/50-permutationen/transpositionen.tex b/buch/chapters/50-permutationen/transpositionen.tex
index 604e010..748b2e9 100644
--- a/buch/chapters/50-permutationen/transpositionen.tex
+++ b/buch/chapters/50-permutationen/transpositionen.tex
@@ -111,7 +111,7 @@ Permutationen.
\end{definition}
Die alternierende Gruppe $A_n$ ist tatsächlich eine Untergruppe.
-Zunächst ist $\operatorname{sign}(e)=(-1)^0=1$, also ist $e\in A_n$.
+Zunächst ist $\operatorname{sgn}(e)=(-1)^0=1$, also ist $e\in A_n$.
Es wurde schon gezeigt, dass mit jedem Element $\sigma\in A_n$ auch
das inverse Element $\sigma^{-1}\in A_n$ ist.
Es muss aber noch sichergestellt werden, dass das Produkt von zwei
@@ -120,17 +120,17 @@ geraden Transpositionen wieder gerade ist:
\begin{aligned}
\sigma_1,\sigma_2&\in A_n
&\Rightarrow&&
-\operatorname{sign}(\sigma_1)
+\operatorname{sgn}(\sigma_1)
&=
-\operatorname{sign}(\sigma_2)
+\operatorname{sgn}(\sigma_2)
=
1
\\
&&\Rightarrow&&
-\operatorname{sign}(\sigma_1\sigma_2)
+\operatorname{sgn}(\sigma_1\sigma_2)
&=
-\operatorname{sign}(\sigma_1)
-\operatorname{sign}(\sigma_2)
+\operatorname{sgn}(\sigma_1)
+\operatorname{sgn}(\sigma_2)
=
1\cdot 1=1
&&\Rightarrow&
diff --git a/buch/chapters/60-gruppen/chapter.tex b/buch/chapters/60-gruppen/chapter.tex
index aa5469f..3b1abc1 100644
--- a/buch/chapters/60-gruppen/chapter.tex
+++ b/buch/chapters/60-gruppen/chapter.tex
@@ -1,47 +1,47 @@
-%
-% chapter.tex
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\chapter{Matrizengruppen
-\label{buch:chapter:matrizengruppen}}
-\lhead{Matrizengruppen}
-\rhead{}
-Matrizen können dazu verwendet werden, Symmetrien von geometrischen oder
-physikalischen Systemen zu beschreiben.
-Neben diskreten Symmetrien wie zum Beispiel Spiegelungen gehören dazu
-auch kontinuierliche Symmetrien wie Translationen oder Invarianz einer
-phyisikalischen Grösse über die Zeit.
-Solche Symmetrien müssen durch Matrizen beschrieben werden können,
-die auf stetige oder sogar differenzierbare Art von der Zeit abhängen.
-Die Menge der Matrizen, die zur Beschreibung solcher Symmetrien benutzt
-werden, muss also eine zusätzliche Struktur haben, die ermöglicht,
-sinnvoll über Stetigkeit und Differenzierbarkeit bei Matrizen
-zu sprechen.
-
-Die Menge der Matrizen bilden zunächst eine Gruppe,
-die zusätzliche differenziarbare Struktur macht daraus
-eine sogenannte Lie-Gruppe.
-Die Ableitungen nach einem Parameter liegen in der sogenannten
-Lie-Algebra, einer Matrizen-Algebra mit dem antisymmetrischen
-Lie-Klammer-Produkt $[A,B]=AB-BA$, auch Kommutator genannt.
-Lie-Gruppe und Lie-Algebra sind eng miteinander verknüpft,
-so eng, dass sich die meisten Eigenschaften der Gruppe aus den Eigenschaften
-der Lie-Gruppe aus der Lie-Algebra ableiten lassen.
-Die Verbindung wird hergestellt durch die Exponentialabbildung.
-Ziel dieses Kapitels ist, die Grundzüge dieses interessanten
-Zusammenhangs darzustellen.
-
-\input{chapters/60-gruppen/symmetrien.tex}
-\input{chapters/60-gruppen/lie-gruppen.tex}
-\input{chapters/60-gruppen/lie-algebren.tex}
-%\input{chapters/60-gruppen/homogen.tex}
-
-\section*{Übungsaufgaben}
-\rhead{Übungsaufgaben}
-\aufgabetoplevel{chapters/60-gruppen/uebungsaufgaben}
-\begin{uebungsaufgaben}
-\uebungsaufgabe{6002}
-\uebungsaufgabe{6001}
-\end{uebungsaufgaben}
-
+%
+% chapter.tex
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\chapter{Matrizengruppen
+\label{buch:chapter:matrizengruppen}}
+\lhead{Matrizengruppen}
+\rhead{}
+Matrizen können dazu verwendet werden, Symmetrien von geometrischen oder
+physikalischen Systemen zu beschreiben.
+Neben diskreten Symmetrien wie zum Beispiel Spiegelungen gehören dazu
+auch kontinuierliche Symmetrien wie Translationen oder Invarianz einer
+phyisikalischen Grösse über die Zeit.
+Solche Symmetrien müssen durch Matrizen beschrieben werden können,
+die auf stetige oder sogar differenzierbare Art von der Zeit abhängen.
+Die Menge der Matrizen, die zur Beschreibung solcher Symmetrien benutzt
+werden, muss also eine zusätzliche Struktur haben, die ermöglicht,
+sinnvoll über Stetigkeit und Differenzierbarkeit bei Matrizen
+zu sprechen.
+
+Die Menge der Matrizen bilden zunächst eine Gruppe,
+die zusätzliche differenziarbare Struktur macht daraus
+eine sogenannte Lie-Gruppe.
+Die Ableitungen nach einem Parameter liegen in der sogenannten
+Lie-Algebra, einer Matrizen-Algebra mit dem antisymmetrischen
+Lie-Klammer-Produkt $[A,B]=AB-BA$, auch Kommutator genannt.
+Lie-Gruppe und Lie-Algebra sind eng miteinander verknüpft,
+so eng, dass sich die meisten Eigenschaften der Gruppe aus den Eigenschaften
+der Lie-Gruppe aus der Lie-Algebra ableiten lassen.
+Die Verbindung wird hergestellt durch die Exponentialabbildung.
+Ziel dieses Kapitels ist, die Grundzüge dieses interessanten
+Zusammenhangs darzustellen.
+
+\input{chapters/60-gruppen/symmetrien.tex}
+\input{chapters/60-gruppen/lie-gruppen.tex}
+\input{chapters/60-gruppen/lie-algebren.tex}
+%\input{chapters/60-gruppen/homogen.tex}
+
+\section*{Übungsaufgaben}
+\rhead{Übungsaufgaben}
+\aufgabetoplevel{chapters/60-gruppen/uebungsaufgaben}
+\begin{uebungsaufgaben}
+\uebungsaufgabe{6002}
+\uebungsaufgabe{6001}
+\end{uebungsaufgaben}
+
diff --git a/buch/chapters/60-gruppen/images/Makefile b/buch/chapters/60-gruppen/images/Makefile
index 8cd824f..3ed39e5 100644
--- a/buch/chapters/60-gruppen/images/Makefile
+++ b/buch/chapters/60-gruppen/images/Makefile
@@ -1,25 +1,25 @@
-#
-# Makefile
-#
-# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-#
-all: phasenraum.pdf kartenkreis.pdf karten.pdf sl2.pdf scherungen.pdf
-
-phasenraum.pdf: phasenraum.tex
- pdflatex phasenraum.tex
-
-kartenkreis.pdf: kartenkreis.tex
- pdflatex kartenkreis.tex
-
-torus.png: torus.pov
- povray +A0.1 -W1920 -H1080 -Otorus.png torus.pov
-
-karten.pdf: karten.tex torus.png
- pdflatex karten.tex
-
-sl2.pdf: sl2.tex
- pdflatex sl2.tex
-
-scherungen.pdf: scherungen.tex
- pdflatex scherungen.tex
-
+#
+# Makefile
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+all: phasenraum.pdf kartenkreis.pdf karten.pdf sl2.pdf scherungen.pdf
+
+phasenraum.pdf: phasenraum.tex
+ pdflatex phasenraum.tex
+
+kartenkreis.pdf: kartenkreis.tex
+ pdflatex kartenkreis.tex
+
+torus.png: torus.pov
+ povray +A0.1 -W1920 -H1080 -Otorus.png torus.pov
+
+karten.pdf: karten.tex torus.png
+ pdflatex karten.tex
+
+sl2.pdf: sl2.tex
+ pdflatex sl2.tex
+
+scherungen.pdf: scherungen.tex
+ pdflatex scherungen.tex
+
diff --git a/buch/chapters/60-gruppen/images/karten.tex b/buch/chapters/60-gruppen/images/karten.tex
index 67c8d70..c8eb4a3 100644
--- a/buch/chapters/60-gruppen/images/karten.tex
+++ b/buch/chapters/60-gruppen/images/karten.tex
@@ -1,112 +1,112 @@
-%
-% karten.tex -- template for standalon tikz images
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{1}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-
-\definecolor{darkgreen}{rgb}{0,0.6,0}
-
-\node at (0,0) {\includegraphics[width=10cm]{torus.png}};
-
-\def\s{3}
-
-\node at (-3.5,-0.4) {$U_\alpha$};
-\node at (2.0,-0.4) {$U_\beta$};
-
-\draw[->] (-2,-2.2) -- (-3,-4.3);
-\node at (-2.5,-3.25) [left] {$\varphi_\alpha$};
-
-\draw[->] (1.4,-1.7) -- (3,-4.3);
-\node at (2.5,-3.25) [right] {$\varphi_\beta$};
-
-\begin{scope}[xshift=-4.5cm,yshift=-8cm]
- \begin{scope}
- \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
- \begin{scope}[xshift=1.8cm,yshift=0.6cm,rotate=30]
- \fill[color=gray!20]
- (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
- \foreach \x in {0,0.2,...,1}{
- \draw[color=darkgreen]
- ({\x*\s},{-0.2*\s})
- --
- ({\x*\s},{1.2*\s});
- }
- \foreach \y in {-0.2,0,...,1.2}{
- \draw[color=orange]
- (0,{\y*\s})
- --
- ({1*\s},{\y*\s});
- }
- \end{scope}
- \end{scope}
-
- \foreach \x in {0,0.2,...,1}{
- \draw[color=blue,line width=1.4pt]
- ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s});
- }
- \foreach \y in {-0.2,0,...,1.2}{
- \draw[color=red,line width=1.4pt]
- (0,{\y*\s}) -- ({1*\s},{\y*\s});
- }
-
- \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}];
- \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}];
-
- \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$};
-
-\end{scope}
-
-\begin{scope}[xshift=1.5cm,yshift=-8cm]
- \begin{scope}
- \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
- % x = - [ (sqrt(3)/2)*0.6+(1/2)*0.2 ] = -0.6196
- % y = - [ (-1/2)*0.6 + (sqrt(3)/2)*0.2 ] =
- \begin{scope}[xshift=-1.8588cm,yshift=0.3804cm,rotate=-30]
- \fill[color=gray!20]
- (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
- \foreach \x in {0,0.2,...,1}{
- \draw[color=blue]
- ({\x*\s},{-0.2*\s})
- --
- ({\x*\s},{1.2*\s});
- }
- \foreach \y in {-0.2,0,...,1.2}{
- \draw[color=red]
- (0,{\y*\s})
- --
- ({1*\s},{\y*\s});
- }
- \end{scope}
- \end{scope}
-
- \foreach \x in {0,0.2,...,1}{
- \draw[color=darkgreen,line width=1.4pt]
- ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s});
- }
- \foreach \y in {-0.2,0,...,1.2}{
- \draw[color=orange,line width=1.4pt] (0,{\y*\s}) -- ({1*\s},{\y*\s});
- }
- \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}];
- \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}];
- \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$};
-\end{scope}
-
-\draw[<-,color=white,opacity=0.8,line width=5pt] (2.5,-6.5) arc (55:100:6.5);
-\draw[<-,shorten >= 0.1cm,shorten <= 0.3cm] (2.5,-6.5) arc (55:100:6.5);
-
-\node at (0,-5.9)
- {$\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}$};
-
-\end{tikzpicture}
-\end{document}
-
+%
+% karten.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\node at (0,0) {\includegraphics[width=10cm]{torus.png}};
+
+\def\s{3}
+
+\node at (-3.5,-0.4) {$U_\alpha$};
+\node at (2.0,-0.4) {$U_\beta$};
+
+\draw[->] (-2,-2.2) -- (-3,-4.3);
+\node at (-2.5,-3.25) [left] {$\varphi_\alpha$};
+
+\draw[->] (1.4,-1.7) -- (3,-4.3);
+\node at (2.5,-3.25) [right] {$\varphi_\beta$};
+
+\begin{scope}[xshift=-4.5cm,yshift=-8cm]
+ \begin{scope}
+ \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
+ \begin{scope}[xshift=1.8cm,yshift=0.6cm,rotate=30]
+ \fill[color=gray!20]
+ (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
+ \foreach \x in {0,0.2,...,1}{
+ \draw[color=darkgreen]
+ ({\x*\s},{-0.2*\s})
+ --
+ ({\x*\s},{1.2*\s});
+ }
+ \foreach \y in {-0.2,0,...,1.2}{
+ \draw[color=orange]
+ (0,{\y*\s})
+ --
+ ({1*\s},{\y*\s});
+ }
+ \end{scope}
+ \end{scope}
+
+ \foreach \x in {0,0.2,...,1}{
+ \draw[color=blue,line width=1.4pt]
+ ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s});
+ }
+ \foreach \y in {-0.2,0,...,1.2}{
+ \draw[color=red,line width=1.4pt]
+ (0,{\y*\s}) -- ({1*\s},{\y*\s});
+ }
+
+ \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}];
+ \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}];
+
+ \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$};
+
+\end{scope}
+
+\begin{scope}[xshift=1.5cm,yshift=-8cm]
+ \begin{scope}
+ \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
+ % x = - [ (sqrt(3)/2)*0.6+(1/2)*0.2 ] = -0.6196
+ % y = - [ (-1/2)*0.6 + (sqrt(3)/2)*0.2 ] =
+ \begin{scope}[xshift=-1.8588cm,yshift=0.3804cm,rotate=-30]
+ \fill[color=gray!20]
+ (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s});
+ \foreach \x in {0,0.2,...,1}{
+ \draw[color=blue]
+ ({\x*\s},{-0.2*\s})
+ --
+ ({\x*\s},{1.2*\s});
+ }
+ \foreach \y in {-0.2,0,...,1.2}{
+ \draw[color=red]
+ (0,{\y*\s})
+ --
+ ({1*\s},{\y*\s});
+ }
+ \end{scope}
+ \end{scope}
+
+ \foreach \x in {0,0.2,...,1}{
+ \draw[color=darkgreen,line width=1.4pt]
+ ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s});
+ }
+ \foreach \y in {-0.2,0,...,1.2}{
+ \draw[color=orange,line width=1.4pt] (0,{\y*\s}) -- ({1*\s},{\y*\s});
+ }
+ \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}];
+ \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}];
+ \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$};
+\end{scope}
+
+\draw[<-,color=white,opacity=0.8,line width=5pt] (2.5,-6.5) arc (55:100:6.5);
+\draw[<-,shorten >= 0.1cm,shorten <= 0.3cm] (2.5,-6.5) arc (55:100:6.5);
+
+\node at (0,-5.9)
+ {$\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}$};
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/images/kartenkreis.tex b/buch/chapters/60-gruppen/images/kartenkreis.tex
index ff6331e..4f19937 100644
--- a/buch/chapters/60-gruppen/images/kartenkreis.tex
+++ b/buch/chapters/60-gruppen/images/kartenkreis.tex
@@ -1,189 +1,189 @@
-%
-% kartenkreis.tex -- template for standalon tikz images
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{3}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-
-\definecolor{darkgreen}{rgb}{0,0.6,0}
-
-\fill[color=red!20] (0,-1) rectangle (1.5,1);
-\fill[color=blue!20] (-1.5,-1) rectangle (0,1);
-\fill[color=darkgreen!40,opacity=0.5] (-1,0) rectangle (1,1.5);
-\fill[color=orange!40,opacity=0.5] (-1,-1.5) rectangle (1,0);
-\fill[color=white] (0,0) circle[radius=1];
-
-\fill[color=gray!20]
- (0,-1.5) -- (0.02,-1.6) -- (0.5,-1.8) -- (0.98,-1.6) -- (1,-1.5)
- -- cycle;
-\fill[color=gray!20]
- (0,1.5) -- (0.02,1.6) -- (0.5,1.8) -- (0.98,1.6) -- (1,1.5)
- -- cycle;
-\fill[color=gray!20]
- (0,-1.5) -- (-0.02,-1.6) -- (-0.5,-1.8) -- (-0.98,-1.6) -- (-1,-1.5)
- -- cycle;
-\fill[color=gray!20]
- (0,1.5) -- (-0.02,1.6) -- (-0.5,1.8) -- (-0.98,1.6) -- (-1,1.5)
- -- cycle;
-
-\fill[color=gray!20]
- (1.5,0) -- (1.6,0.02) -- (1.8,0.5) -- (1.6,0.98) -- (1.5,1)
- -- cycle;
-\fill[color=gray!20]
- (-1.5,0) -- (-1.6,0.02) -- (-1.8,0.5) -- (-1.6,0.98) -- (-1.5,1)
- -- cycle;
-\fill[color=gray!20]
- (1.5,0) -- (1.6,-0.02) -- (1.8,-0.5) -- (1.6,-0.98) -- (1.5,-1)
- -- cycle;
-\fill[color=gray!20]
- (-1.5,0) -- (-1.6,-0.02) -- (-1.8,-0.5) -- (-1.6,-0.98) -- (-1.5,-1)
- -- cycle;
-
-\draw[->] (0.5,-1.8) arc (-180:-90:0.1) arc (-90:0:1.3) arc (0:90:0.1);
-\draw[->] (1.8,0.5) arc (-90:0:0.1) arc (0:90:1.3) arc (90:180:0.1);
-\draw[->] (-0.5,1.8) arc (0:90:0.1) arc (90:180:1.3) arc (180:270:0.1);
-\draw[->] (-1.8,-0.5) arc (90:180:0.1) arc (180:270:1.3) arc (270:360:0.1);
-
-\node at (1.01,1.32)
- [right] {$\varphi_3\circ \varphi_1^{-1}(y)=\sqrt{1-y^2}$};
-\node at (1.6,1.6) {$\varphi_{31}$};
-
-\node at (1.01,-1.28)
- [right] {$\varphi_1\circ \varphi_4^{-1}(x)=-\sqrt{1-x^2}$};
-\node at (1.6,-1.6) {$\varphi_{14}$};
-
-\node at (-1.24,1.32)
- [left] {$\varphi_2\circ\varphi_3^{-1}(x)=\sqrt{1-x^2}$};
-\node at (-1.6,1.6) {$\varphi_{23}$};
-
-\node at (-1.18,-1.28)
- [left] {$\varphi_4\circ\varphi_2^{-1}(y)=-\sqrt{1-y^2}$};
-\node at (-1.6,-1.6) {$\varphi_{42}$};
-
-
-\foreach \y in {0.1,0.3,...,0.9}{
- \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm]
- ({sqrt(1-\y*\y)},{\y}) -- (1.5,\y);
- \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm]
- ({sqrt(1-\y*\y)},{-\y}) -- (1.5,-\y);
- \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm]
- ({-sqrt(1-\y*\y)},{\y}) -- (-1.5,\y);
- \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm]
- ({-sqrt(1-\y*\y)},{-\y}) -- (-1.5,-\y);
-}
-\foreach \x in {0.1,0.3,...,0.9}{
- \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm]
- ({\x},{sqrt(1-\x*\x)}) -- ({\x},1.5);
- \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm]
- ({-\x},{sqrt(1-\x*\x)}) -- ({-\x},1.5);
- \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm]
- ({\x},{-sqrt(1-\x*\x)}) -- ({\x},-1.5);
- \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm]
- ({-\x},{-sqrt(1-\x*\x)}) -- ({-\x},-1.5);
-}
-
-%\draw[color=gray!50,line width=3pt] (0,0) circle[radius=1];
-\draw[color=yellow!30,line width=3pt] (0,0) circle[radius=1];
-\node[color=yellow] at ({1/sqrt(2)},{1/sqrt(2)}) [above right] {$S^1$};
-
-\def\r{1.02}
-
-\begin{scope}
- \clip (0,-1.1) rectangle (1.1,1.1);
- \draw[color=red,line width=1.4pt] (-89:\r) arc (-89:89:\r);
- \draw[color=red,line width=1.4pt] (0,-\r) circle[radius=0.02];
- \draw[color=red,line width=1.4pt] (0,\r) circle[radius=0.02];
-\end{scope}
-
-\begin{scope}
- \clip (-1.1,-1.1) rectangle (0,1.1);
- \draw[color=blue,line width=1.4pt] (91:\r) arc (91:269:\r);
- \draw[color=blue,line width=1.4pt] (0,-\r) circle[radius=0.02];
- \draw[color=blue,line width=1.4pt] (0,\r) circle[radius=0.02];
-\end{scope}
-
-\xdef\r{0.98}
-
-\begin{scope}
- \clip (-1.1,0) rectangle (1.1,1.1);
- \draw[color=darkgreen,line width=1.4pt] (1:\r) arc (1:179:\r);
- \draw[color=darkgreen,line width=1.4pt] (\r,0) circle[radius=0.02];
- \draw[color=darkgreen,line width=1.4pt] (-\r,0) circle[radius=0.02];
-\end{scope}
-
-\begin{scope}
- \clip (-1.1,-1.1) rectangle (1.1,0);
- \draw[color=orange,line width=1.4pt] (181:\r) arc (181:359:\r);
- \draw[color=orange,line width=1.4pt] (\r,0) circle[radius=0.02];
- \draw[color=orange,line width=1.4pt] (-\r,0) circle[radius=0.02];
-\end{scope}
-
-\begin{scope}[yshift=1.5cm]
- \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$\mathbb{R}$}];
- \begin{scope}
- \clip (-1,-0.1) rectangle (1,0.1);
- \draw[color=darkgreen,line width=1.4pt] (-0.98,0) -- (0.98,0);
- \draw[color=darkgreen,line width=1.4pt] (-1,0)
- circle[radius=0.02];
- \draw[color=darkgreen,line width=1.4pt] (1,0)
- circle[radius=0.02];
- \end{scope}
-\end{scope}
-
-\begin{scope}[yshift=-1.5cm]
- \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={below:$\mathbb{R}$}];
- \begin{scope}
- \clip (-1,-0.1) rectangle (1,0.1);
- \draw[color=orange,line width=1.4pt] (-0.98,0) -- (0.98,0);
- \draw[color=orange,line width=1.4pt] (-1,0) circle[radius=0.02];
- \draw[color=orange,line width=1.4pt] (1,0) circle[radius=0.02];
- \end{scope}
-\end{scope}
-
-\begin{scope}[xshift=1.5cm]
- \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$\mathbb{R}$}];
- \begin{scope}
- \clip (-0.1,-1) rectangle (0.1,1);
- \draw[color=red,line width=1.4pt] (0,-0.98) -- (0,0.98);
- \draw[color=red,line width=1.4pt] (0,-1) circle[radius=0.02];
- \draw[color=red,line width=1.4pt] (0,1) circle[radius=0.02];
- \end{scope}
-\end{scope}
-
-\begin{scope}[xshift=-1.5cm]
- \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={left:$\mathbb{R}$}];
- \begin{scope}
- \clip (-0.1,-1) rectangle (0.1,1);
- \draw[color=blue,line width=1.4pt] (0,-0.98) -- (0,0.98);
- \draw[color=blue,line width=1.4pt] (0,-1) circle[radius=0.02];
- \draw[color=blue,line width=1.4pt] (0,1) circle[radius=0.02];
- \end{scope}
-\end{scope}
-
-\node[color=red] at (23:1) [right] {$U_{x>0}$};
-\node[color=red] at (1.25,0) [right] {$\varphi_1$};
-
-\node[color=blue] at (157:1) [left] {$U_{x<0}$};
-\node[color=blue] at (-1.25,0) [left] {$\varphi_2$};
-
-\node[color=darkgreen] at (115:1) [below right] {$U_{y>0}$};
-\node[color=darkgreen] at (0,1.25) [above] {$\varphi_3$};
-
-\node[color=orange] at (-115:1) [above right] {$U_{y<0}$};
-\node[color=orange] at (0,-1.25) [below] {$\varphi_4$};
-
-\draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$x$}];
-\draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$y$}];
-
-\end{tikzpicture}
-\end{document}
-
+%
+% kartenkreis.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{3}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\fill[color=red!20] (0,-1) rectangle (1.5,1);
+\fill[color=blue!20] (-1.5,-1) rectangle (0,1);
+\fill[color=darkgreen!40,opacity=0.5] (-1,0) rectangle (1,1.5);
+\fill[color=orange!40,opacity=0.5] (-1,-1.5) rectangle (1,0);
+\fill[color=white] (0,0) circle[radius=1];
+
+\fill[color=gray!20]
+ (0,-1.5) -- (0.02,-1.6) -- (0.5,-1.8) -- (0.98,-1.6) -- (1,-1.5)
+ -- cycle;
+\fill[color=gray!20]
+ (0,1.5) -- (0.02,1.6) -- (0.5,1.8) -- (0.98,1.6) -- (1,1.5)
+ -- cycle;
+\fill[color=gray!20]
+ (0,-1.5) -- (-0.02,-1.6) -- (-0.5,-1.8) -- (-0.98,-1.6) -- (-1,-1.5)
+ -- cycle;
+\fill[color=gray!20]
+ (0,1.5) -- (-0.02,1.6) -- (-0.5,1.8) -- (-0.98,1.6) -- (-1,1.5)
+ -- cycle;
+
+\fill[color=gray!20]
+ (1.5,0) -- (1.6,0.02) -- (1.8,0.5) -- (1.6,0.98) -- (1.5,1)
+ -- cycle;
+\fill[color=gray!20]
+ (-1.5,0) -- (-1.6,0.02) -- (-1.8,0.5) -- (-1.6,0.98) -- (-1.5,1)
+ -- cycle;
+\fill[color=gray!20]
+ (1.5,0) -- (1.6,-0.02) -- (1.8,-0.5) -- (1.6,-0.98) -- (1.5,-1)
+ -- cycle;
+\fill[color=gray!20]
+ (-1.5,0) -- (-1.6,-0.02) -- (-1.8,-0.5) -- (-1.6,-0.98) -- (-1.5,-1)
+ -- cycle;
+
+\draw[->] (0.5,-1.8) arc (-180:-90:0.1) arc (-90:0:1.3) arc (0:90:0.1);
+\draw[->] (1.8,0.5) arc (-90:0:0.1) arc (0:90:1.3) arc (90:180:0.1);
+\draw[->] (-0.5,1.8) arc (0:90:0.1) arc (90:180:1.3) arc (180:270:0.1);
+\draw[->] (-1.8,-0.5) arc (90:180:0.1) arc (180:270:1.3) arc (270:360:0.1);
+
+\node at (1.01,1.32)
+ [right] {$\varphi_3\circ \varphi_1^{-1}(y)=\sqrt{1-y^2}$};
+\node at (1.6,1.6) {$\varphi_{31}$};
+
+\node at (1.01,-1.28)
+ [right] {$\varphi_1\circ \varphi_4^{-1}(x)=-\sqrt{1-x^2}$};
+\node at (1.6,-1.6) {$\varphi_{14}$};
+
+\node at (-1.24,1.32)
+ [left] {$\varphi_2\circ\varphi_3^{-1}(x)=\sqrt{1-x^2}$};
+\node at (-1.6,1.6) {$\varphi_{23}$};
+
+\node at (-1.18,-1.28)
+ [left] {$\varphi_4\circ\varphi_2^{-1}(y)=-\sqrt{1-y^2}$};
+\node at (-1.6,-1.6) {$\varphi_{42}$};
+
+
+\foreach \y in {0.1,0.3,...,0.9}{
+ \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({sqrt(1-\y*\y)},{\y}) -- (1.5,\y);
+ \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({sqrt(1-\y*\y)},{-\y}) -- (1.5,-\y);
+ \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({-sqrt(1-\y*\y)},{\y}) -- (-1.5,\y);
+ \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({-sqrt(1-\y*\y)},{-\y}) -- (-1.5,-\y);
+}
+\foreach \x in {0.1,0.3,...,0.9}{
+ \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({\x},{sqrt(1-\x*\x)}) -- ({\x},1.5);
+ \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({-\x},{sqrt(1-\x*\x)}) -- ({-\x},1.5);
+ \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({\x},{-sqrt(1-\x*\x)}) -- ({\x},-1.5);
+ \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm]
+ ({-\x},{-sqrt(1-\x*\x)}) -- ({-\x},-1.5);
+}
+
+%\draw[color=gray!50,line width=3pt] (0,0) circle[radius=1];
+\draw[color=yellow!30,line width=3pt] (0,0) circle[radius=1];
+\node[color=yellow] at ({1/sqrt(2)},{1/sqrt(2)}) [above right] {$S^1$};
+
+\def\r{1.02}
+
+\begin{scope}
+ \clip (0,-1.1) rectangle (1.1,1.1);
+ \draw[color=red,line width=1.4pt] (-89:\r) arc (-89:89:\r);
+ \draw[color=red,line width=1.4pt] (0,-\r) circle[radius=0.02];
+ \draw[color=red,line width=1.4pt] (0,\r) circle[radius=0.02];
+\end{scope}
+
+\begin{scope}
+ \clip (-1.1,-1.1) rectangle (0,1.1);
+ \draw[color=blue,line width=1.4pt] (91:\r) arc (91:269:\r);
+ \draw[color=blue,line width=1.4pt] (0,-\r) circle[radius=0.02];
+ \draw[color=blue,line width=1.4pt] (0,\r) circle[radius=0.02];
+\end{scope}
+
+\xdef\r{0.98}
+
+\begin{scope}
+ \clip (-1.1,0) rectangle (1.1,1.1);
+ \draw[color=darkgreen,line width=1.4pt] (1:\r) arc (1:179:\r);
+ \draw[color=darkgreen,line width=1.4pt] (\r,0) circle[radius=0.02];
+ \draw[color=darkgreen,line width=1.4pt] (-\r,0) circle[radius=0.02];
+\end{scope}
+
+\begin{scope}
+ \clip (-1.1,-1.1) rectangle (1.1,0);
+ \draw[color=orange,line width=1.4pt] (181:\r) arc (181:359:\r);
+ \draw[color=orange,line width=1.4pt] (\r,0) circle[radius=0.02];
+ \draw[color=orange,line width=1.4pt] (-\r,0) circle[radius=0.02];
+\end{scope}
+
+\begin{scope}[yshift=1.5cm]
+ \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$\mathbb{R}$}];
+ \begin{scope}
+ \clip (-1,-0.1) rectangle (1,0.1);
+ \draw[color=darkgreen,line width=1.4pt] (-0.98,0) -- (0.98,0);
+ \draw[color=darkgreen,line width=1.4pt] (-1,0)
+ circle[radius=0.02];
+ \draw[color=darkgreen,line width=1.4pt] (1,0)
+ circle[radius=0.02];
+ \end{scope}
+\end{scope}
+
+\begin{scope}[yshift=-1.5cm]
+ \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={below:$\mathbb{R}$}];
+ \begin{scope}
+ \clip (-1,-0.1) rectangle (1,0.1);
+ \draw[color=orange,line width=1.4pt] (-0.98,0) -- (0.98,0);
+ \draw[color=orange,line width=1.4pt] (-1,0) circle[radius=0.02];
+ \draw[color=orange,line width=1.4pt] (1,0) circle[radius=0.02];
+ \end{scope}
+\end{scope}
+
+\begin{scope}[xshift=1.5cm]
+ \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$\mathbb{R}$}];
+ \begin{scope}
+ \clip (-0.1,-1) rectangle (0.1,1);
+ \draw[color=red,line width=1.4pt] (0,-0.98) -- (0,0.98);
+ \draw[color=red,line width=1.4pt] (0,-1) circle[radius=0.02];
+ \draw[color=red,line width=1.4pt] (0,1) circle[radius=0.02];
+ \end{scope}
+\end{scope}
+
+\begin{scope}[xshift=-1.5cm]
+ \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={left:$\mathbb{R}$}];
+ \begin{scope}
+ \clip (-0.1,-1) rectangle (0.1,1);
+ \draw[color=blue,line width=1.4pt] (0,-0.98) -- (0,0.98);
+ \draw[color=blue,line width=1.4pt] (0,-1) circle[radius=0.02];
+ \draw[color=blue,line width=1.4pt] (0,1) circle[radius=0.02];
+ \end{scope}
+\end{scope}
+
+\node[color=red] at (23:1) [right] {$U_{x>0}$};
+\node[color=red] at (1.25,0) [right] {$\varphi_1$};
+
+\node[color=blue] at (157:1) [left] {$U_{x<0}$};
+\node[color=blue] at (-1.25,0) [left] {$\varphi_2$};
+
+\node[color=darkgreen] at (115:1) [below right] {$U_{y>0}$};
+\node[color=darkgreen] at (0,1.25) [above] {$\varphi_3$};
+
+\node[color=orange] at (-115:1) [above right] {$U_{y<0}$};
+\node[color=orange] at (0,-1.25) [below] {$\varphi_4$};
+
+\draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$x$}];
+\draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$y$}];
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/images/phasenraum.tex b/buch/chapters/60-gruppen/images/phasenraum.tex
index 2305b26..2bccc27 100644
--- a/buch/chapters/60-gruppen/images/phasenraum.tex
+++ b/buch/chapters/60-gruppen/images/phasenraum.tex
@@ -1,93 +1,93 @@
-%
-% phasenraum.tex --
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{1}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-
-\def\m{1}
-\def\K{0.444}
-
-\pgfmathparse{sqrt(\K/\m)}
-\xdef\o{\pgfmathresult}
-
-\def\punkt#1#2{ ({#2*cos(#1)},{\o*#2*sin(#1)}) }
-
-\foreach \r in {0.5,1,...,6}{
- \draw plot[domain=0:359,samples=360]
- ({\r*cos(\x)},{\o*\r*sin(\x)}) -- cycle;
-}
-
-\def\tangente#1#2{
- \pgfmathparse{#2/\m}
- \xdef\u{\pgfmathresult}
-
- \pgfmathparse{-#1*\K}
- \xdef\v{\pgfmathresult}
-
- \pgfmathparse{sqrt(\u*\u+\v*\v)}
- \xdef\l{\pgfmathresult}
-
- \fill[color=blue] (#1,#2) circle[radius=0.03];
- \draw[color=blue,line width=0.5pt]
- ({#1-0.2*\u/\l},{#2-0.2*\v/\l})
- --
- ({#1+0.2*\u/\l},{#2+0.2*\v/\l});
-}
-
-\foreach \x in {-6.25,-5.75,...,6.3}{
- \foreach \y in {-4.25,-3.75,...,4.3}{
- \tangente{\x}{\y}
- }
-}
-
-%\foreach \x in {0.5,1,...,5.5,6}{
-% \tangente{\x}{0}
-% \tangente{-\x}{0}
-% \foreach \y in {0.5,1,...,4}{
-% \tangente{\x}{\y}
-% \tangente{-\x}{\y}
-% \tangente{\x}{-\y}
-% \tangente{-\x}{-\y}
-% }
-%}
-%\foreach \y in {0.5,1,...,4}{
-% \tangente{0}{\y}
-% \tangente{0}{-\y}
-%}
-
-\fill[color=white,opacity=0.7] \punkt{60}{4} rectangle \punkt{59}{5.8};
-\fill[color=white,opacity=0.7] \punkt{0}{4} rectangle \punkt{18}{4.9};
-
-\draw[->,color=red,line width=1.4pt]
- plot[domain=0:60,samples=360]
- ({4*cos(\x)},{\o*4*sin(\x)});
-
-\draw[->] (-6.5,0) -- (6.7,0) coordinate[label={$x$}];
-\draw[->] (0,-4.5) -- (0,4.7) coordinate[label={right:$p$}];
-
-\fill[color=red] \punkt{60}{4} circle[radius=0.08];
-\node[color=red] at \punkt{60}{4} [above right]
- {$\begin{pmatrix}x(t)\\p(t)\end{pmatrix}$};
-
-\fill[color=red] \punkt{0}{4} circle[radius=0.08];
-\node[color=red] at \punkt{0}{4} [above right]
- {$\begin{pmatrix}x_0\\0\end{pmatrix}$};
-
-\fill[color=white] (4,0) circle[radius=0.05];
-\node at (3.9,0) [below right] {$x_0$};
-\fill (0,{\o*4}) circle[radius=0.05];
-\node at (0.1,{\o*4+0.05}) [below left] {$\omega x_0$};
-
-\end{tikzpicture}
-\end{document}
-
+%
+% phasenraum.tex --
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\m{1}
+\def\K{0.444}
+
+\pgfmathparse{sqrt(\K/\m)}
+\xdef\o{\pgfmathresult}
+
+\def\punkt#1#2{ ({#2*cos(#1)},{\o*#2*sin(#1)}) }
+
+\foreach \r in {0.5,1,...,6}{
+ \draw plot[domain=0:359,samples=360]
+ ({\r*cos(\x)},{\o*\r*sin(\x)}) -- cycle;
+}
+
+\def\tangente#1#2{
+ \pgfmathparse{#2/\m}
+ \xdef\u{\pgfmathresult}
+
+ \pgfmathparse{-#1*\K}
+ \xdef\v{\pgfmathresult}
+
+ \pgfmathparse{sqrt(\u*\u+\v*\v)}
+ \xdef\l{\pgfmathresult}
+
+ \fill[color=blue] (#1,#2) circle[radius=0.03];
+ \draw[color=blue,line width=0.5pt]
+ ({#1-0.2*\u/\l},{#2-0.2*\v/\l})
+ --
+ ({#1+0.2*\u/\l},{#2+0.2*\v/\l});
+}
+
+\foreach \x in {-6.25,-5.75,...,6.3}{
+ \foreach \y in {-4.25,-3.75,...,4.3}{
+ \tangente{\x}{\y}
+ }
+}
+
+%\foreach \x in {0.5,1,...,5.5,6}{
+% \tangente{\x}{0}
+% \tangente{-\x}{0}
+% \foreach \y in {0.5,1,...,4}{
+% \tangente{\x}{\y}
+% \tangente{-\x}{\y}
+% \tangente{\x}{-\y}
+% \tangente{-\x}{-\y}
+% }
+%}
+%\foreach \y in {0.5,1,...,4}{
+% \tangente{0}{\y}
+% \tangente{0}{-\y}
+%}
+
+\fill[color=white,opacity=0.7] \punkt{60}{4} rectangle \punkt{59}{5.8};
+\fill[color=white,opacity=0.7] \punkt{0}{4} rectangle \punkt{18}{4.9};
+
+\draw[->,color=red,line width=1.4pt]
+ plot[domain=0:60,samples=360]
+ ({4*cos(\x)},{\o*4*sin(\x)});
+
+\draw[->] (-6.5,0) -- (6.7,0) coordinate[label={$x$}];
+\draw[->] (0,-4.5) -- (0,4.7) coordinate[label={right:$p$}];
+
+\fill[color=red] \punkt{60}{4} circle[radius=0.08];
+\node[color=red] at \punkt{60}{4} [above right]
+ {$\begin{pmatrix}x(t)\\p(t)\end{pmatrix}$};
+
+\fill[color=red] \punkt{0}{4} circle[radius=0.08];
+\node[color=red] at \punkt{0}{4} [above right]
+ {$\begin{pmatrix}x_0\\0\end{pmatrix}$};
+
+\fill[color=white] (4,0) circle[radius=0.05];
+\node at (3.9,0) [below right] {$x_0$};
+\fill (0,{\o*4}) circle[radius=0.05];
+\node at (0.1,{\o*4+0.05}) [below left] {$\omega x_0$};
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/images/scherungen.tex b/buch/chapters/60-gruppen/images/scherungen.tex
index f6df172..893bd12 100644
--- a/buch/chapters/60-gruppen/images/scherungen.tex
+++ b/buch/chapters/60-gruppen/images/scherungen.tex
@@ -1,157 +1,157 @@
-%
-% scherungen.tex -- template for standalon tikz images
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{1}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-
-\definecolor{blau}{rgb}{0,0.8,1}
-\definecolor{blau}{rgb}{0,0.6,0}
-\def\s{1.1}
-
-\begin{scope}[xshift=-4.6cm]
-
- \fill[color=blue!20] (0,0) rectangle (2,2);
- \fill[color=red!40,opacity=0.5] (0,0) -- (2,\s) -- (2,{2+\s}) -- (0,2)
- -- cycle;
-
- \foreach \x in {-1,...,3}{
- \draw[color=blau] (\x,-1) -- (\x,3);
- \draw[color=blau] (-1,\x) -- (3,\x);
- }
-
- \begin{scope}
- \clip (-1,-1) rectangle (3,3);
- \foreach \x in {-1,...,3}{
- \draw[color=orange] (\x,-1) -- (\x,3);
- \draw[color=orange] (-1,{\x-0.5*\s}) -- (3,{\x+1.5*\s});
- }
- \end{scope}
-
- \draw[->] (-1.1,0) -- (3.3,0) coordinate[label={$x$}];
- \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}];
-
- \node[color=blue] at (0,2) [above left] {$1$};
- \node[color=blue] at (2,0) [below right] {$1$};
- \draw[->,color=blue] (0,0) -- (2,0);
- \draw[->,color=blue] (0,0) -- (0,2);
-
- \draw[->,color=red] (0,0) -- (2,\s);
- \draw[->,color=red] (0,0) -- (0,2);
-
- \node[color=red] at (2,\s) [below right] {$(1,t)$};
-
- \node at (0,0) [below right] {$O$};
- \node at (1,-1.1) [below] {$\displaystyle
- \begin{aligned}
- M &= \begin{pmatrix}0&0\\1&0 \end{pmatrix}
- \\
- e^{Mt}
- &=
- \begin{pmatrix}1&0\\t&1 \end{pmatrix}
- \end{aligned}
- $};
-\end{scope}
-
-\begin{scope}
- \fill[color=blue!20] (0,0) rectangle (2,2);
- \fill[color=red!40,opacity=0.5] (0,0) -- (2,0) -- ({2+\s},2) -- (\s,2)
- -- cycle;
-
- \foreach \x in {-1,...,3}{
- \draw[color=blau] (\x,-1) -- (\x,3);
- \draw[color=blau] (-1,\x) -- (3,\x);
- }
-
- \begin{scope}
- \clip (-1,-1) rectangle (3,3);
- \foreach \x in {-1,...,3}{
- \draw[color=orange] (-1,\x) -- (3,\x);
- \draw[color=orange] ({\x-0.5*\s},-1) -- ({\x+1.5*\s},3);
- }
- \end{scope}
-
- \draw[->] (-1.1,0) -- (3.3,0) coordinate[label={$x$}];
- \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}];
-
- \node[color=blue] at (0,2) [above left] {$1$};
- \node[color=blue] at (2,0) [below right] {$1$};
- \draw[->,color=blue] (0,0) -- (2,0);
- \draw[->,color=blue] (0,0) -- (0,2);
-
- \draw[->,color=red] (0,0) -- (2,0);
- \draw[->,color=red] (0,0) -- (\s,2);
-
- \node[color=red] at (\s,2) [above left] {$(t,1)$};
-
- \node at (0,0) [below right] {$O$};
-
- \node at (1,-1.1) [below] {$\displaystyle
- \begin{aligned} N &= \begin{pmatrix}0&1\\0&0 \end{pmatrix}
- \\
- e^{Nt}
- &=
- \begin{pmatrix}1&t\\0&1 \end{pmatrix}
- \end{aligned}
- $};
-\end{scope}
-
-\begin{scope}[xshift=3.6cm,yshift=0cm]
- \def\punkt#1#2{({1.6005*(#1)+0.4114*(#2)},{-0.2057*(#1)+0.5719*(#2)})}
- \fill[color=blue!20] (0,0) rectangle (2,2);
- \fill[color=red!40,opacity=0.5]
- (0,0) -- \punkt{2}{0} -- \punkt{2}{2} -- \punkt{0}{2} -- cycle;
-
- \foreach \x in {0,...,4}{
- \draw[color=blau] (\x,-1) -- (\x,3);
- }
- \foreach \y in {-1,...,3}{
- \draw[color=blau] (0,\y) -- (4,\y);
- }
-
- \begin{scope}
- \clip (-0,-1) rectangle (4,3);
- \foreach \x in {-1,...,6}{
- \draw[color=orange] \punkt{\x}{-3} -- \punkt{\x}{6};
- \draw[color=orange] \punkt{-3}{\x} -- \punkt{6}{\x};
- }
- \end{scope}
-
- \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
- \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}];
-
- \node[color=blue] at (0,2) [above left] {$1$};
- \node[color=blue] at (2,0) [below right] {$1$};
- \draw[->,color=blue] (0,0) -- (2,0);
- \draw[->,color=blue] (0,0) -- (0,2);
-
- \draw[->,color=red] (0,0) -- \punkt{2}{0};
- \draw[->,color=red] (0,0) -- \punkt{0}{2};
-
- \node at (0,0) [below right] {$O$};
-
- \node at (2,-1.1) [below] {$\displaystyle
- \begin{aligned} D &= \begin{pmatrix}0.5&0.4\\-0.2&-0.5 \end{pmatrix}
- \\
- e^{D\cdot 1}
- &=
- \begin{pmatrix}
- 1.6005 & 0.4114\\
- -0.2057 & 0.5719
- \end{pmatrix}
- \end{aligned}
- $};
-\end{scope}
-
-\end{tikzpicture}
-\end{document}
-
+%
+% scherungen.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{blau}{rgb}{0,0.8,1}
+\definecolor{blau}{rgb}{0,0.6,0}
+\def\s{1.1}
+
+\begin{scope}[xshift=-4.6cm]
+
+ \fill[color=blue!20] (0,0) rectangle (2,2);
+ \fill[color=red!40,opacity=0.5] (0,0) -- (2,\s) -- (2,{2+\s}) -- (0,2)
+ -- cycle;
+
+ \foreach \x in {-1,...,3}{
+ \draw[color=blau] (\x,-1) -- (\x,3);
+ \draw[color=blau] (-1,\x) -- (3,\x);
+ }
+
+ \begin{scope}
+ \clip (-1,-1) rectangle (3,3);
+ \foreach \x in {-1,...,3}{
+ \draw[color=orange] (\x,-1) -- (\x,3);
+ \draw[color=orange] (-1,{\x-0.5*\s}) -- (3,{\x+1.5*\s});
+ }
+ \end{scope}
+
+ \draw[->] (-1.1,0) -- (3.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}];
+
+ \node[color=blue] at (0,2) [above left] {$1$};
+ \node[color=blue] at (2,0) [below right] {$1$};
+ \draw[->,color=blue] (0,0) -- (2,0);
+ \draw[->,color=blue] (0,0) -- (0,2);
+
+ \draw[->,color=red] (0,0) -- (2,\s);
+ \draw[->,color=red] (0,0) -- (0,2);
+
+ \node[color=red] at (2,\s) [below right] {$(1,t)$};
+
+ \node at (0,0) [below right] {$O$};
+ \node at (1,-1.1) [below] {$\displaystyle
+ \begin{aligned}
+ M &= \begin{pmatrix}0&0\\1&0 \end{pmatrix}
+ \\
+ e^{Mt}
+ &=
+ \begin{pmatrix}1&0\\t&1 \end{pmatrix}
+ \end{aligned}
+ $};
+\end{scope}
+
+\begin{scope}
+ \fill[color=blue!20] (0,0) rectangle (2,2);
+ \fill[color=red!40,opacity=0.5] (0,0) -- (2,0) -- ({2+\s},2) -- (\s,2)
+ -- cycle;
+
+ \foreach \x in {-1,...,3}{
+ \draw[color=blau] (\x,-1) -- (\x,3);
+ \draw[color=blau] (-1,\x) -- (3,\x);
+ }
+
+ \begin{scope}
+ \clip (-1,-1) rectangle (3,3);
+ \foreach \x in {-1,...,3}{
+ \draw[color=orange] (-1,\x) -- (3,\x);
+ \draw[color=orange] ({\x-0.5*\s},-1) -- ({\x+1.5*\s},3);
+ }
+ \end{scope}
+
+ \draw[->] (-1.1,0) -- (3.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}];
+
+ \node[color=blue] at (0,2) [above left] {$1$};
+ \node[color=blue] at (2,0) [below right] {$1$};
+ \draw[->,color=blue] (0,0) -- (2,0);
+ \draw[->,color=blue] (0,0) -- (0,2);
+
+ \draw[->,color=red] (0,0) -- (2,0);
+ \draw[->,color=red] (0,0) -- (\s,2);
+
+ \node[color=red] at (\s,2) [above left] {$(t,1)$};
+
+ \node at (0,0) [below right] {$O$};
+
+ \node at (1,-1.1) [below] {$\displaystyle
+ \begin{aligned} N &= \begin{pmatrix}0&1\\0&0 \end{pmatrix}
+ \\
+ e^{Nt}
+ &=
+ \begin{pmatrix}1&t\\0&1 \end{pmatrix}
+ \end{aligned}
+ $};
+\end{scope}
+
+\begin{scope}[xshift=3.6cm,yshift=0cm]
+ \def\punkt#1#2{({1.6005*(#1)+0.4114*(#2)},{-0.2057*(#1)+0.5719*(#2)})}
+ \fill[color=blue!20] (0,0) rectangle (2,2);
+ \fill[color=red!40,opacity=0.5]
+ (0,0) -- \punkt{2}{0} -- \punkt{2}{2} -- \punkt{0}{2} -- cycle;
+
+ \foreach \x in {0,...,4}{
+ \draw[color=blau] (\x,-1) -- (\x,3);
+ }
+ \foreach \y in {-1,...,3}{
+ \draw[color=blau] (0,\y) -- (4,\y);
+ }
+
+ \begin{scope}
+ \clip (-0,-1) rectangle (4,3);
+ \foreach \x in {-1,...,6}{
+ \draw[color=orange] \punkt{\x}{-3} -- \punkt{\x}{6};
+ \draw[color=orange] \punkt{-3}{\x} -- \punkt{6}{\x};
+ }
+ \end{scope}
+
+ \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}];
+
+ \node[color=blue] at (0,2) [above left] {$1$};
+ \node[color=blue] at (2,0) [below right] {$1$};
+ \draw[->,color=blue] (0,0) -- (2,0);
+ \draw[->,color=blue] (0,0) -- (0,2);
+
+ \draw[->,color=red] (0,0) -- \punkt{2}{0};
+ \draw[->,color=red] (0,0) -- \punkt{0}{2};
+
+ \node at (0,0) [below right] {$O$};
+
+ \node at (2,-1.1) [below] {$\displaystyle
+ \begin{aligned} D &= \begin{pmatrix}0.5&0.4\\-0.2&-0.5 \end{pmatrix}
+ \\
+ e^{D\cdot 1}
+ &=
+ \begin{pmatrix}
+ 1.6005 & 0.4114\\
+ -0.2057 & 0.5719
+ \end{pmatrix}
+ \end{aligned}
+ $};
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/images/sl2.tex b/buch/chapters/60-gruppen/images/sl2.tex
index c41308c..0e44aa9 100644
--- a/buch/chapters/60-gruppen/images/sl2.tex
+++ b/buch/chapters/60-gruppen/images/sl2.tex
@@ -1,146 +1,146 @@
-%
-% sl2.tex -- template for standalon tikz images
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{1}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-
-\definecolor{darkgreen}{rgb}{0,0.6,0}
-
-\begin{scope}[xshift=-4.5cm]
- \fill[color=blue!20]
- (1.4,0) -- (0,1.4) -- (-1.4,0) -- (0,-1.4) -- cycle;
- \fill[color=red!40,opacity=0.5]
- (1.96,0) -- (0,1) -- (-1.96,0) -- (0,-1) -- cycle;
-
- \begin{scope}
- \clip (-2.1,-2.1) rectangle (2.3,2.3);
- \draw[color=darkgreen]
- plot[domain=-1:1,samples=100]
- ({(1/1.4)*exp(\x)},{(1/1.4)*exp(-\x)});
- \draw[color=darkgreen]
- plot[domain=-1:1,samples=100]
- ({(1/1.4)*exp(\x)},{-(1/1.4)*exp(-\x)});
- \draw[color=darkgreen]
- plot[domain=-1:1,samples=100]
- ({-(1/1.4)*exp(\x)},{(1/1.4)*exp(-\x)});
- \draw[color=darkgreen]
- plot[domain=-1:1,samples=100]
- ({-(1/1.4)*exp(\x)},{-(1/1.4)*exp(-\x)});
- \end{scope}
-
- \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
- \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
-
- \draw[->,color=blue] (0,0) -- (1.4,0);
- \draw[->,color=blue] (0,0) -- (0,1.4);
-
- \draw[->,color=red] (0,0) -- (1.96,0);
- \draw[->,color=red] (0,0) -- (0,1);
- \node at (0,-3.2)
- {$\displaystyle
- \begin{aligned}
- A&=\begin{pmatrix}1&0\\0&-1\end{pmatrix}
- \\
- e^{At}
- &=\begin{pmatrix}e^t&0\\0&e^{-t}\end{pmatrix}
- \end{aligned}
- $};
-
-\end{scope}
-
-
-\begin{scope}
- \fill[color=blue!20]
- (0:1.4) -- (90:1.4) -- (180:1.4) -- (270:1.4) -- cycle;
- \fill[color=red!40,opacity=0.5]
- (33:1.4) -- (123:1.4) -- (213:1.4) -- (303:1.4) -- cycle;
-
- \draw[color=darkgreen] (0,0) circle[radius=1.4];
-
- \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
- \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
-
- \draw[->,color=blue] (0,0) -- (1.4,0);
- \draw[->,color=blue] (0,0) -- (0,1.4);
-
- \draw[->,color=red] (0,0) -- (33:1.4);
- \draw[->,color=red] (0,0) -- (123:1.4);
-
- \node at (0,-3.2)
- {$\displaystyle
- \begin{aligned}
- B
- &=\begin{pmatrix}0&-1\\1&0 \end{pmatrix}
- \\
- e^{Bt}
- &=
- \begin{pmatrix}
- \cos t&-\sin t\\
- \sin t& \cos t
- \end{pmatrix}
- \end{aligned}$};
-\end{scope}
-
-
-\begin{scope}[xshift=4.5cm]
- \fill[color=blue!20]
- (0:1.4) -- (90:1.4) -- (180:1.4) -- (270:1.4) -- cycle;
- \def\x{0.5}
- \fill[color=red!40,opacity=0.5]
- ({1.4*cosh(\x)},{1.4*sinh(\x})
- --
- ({1.4*sinh(\x},{1.4*cosh(\x)})
- --
- ({-1.4*cosh(\x)},{-1.4*sinh(\x})
- --
- ({-1.4*sinh(\x},{-1.4*cosh(\x)})
- -- cycle;
-
- \begin{scope}
- \clip (-2.1,-2.1) rectangle (2.2,2.2);
- \draw[color=darkgreen]
- plot[domain=-1:1,samples=100] ({1.4*cosh(\x)},{1.4*sinh(\x)});
- \draw[color=darkgreen]
- plot[domain=-1:1,samples=100] ({1.4*sinh(\x)},{1.4*cosh(\x)});
- \draw[color=darkgreen]
- plot[domain=-1:1,samples=100] ({-1.4*cosh(\x)},{1.4*sinh(\x)});
- \draw[color=darkgreen]
- plot[domain=-1:1,samples=100] ({1.4*sinh(\x)},{-1.4*cosh(\x)});
- \end{scope}
-
- \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
- \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
-
- \draw[->,color=blue] (0,0) -- (1.4,0);
- \draw[->,color=blue] (0,0) -- (0,1.4);
-
- \draw[->,color=red] (0,0) -- ({1.4*cosh(\x)},{1.4*sinh(\x)});
- \draw[->,color=red] (0,0) -- ({1.4*sinh(\x)},{1.4*cosh(\x)});
-
- \node at (0,-3.2) {$\displaystyle
- \begin{aligned}
- C&=\begin{pmatrix}0&1\\1&0\end{pmatrix}
- \\
- e^{Ct}
- &=
- \begin{pmatrix}
- \cosh t&\sinh t\\
- \sinh t&\cosh t
- \end{pmatrix}
- \end{aligned}
- $};
-\end{scope}
-
-\end{tikzpicture}
-\end{document}
-
+%
+% sl2.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\begin{scope}[xshift=-4.5cm]
+ \fill[color=blue!20]
+ (1.4,0) -- (0,1.4) -- (-1.4,0) -- (0,-1.4) -- cycle;
+ \fill[color=red!40,opacity=0.5]
+ (1.96,0) -- (0,1) -- (-1.96,0) -- (0,-1) -- cycle;
+
+ \begin{scope}
+ \clip (-2.1,-2.1) rectangle (2.3,2.3);
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100]
+ ({(1/1.4)*exp(\x)},{(1/1.4)*exp(-\x)});
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100]
+ ({(1/1.4)*exp(\x)},{-(1/1.4)*exp(-\x)});
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100]
+ ({-(1/1.4)*exp(\x)},{(1/1.4)*exp(-\x)});
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100]
+ ({-(1/1.4)*exp(\x)},{-(1/1.4)*exp(-\x)});
+ \end{scope}
+
+ \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+
+ \draw[->,color=blue] (0,0) -- (1.4,0);
+ \draw[->,color=blue] (0,0) -- (0,1.4);
+
+ \draw[->,color=red] (0,0) -- (1.96,0);
+ \draw[->,color=red] (0,0) -- (0,1);
+ \node at (0,-3.2)
+ {$\displaystyle
+ \begin{aligned}
+ A&=\begin{pmatrix}1&0\\0&-1\end{pmatrix}
+ \\
+ e^{At}
+ &=\begin{pmatrix}e^t&0\\0&e^{-t}\end{pmatrix}
+ \end{aligned}
+ $};
+
+\end{scope}
+
+
+\begin{scope}
+ \fill[color=blue!20]
+ (0:1.4) -- (90:1.4) -- (180:1.4) -- (270:1.4) -- cycle;
+ \fill[color=red!40,opacity=0.5]
+ (33:1.4) -- (123:1.4) -- (213:1.4) -- (303:1.4) -- cycle;
+
+ \draw[color=darkgreen] (0,0) circle[radius=1.4];
+
+ \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+
+ \draw[->,color=blue] (0,0) -- (1.4,0);
+ \draw[->,color=blue] (0,0) -- (0,1.4);
+
+ \draw[->,color=red] (0,0) -- (33:1.4);
+ \draw[->,color=red] (0,0) -- (123:1.4);
+
+ \node at (0,-3.2)
+ {$\displaystyle
+ \begin{aligned}
+ B
+ &=\begin{pmatrix}0&-1\\1&0 \end{pmatrix}
+ \\
+ e^{Bt}
+ &=
+ \begin{pmatrix}
+ \cos t&-\sin t\\
+ \sin t& \cos t
+ \end{pmatrix}
+ \end{aligned}$};
+\end{scope}
+
+
+\begin{scope}[xshift=4.5cm]
+ \fill[color=blue!20]
+ (0:1.4) -- (90:1.4) -- (180:1.4) -- (270:1.4) -- cycle;
+ \def\x{0.5}
+ \fill[color=red!40,opacity=0.5]
+ ({1.4*cosh(\x)},{1.4*sinh(\x})
+ --
+ ({1.4*sinh(\x},{1.4*cosh(\x)})
+ --
+ ({-1.4*cosh(\x)},{-1.4*sinh(\x})
+ --
+ ({-1.4*sinh(\x},{-1.4*cosh(\x)})
+ -- cycle;
+
+ \begin{scope}
+ \clip (-2.1,-2.1) rectangle (2.2,2.2);
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100] ({1.4*cosh(\x)},{1.4*sinh(\x)});
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100] ({1.4*sinh(\x)},{1.4*cosh(\x)});
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100] ({-1.4*cosh(\x)},{1.4*sinh(\x)});
+ \draw[color=darkgreen]
+ plot[domain=-1:1,samples=100] ({1.4*sinh(\x)},{-1.4*cosh(\x)});
+ \end{scope}
+
+ \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+
+ \draw[->,color=blue] (0,0) -- (1.4,0);
+ \draw[->,color=blue] (0,0) -- (0,1.4);
+
+ \draw[->,color=red] (0,0) -- ({1.4*cosh(\x)},{1.4*sinh(\x)});
+ \draw[->,color=red] (0,0) -- ({1.4*sinh(\x)},{1.4*cosh(\x)});
+
+ \node at (0,-3.2) {$\displaystyle
+ \begin{aligned}
+ C&=\begin{pmatrix}0&1\\1&0\end{pmatrix}
+ \\
+ e^{Ct}
+ &=
+ \begin{pmatrix}
+ \cosh t&\sinh t\\
+ \sinh t&\cosh t
+ \end{pmatrix}
+ \end{aligned}
+ $};
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/images/torus.pov b/buch/chapters/60-gruppen/images/torus.pov
index ee09c36..3a8e327 100644
--- a/buch/chapters/60-gruppen/images/torus.pov
+++ b/buch/chapters/60-gruppen/images/torus.pov
@@ -1,189 +1,189 @@
-//
-// diffusion.pov
-//
-// (c) 2021 Prof Dr Andreas Müller, OST Ostscheizer Fachhochschule
-//
-#version 3.7;
-#include "colors.inc"
-
-global_settings {
- assumed_gamma 1
-}
-
-#declare imagescale = 0.034;
-#declare N = 100;
-#declare r = 0.43;
-#declare R = 1;
-
-camera {
- location <43, 25, -20>
- look_at <0, -0.01, 0>
- right 16/9 * x * imagescale
- up y * imagescale
-}
-
-light_source {
- <10, 20, -40> color White
- area_light <1,0,0> <0,0,1>, 10, 10
- adaptive 1
- jitter
-}
-
-sky_sphere {
- pigment {
- color rgb<1,1,1>
- }
-}
-
-#macro rotiere(phi, vv)
- < cos(phi) * vv.x - sin(phi) * vv.z, vv.y, sin(phi) * vv.x + cos(phi) * vv.z >
-#end
-
-#macro punkt(phi,theta)
- rotiere(phi, < R + r * cos(theta), r * sin(theta), 0 >)
-#end
-
-mesh {
- #declare phistep = 2 * pi / N;
- #declare thetastep = 2 * 2 * pi / N;
- #declare phi = 0;
- #while (phi < 2 * pi - phistep/2)
- #declare theta = 0;
- #while (theta < 2 * pi - thetastep/2)
- triangle {
- punkt(phi , theta ),
- punkt(phi + phistep, theta ),
- punkt(phi + phistep, theta + thetastep)
- }
- triangle {
- punkt(phi , theta ),
- punkt(phi + phistep, theta + thetastep),
- punkt(phi , theta + thetastep)
- }
- #declare theta = theta + thetastep;
- #end
- #declare phi = phi + phistep;
- #end
- pigment {
- color Gray
- }
- finish {
- specular 0.9
- metallic
- }
-}
-
-#declare thetastart = -0.2;
-#declare thetaend = 1.2;
-#declare phistart = 5;
-#declare phiend = 6;
-
-union {
- #declare thetastep = 0.2;
- #declare theta = thetastart;
- #while (theta < thetaend + thetastep/2)
- #declare phistep = (phiend-phistart)/N;
- #declare phi = phistart;
- #while (phi < phiend - phistep/2)
- sphere { punkt(phi,theta), 0.01 }
- cylinder {
- punkt(phi,theta),
- punkt(phi+phistep,theta),
- 0.01
- }
- #declare phi = phi + phistep;
- #end
- sphere { punkt(phi,theta), 0.01 }
- #declare theta = theta + thetastep;
- #end
-
- pigment {
- color Red
- }
- finish {
- specular 0.9
- metallic
- }
-}
-
-union {
- #declare phistep = 0.2;
- #declare phi = phistart;
- #while (phi < phiend + phistep/2)
- #declare thetastep = (thetaend-thetastart)/N;
- #declare theta = thetastart;
- #while (theta < thetaend - thetastep/2)
- sphere { punkt(phi,theta), 0.01 }
- cylinder {
- punkt(phi,theta),
- punkt(phi,theta+thetastep),
- 0.01
- }
- #declare theta = theta + thetastep;
- #end
- sphere { punkt(phi,theta), 0.01 }
- #declare phi = phi + phistep;
- #end
- pigment {
- color Blue
- }
- finish {
- specular 0.9
- metallic
- }
-}
-
-#macro punkt2(a,b)
- punkt(5.6+a*sqrt(3)/2-b/2,0.2+a/2 + b*sqrt(3)/2)
-#end
-
-#declare darkgreen = rgb<0,0.6,0>;
-
-#declare astart = 0;
-#declare aend = 1;
-#declare bstart = -0.2;
-#declare bend = 1.2;
-union {
- #declare a = astart;
- #declare astep = 0.2;
- #while (a < aend + astep/2)
- #declare b = bstart;
- #declare bstep = (bend - bstart)/N;
- #while (b < bend - bstep/2)
- sphere { punkt2(a,b), 0.01 }
- cylinder { punkt2(a,b), punkt2(a,b+bstep), 0.01 }
- #declare b = b + bstep;
- #end
- sphere { punkt2(a,b), 0.01 }
- #declare a = a + astep;
- #end
- pigment {
- color darkgreen
- }
- finish {
- specular 0.9
- metallic
- }
-}
-union {
- #declare b = bstart;
- #declare bstep = 0.2;
- #while (b < bend + bstep/2)
- #declare a = astart;
- #declare astep = (aend - astart)/N;
- #while (a < aend - astep/2)
- sphere { punkt2(a,b), 0.01 }
- cylinder { punkt2(a,b), punkt2(a+astep,b), 0.01 }
- #declare a = a + astep;
- #end
- sphere { punkt2(a,b), 0.01 }
- #declare b = b + bstep;
- #end
- pigment {
- color Orange
- }
- finish {
- specular 0.9
- metallic
- }
-}
+//
+// diffusion.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostscheizer Fachhochschule
+//
+#version 3.7;
+#include "colors.inc"
+
+global_settings {
+ assumed_gamma 1
+}
+
+#declare imagescale = 0.034;
+#declare N = 100;
+#declare r = 0.43;
+#declare R = 1;
+
+camera {
+ location <43, 25, -20>
+ look_at <0, -0.01, 0>
+ right 16/9 * x * imagescale
+ up y * imagescale
+}
+
+light_source {
+ <10, 20, -40> color White
+ area_light <1,0,0> <0,0,1>, 10, 10
+ adaptive 1
+ jitter
+}
+
+sky_sphere {
+ pigment {
+ color rgb<1,1,1>
+ }
+}
+
+#macro rotiere(phi, vv)
+ < cos(phi) * vv.x - sin(phi) * vv.z, vv.y, sin(phi) * vv.x + cos(phi) * vv.z >
+#end
+
+#macro punkt(phi,theta)
+ rotiere(phi, < R + r * cos(theta), r * sin(theta), 0 >)
+#end
+
+mesh {
+ #declare phistep = 2 * pi / N;
+ #declare thetastep = 2 * 2 * pi / N;
+ #declare phi = 0;
+ #while (phi < 2 * pi - phistep/2)
+ #declare theta = 0;
+ #while (theta < 2 * pi - thetastep/2)
+ triangle {
+ punkt(phi , theta ),
+ punkt(phi + phistep, theta ),
+ punkt(phi + phistep, theta + thetastep)
+ }
+ triangle {
+ punkt(phi , theta ),
+ punkt(phi + phistep, theta + thetastep),
+ punkt(phi , theta + thetastep)
+ }
+ #declare theta = theta + thetastep;
+ #end
+ #declare phi = phi + phistep;
+ #end
+ pigment {
+ color Gray
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+#declare thetastart = -0.2;
+#declare thetaend = 1.2;
+#declare phistart = 5;
+#declare phiend = 6;
+
+union {
+ #declare thetastep = 0.2;
+ #declare theta = thetastart;
+ #while (theta < thetaend + thetastep/2)
+ #declare phistep = (phiend-phistart)/N;
+ #declare phi = phistart;
+ #while (phi < phiend - phistep/2)
+ sphere { punkt(phi,theta), 0.01 }
+ cylinder {
+ punkt(phi,theta),
+ punkt(phi+phistep,theta),
+ 0.01
+ }
+ #declare phi = phi + phistep;
+ #end
+ sphere { punkt(phi,theta), 0.01 }
+ #declare theta = theta + thetastep;
+ #end
+
+ pigment {
+ color Red
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+union {
+ #declare phistep = 0.2;
+ #declare phi = phistart;
+ #while (phi < phiend + phistep/2)
+ #declare thetastep = (thetaend-thetastart)/N;
+ #declare theta = thetastart;
+ #while (theta < thetaend - thetastep/2)
+ sphere { punkt(phi,theta), 0.01 }
+ cylinder {
+ punkt(phi,theta),
+ punkt(phi,theta+thetastep),
+ 0.01
+ }
+ #declare theta = theta + thetastep;
+ #end
+ sphere { punkt(phi,theta), 0.01 }
+ #declare phi = phi + phistep;
+ #end
+ pigment {
+ color Blue
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+#macro punkt2(a,b)
+ punkt(5.6+a*sqrt(3)/2-b/2,0.2+a/2 + b*sqrt(3)/2)
+#end
+
+#declare darkgreen = rgb<0,0.6,0>;
+
+#declare astart = 0;
+#declare aend = 1;
+#declare bstart = -0.2;
+#declare bend = 1.2;
+union {
+ #declare a = astart;
+ #declare astep = 0.2;
+ #while (a < aend + astep/2)
+ #declare b = bstart;
+ #declare bstep = (bend - bstart)/N;
+ #while (b < bend - bstep/2)
+ sphere { punkt2(a,b), 0.01 }
+ cylinder { punkt2(a,b), punkt2(a,b+bstep), 0.01 }
+ #declare b = b + bstep;
+ #end
+ sphere { punkt2(a,b), 0.01 }
+ #declare a = a + astep;
+ #end
+ pigment {
+ color darkgreen
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+union {
+ #declare b = bstart;
+ #declare bstep = 0.2;
+ #while (b < bend + bstep/2)
+ #declare a = astart;
+ #declare astep = (aend - astart)/N;
+ #while (a < aend - astep/2)
+ sphere { punkt2(a,b), 0.01 }
+ cylinder { punkt2(a,b), punkt2(a+astep,b), 0.01 }
+ #declare a = a + astep;
+ #end
+ sphere { punkt2(a,b), 0.01 }
+ #declare b = b + bstep;
+ #end
+ pigment {
+ color Orange
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
diff --git a/buch/chapters/60-gruppen/lie-algebren.tex b/buch/chapters/60-gruppen/lie-algebren.tex
index 482ba6f..cee8510 100644
--- a/buch/chapters/60-gruppen/lie-algebren.tex
+++ b/buch/chapters/60-gruppen/lie-algebren.tex
@@ -1,647 +1,647 @@
-%
-% lie-algebren.tex -- Lie-Algebren
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Lie-Algebren
-\label{buch:section:lie-algebren}}
-\rhead{Lie-Algebren}
-Im vorangegangenen Abschnitt wurde gezeigt, dass alle beschriebenen
-Matrizengruppen als Untermannigfaltigkeiten im $n^2$-dimensionalen
-Vektorraum $M_n(\mathbb{R}9$ betrachtet werden können.
-Die Gruppen haben damit nicht nur die algebraische Struktur einer
-Matrixgruppe, sie haben auch die geometrische Struktur einer
-Mannigfaltigkeit.
-Insbesondere ist es sinnvoll, von Ableitungen zu sprechen.
-
-Eindimensionale Untergruppen einer Gruppe können auch als Kurven
-innerhalb der Gruppe angesehen werden.
-In diesem Abschnitt soll gezeigt werden, wie man zu jeder eindimensionalen
-Untergruppe einen Vektor in $M_n(\mathbb{R})$ finden kann derart, dass
-der Vektor als Tangentialvektor an diese Kurve gelten kann.
-Aus einer Abbildung zwischen der Gruppe und diesen Tagentialvektoren
-erhält man dann auch eine algebraische Struktur auf diesen Tangentialvektoren,
-die sogenannte Lie-Algebra.
-Sie ist charakteristisch für die Gruppe.
-Insbesondere werden wir sehen, wie die Gruppen $\operatorname{SO}(3)$
-und $\operatorname{SU}(2)$ die gleich Lie-Algebra haben und dass die
-Lie-Algebra von $\operatorname{SO}(3)$ mit dem Vektorprodukt in $\mathbb{R}^3$
-übereinstimmt.
-
-%
-% Die Lie-Algebra einer Matrizengruppe
-%
-\subsection{Lie-Algebra einer Matrizengruppe
-\label{buch:section:lie-algebra-einer-matrizengruppe}}
-Zu jedem Tangentialvektor $A$ im Punkt $I$ einer Matrizengruppe gibt es
-eine Einparameteruntergruppe, die mit Hilfe der Exponentialfunktion
-$e^{At}$ konstruiert werden kann.
-Für die folgende Konstruktion arbeiten wir in der Gruppe
-$\operatorname{GL}_n(\mathbb{R})$, in der jede Matrix auch ein
-Tangentialvektor ist.
-Wir werden daraus die Lie-Klammer ableiten und später verifizieren,
-dass diese auch für die Tangentialvektoren der Gruppen
-$\operatorname{SO}(n)$ oder $\operatorname{SL}_n(\mathbb{R})$ funktioniert.
-
-\subsubsection{Lie-Klammer}
-Zu zwei verschiedenen Tagentialvektoren $A\in M_n(\mathbb{R})$ und
-$B\in M_n(\mathbb{R})$ gibt es zwei verschiedene Einparameteruntergruppen
-$e^{At}$ und $e^{Bt}$.
-Wenn die Matrizen $A$ und $B$ oder die Einparameteruntergruppen
-$e^{At}$ und $e^{Bt}$ vertauschbar sind, dann stimmen
-$e^{At}e^{Bt}$ und $e^{Bt}e^{At}$ nicht überein.
-Die zugehörigen Potenzreihen sind:
-\begin{align*}
-e^{At}
-&=
-I+At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \dots
-\\
-e^{Bt}
-&=
-I+Bt + \frac{B^2t^2}{2!} + \frac{B^3t^3}{3!} + \dots
-\\
-e^{At}e^{Bt}
-&=
-\biggl(I+At + \frac{A^2t^2}{2!} + \dots\biggr)
-\biggl(I+Bt + \frac{B^2t^2}{2!} + \dots\biggr)
-\\
-&=
-I+(A+B)t + \biggl(\frac{A^2}{2!}+AB+\frac{B^2}{2!}\biggr)t^2 +\dots
-\\
-e^{Bt}e^{At}
-&=
-\biggl(I+Bt + \frac{B^2t^2}{2!} + \dots\biggr)
-\biggl(I+At + \frac{A^2t^2}{2!} + \dots\biggr)
-\\
-&=
-I+(B+A)t + \biggl(\frac{B^2}{2!}+BA+\frac{A^2}{2!}\biggr)t^2 +\dots
-\intertext{%
-Die beiden Kurven $e^{At}e^{Bt}$ und $e^{Bt}e^{At}$ haben zwar den gleichen
-Tangentialvektor für $t=0$, sie unterscheiden
-sich aber untereinander, und sie unterscheiden sich von der
-Einparameteruntergruppe von $A+B$}
-e^{(A+B)t}
-&=
-I + (A+B)t + \frac{t^2}{2}(A^2 + AB + BA + B^2) + \ldots
-\intertext{Für die Unterschiede finden wir}
-e^{At}e^{Bt} - e^{(A+B)t}
-&=
-\biggl(AB-\frac{AB+BA}2\biggr)t^2
-+\ldots
-=
-(AB-BA) \frac{t^2}{2} + \ldots
-=
-[A,B]\frac{t^2}{2}+\ldots
-\\
-e^{Bt}e^{At} - e^{(A+B)t}
-&=
-\biggl(BA-\frac{AB+BA}2\biggr)t^2
-+\ldots
-=
-(BA-AB)
-\frac{t^2}{2}
-+\ldots
-=
--[A,B]\frac{t^2}{2}
-\\
-e^{At}e^{Bt}-e^{Bt}e^{At}
-&=
-(AB-BA)t^2+\ldots
-=
-\phantom{-}[A,B]t^2+\ldots
-\end{align*}
-wobei mit $[A,B]=AB-BA$ abgekürzt wird.
-
-\begin{definition}
-\label{buch:gruppen:def:kommutator}
-Der Kommutator zweier Matrizen $A,B\in M_n(\mathbb{R})$ ist die Matrix
-$[A,B]=AB-BA$.
-\end{definition}
-
-Der Kommutator ist bilinear und antisymmetrisch, da
-\begin{align*}
-[\lambda A+\mu B,C]
-&=
-\lambda AC+\mu BC-\lambda CA -\mu CB
-=
-\lambda[A,C]+\mu[B,C]
-\\
-[A,\lambda B+\mu C]
-&=
-\lambda AB + \mu AC - \lambda BA - \mu CA
-=
-\lambda[A,B]+\mu[A,C]
-\\
-[A,B]
-&=
-AB-BA = -(BA-AB) = -[B,A].
-\end{align*}
-Aus der letzten Bedingung folgt insbesodnere $[A,A]=0$
-
-Der Kommutator $[A,B]$ misst in niedrigster Ordnung den Unterschied
-zwischen den $e^{At}$ und $e^{Bt}$.
-Der Kommutator der Tangentialvektoren $A$ und $B$ bildet also die
-Nichtkommutativität der Matrizen $e^{At}$ und $e^{Bt}$ ab.
-
-
-\subsubsection{Die Jacobi-Identität}
-Der Kommutator hat die folgende zusätzliche algebraische Eigenschaft:
-\begin{align*}
-[A,[B,C]]
-+
-[B,[C,A]]
-+
-[C,[A,B]]
-&=
-[A,BC-CB]
-+
-[B,CA-AC]
-+
-[C,AB-BA]
-\\
-&=\phantom{+}
-ABC-ACB-BCA+CBA
-\\
-&\phantom{=}+
-BCA-BAC-CAB+ACB
-\\
-&\phantom{=}+
-CAB-CBA-ABC+BAC
-\\
-&=0.
-\end{align*}
-Diese Eigenschaft findet man auch bei anderen Strukturen, zum Beispiel
-bei Vektorfeldern, die man als Differentialoperatoren auf Funktionen
-betrachten kann.
-Man kann dann einen Kommutator $[X,Y]$ für zwei Vektorfelder
-$X$ und $Y$ definieren.
-Dieser Kommutator von Vektorfeldern erfüllt ebenfalls die gleiche
-Identität.
-
-\begin{definition}
-\label{buch:gruppen:def:jacobi}
-Ein bilineares Produkt $[\;,\;]\colon V\times V\to V$ auf dem Vektorraum
-erfüllt die {\em Jacobi-Identität}, wenn
-\[
-[u,[v,w]] + [v,[w,u]] + [w,[u,v]]=0
-\]
-ist für beliebige Vektoren $u,v,w\in V$.
-\end{definition}
-
-\subsubsection{Lie-Algebra}
-Die Tangentialvektoren einer Lie-Gruppe tragen also mit dem Kommutator
-eine zusätzliche Struktur, nämlich die Struktur einer Lie-Algebra.
-
-\begin{definition}
-Ein Vektorraum $V$ mit einem bilinearen, Produkt
-\[
-[\;,\;]\colon V\times V \to V : (u,v) \mapsto [u,v],
-\]
-welches zusätzlich die Jacobi-Identität~\ref{buch:gruppen:def:jacobi}
-erfüllt, heisst eine {\em Lie-Algebra}.
-\end{definition}
-
-Die Lie-Algebra einer Lie-Gruppe $G$ wird mit $LG$ bezeichnet.
-$LG$ besteht aus den Tangentialvektoren im Punkt $I$.
-Die Exponentialabbildung $\exp\colon LG\to G:A\mapsto e^A$
-ist eine differenzierbare Abbildung von $LG$ in die Gruppe $G$.
-Insbesondere kann die Inverse der Exponentialabbildung als eine
-Karte in einer Umgebung von $I$ verwendet werden.
-
-Für die Lie-Algebren der Matrizengruppen, die früher definiert worden
-sind, verwenden wir die als Notationskonvention, dass der Name der
-Lie-Algebra der mit kleinen Buchstaben geschrieben Name der Lie-Gruppe ist.
-Die Lie-Algebra von $\operatorname{SO}(n)$ ist also
-$L\operatorname{SO}(n) = \operatorname{os}(n)$,
-die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ ist
-$L\operatorname{SL}_n(\mathbb{R})=\operatorname{sl}_n(\mathbb{R})$.
-
-
-%
-% Die Lie-Algebra von SO(3)
-%
-\subsection{Die Lie-Algebra von $\operatorname{SO}(3)$
-\label{buch:subsection:die-lie-algebra-von-so3}}
-Zur Gruppe $\operatorname{SO}(3)$ der Drehmatrizen gehört die Lie-Algebra
-$\operatorname{so}(3)$ der antisymmetrischen $3\times 3$-Matrizen.
-Solche Matrizen haben die Form
-\[
-\Omega
-=
-\begin{pmatrix}
- 0 & \omega_3&-\omega_2\\
--\omega_3& 0 & \omega_1\\
- \omega_2&-\omega_1& 0
-\end{pmatrix}
-\]
-Der Vektorraum $\operatorname{so}(3)$ ist also dreidimensional.
-
-Die Wirkung von $I+t\Omega$ auf einem Vektor $x$ ist
-\[
-(I+t\Omega)
-\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}
-=
-\begin{pmatrix}
- 1 & t\omega_3&-t\omega_2\\
--t\omega_3& 1 & t\omega_1\\
- t\omega_2&-t\omega_1& 1
-\end{pmatrix}
-\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}
-=
-\begin{pmatrix}
-x_1-t(-\omega_3x_2+\omega_2x_3)\\
-x_2-t( \omega_3x_1-\omega_1x_3)\\
-x_3-t(-\omega_2x_1+\omega_1x_2)
-\end{pmatrix}
-=
-x- t\begin{pmatrix}\omega_1\\\omega_2\\\omega_3\end{pmatrix}\times x
-=
-x+ tx\times \omega.
-\]
-Die Matrix $\Omega$ ist als die infinitesimale Version einer Drehung
-um die Achse $\omega$.
-
-Wir können die Analogie zwischen Matrizen in $\operatorname{so}(3)$ und
-Vektoren in $\mathbb R^3$ noch etwas weiter treiben. Zu jedem Vektor
-in $\mathbb R^3$ konstruieren wir eine Matrix in $\operatorname{so}(3)$
-mit Hilfe der Abbildung
-\[
-\mathbb R^3\to\operatorname{so}(3)
-:
-\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}
-\mapsto
-\begin{pmatrix}
- 0 & v_3&-v_1\\
--v_3& 0 & v_2\\
- v_1&-v_2& 0
-\end{pmatrix}.
-\]
-Der Kommutator von zwei so aus Vektoren $\vec u$ und $\vec v$
-konstruierten Matrizen $U$ und $V$ ist:
-\begin{align*}
-[U,V]
-&=
-UV-VU
-\\
-&=
-\begin{pmatrix}
- 0 & u_3&-u_1\\
--u_3& 0 & u_2\\
- u_1&-u_2& 0
-\end{pmatrix}
-\begin{pmatrix}
- 0 & v_3&-v_1\\
--v_3& 0 & v_2\\
- v_1&-v_2& 0
-\end{pmatrix}
--
-\begin{pmatrix}
- 0 & v_3&-v_1\\
--v_3& 0 & v_2\\
- v_1&-v_2& 0
-\end{pmatrix}
-\begin{pmatrix}
- 0 & u_3&-u_1\\
--u_3& 0 & u_2\\
- u_1&-u_2& 0
-\end{pmatrix}
-\\
-&=
-\begin{pmatrix}
-u_3v_3+u_1v_1 - u_3v_3 - u_1v_1
- & u_1v_2 - u_2v_1
- & u_3v_2 - u_2v_3
-\\
-u_2v_1 - u_1v_2
- & -u_3v_3-u_2v_2 + u_3v_3+u_2v_2
- & u_3v_1 - u_1v_3
-\\
-u_2v_3 - u_3v_2
- & u_1v_3 - u_3v_1
- &-u_1v_1-u_2v_2 u_1v_1+u_2v_2
-\end{pmatrix}
-\\
-&=
-\begin{pmatrix}
-0
- & u_1v_2 - u_2v_1
- &-(u_2v_3-u_3v_2)
-\\
--( u_1v_2 - u_2v_1)
- & 0
- & u_3v_1 - u_1v_3
-\\
-u_2v_3 - u_3v_2
- &-( u_3v_1 - u_1v_3)
- & 0
-\end{pmatrix}
-\end{align*}
-Die Matrix $[U,V]$ gehört zum Vektor $\vec u\times\vec v$.
-Damit können wir aus der Jacobi-Identität jetzt folgern, dass
-\[
-\vec u\times(\vec v\times w)
-+
-\vec v\times(\vec w\times u)
-+
-\vec w\times(\vec u\times v)
-=0
-\]
-für drei beliebige Vektoren $\vec u$, $\vec v$ und $\vec w$ ist.
-Dies bedeutet, dass der dreidimensionale Vektorraum $\mathbb R^3$
-mit dem Vektorprodukt zu einer Lie-Algebra wird.
-In der Tat verwenden einige Bücher statt der vertrauten Notation
-$\vec u\times \vec v$ für das Vektorprodukt die aus der Theorie der
-Lie-Algebren entlehnte Notation $[\vec u,\vec v]$, zum Beispiel
-das Lehrbuch der Theoretischen Physik \cite{skript:landaulifschitz1}
-von Landau und Lifschitz.
-
-Die Lie-Algebren sind vollständig klassifiziert worden, es gibt
-keine nicht trivialen zweidimensionalen Lie-Algebren.
-Unser dreidimensionaler Raum ist also auch in dieser Hinsicht speziell:
-es ist der kleinste Vektorraum, in dem eine nichttriviale Lie-Algebra-Struktur
-möglich ist.
-
-Die antisymmetrischen Matrizen
-\[
-\omega_{23}
-=
-\begin{pmatrix} 0&1&0\\-1&0&0\\0&0&0\end{pmatrix}
-\quad
-\omega_{31}
-=
-\begin{pmatrix} 0&0&-1\\0&0&0\\1&0&0\end{pmatrix}
-\quad
-\omega_{12}
-=
-\begin{pmatrix} 0&0&0\\0&0&1\\0&-1&0\end{pmatrix}
-\]
-haben die Kommutatoren
-\begin{equation}
-\begin{aligned}
-[\omega_{23},\omega_{31}]
-&=
-\begin{pmatrix}
-0&0&0\\
-0&0&1\\
-0&-1&0
-\end{pmatrix}
-=
-\omega_{12}
-\\
-[\omega_{31},\omega_{12}]
-&=
-\begin{pmatrix}
-0&1&0\\
--1&0&0\\
-0&0&0
-\end{pmatrix}
-=
-\omega_{23}
-\\
-[\omega_{12},\omega_{23}]
-&=
-\begin{pmatrix}
-0&0&-1\\
-0&0&0\\
-1&0&0
-\end{pmatrix}
-=
-\omega_{31}
-\end{aligned}
-\label{buch:gruppen:eqn:so3-kommutatoren}
-\end{equation}
-
-\subsection{Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$}
-Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ besteht aus den
-spurlosen Matrizen in $M_n(\mathbb{R})$.
-Der Kommutator solcher Matrizen erfüllt
-\[
-\operatorname{Spur}([A,B])
-=
-\operatorname{Spur}(AB-BA)
-=
-\operatorname{Spur}(AB)-\operatorname{Spur}(BA)
-=
-0,
-\]
-somit ist
-\[
-\operatorname{sl}_n(\mathbb{R})
-=
-\{
-A\in M_n(\mathbb{R})\;|\; \operatorname{Spur}(A)=0
-\}
-\]
-mit dem Kommutator eine Lie-Algebra.
-
-%
-% Die Lie-Algebra von U(n)
-%
-\subsection{Die Lie-Algebra von $\operatorname{U}(n)$}
-Die Lie-Gruppe
-\[
-U(n)
-=
-\{
-A\in M_n(\mathbb{C}
-\;|\;
-AA^*=I
-\}
-\]
-heisst die unitäre Gruppe, sie besteht aus den Matrizen, die
-das sesquilineare Standardskalarprodukt auf dem komplexen
-Vektorraum $\mathbb{C}^n$ invariant lassen.
-Sei eine $\gamma(t)$ ein differenzierbare Kurve in $\operatorname{U}(n)$
-derart, dass $\gamma(0)=I$.
-Die Ableitung der Identität $AA^*=I$ führt dann auf
-\begin{align*}
-0
-=
-\frac{d}{dt}
-\gamma(t)\gamma(t)^*
-\bigg|_{t=0}
-=
-\dot{\gamma}(0)\gamma(0)^*
-+
-\gamma(0)\dot{\gamma}(0)^*
-=
-\dot{\gamma}(0)
-+
-\dot{\gamma}(0)^*
-\quad\Rightarrow\quad
-\dot{\gamma}(0)&=-\dot{\gamma}(0)^*.
-A&=-A^*
-\end{align*}
-Die Lie-Algebra $\operatorname{u}(n)$ besteht daher aus den antihermiteschen
-Matrizen.
-
-Wir sollten noch verifizieren, dass der Kommutator zweier antihermiteschen
-Matrizen wieder anithermitesch ist:
-\begin{align*}
-[A,B]^*
-&=
-(AB-BA)^*
-=
-B^*A^*-A^*B^*
-=
-BA - AB
-=
--[B,A].
-\end{align*}
-
-Eine antihermitesche Matrix erfüllt $a_{ij}=-\overline{a}_{ji}$,
-für die Diagonalelemente folgt daher $a_{ii} = -\overline{a}_{ii}$
-oder $\overline{a}_{ii}=-a_{ii}$.
-Der Realteil von $a_{ii}$ ist
-\[
-\Re a_{ii}
-=
-\frac{a_{ii}+\overline{a}_{ii}}2
-=
-0,
-\]
-die Diagonalelemente einer antihermiteschen Matrix sind daher rein
-imaginär.
-
-
-%
-% Die Lie-Algebra SU(2)
-%
-\subsection{Die Lie-Algebra von $\operatorname{SU}(2)$}
-Die Lie-Algebra $\operatorname{su}(n)$ besteht aus den
-spurlosen antihermiteschen Matrizen.
-Sie erfüllen daher die folgenden Bedingungen:
-\[
-A=\begin{pmatrix}a&b\\c&d\end{pmatrix}
-\qquad
-\text{mit}
-\qquad
-\left\{
-\begin{aligned}
-a+d&=0&&\Rightarrow& a=is = -d
-\\
-b^*&=-c
-\end{aligned}
-\right.
-\]
-Damit hat $A$ die Form
-\begin{align*}
-A=\begin{pmatrix}
-is&u+iv\\
--u+iv&-is
-\end{pmatrix}
-&=
-s
-\begin{pmatrix}
-i&0\\
-0&-i
-\end{pmatrix}
-+
-u
-\begin{pmatrix}
- 0&1\\
--1&0
-\end{pmatrix}
-+
-v
-\begin{pmatrix}
-0&i\\
-i&0
-\end{pmatrix}
-\\
-&=
-iv\underbrace{\begin{pmatrix}0&1\\1&0\end{pmatrix}}_{\displaystyle=\sigma_1}
-+
-iu\underbrace{\begin{pmatrix}0&-i\\i&0\end{pmatrix}}_{\displaystyle=\sigma_2}
-+
-is\underbrace{\begin{pmatrix}1&0\\0&-1\end{pmatrix}}_{\displaystyle=\sigma_3}
-\end{align*}
-Diese Matrizen heissen die {\em Pauli-Matrizen}, sie haben die Kommutatoren
-\begin{align*}
-[\sigma_1,\sigma_2]
-&=
-\begin{pmatrix}0&1\\1&0\end{pmatrix}
-\begin{pmatrix}0&-i\\i&0\end{pmatrix}
--
-\begin{pmatrix}0&-i\\i&0\end{pmatrix}
-\begin{pmatrix}0&1\\1&0\end{pmatrix}
-=
-2\begin{pmatrix}i&0\\0&-i \end{pmatrix}
-=
-2i\sigma_3,
-\\
-[\sigma_2,\sigma_3]
-&=
-\begin{pmatrix}0&-i\\i&0\end{pmatrix}
-\begin{pmatrix}1&0\\0&-1\end{pmatrix}
--
-\begin{pmatrix}1&0\\0&-1\end{pmatrix}
-\begin{pmatrix}0&-i\\i&0\end{pmatrix}
-=
-2
-\begin{pmatrix}0&i\\i&0\end{pmatrix}
-=
-2i\sigma_1.
-\\
-[\sigma_1,\sigma_3]
-&=
-\begin{pmatrix}0&1\\1&0\end{pmatrix}
-\begin{pmatrix}1&0\\0&-1\end{pmatrix}
--
-\begin{pmatrix}1&0\\0&-1\end{pmatrix}
-\begin{pmatrix}0&1\\1&0\end{pmatrix}
-=
-2i
-\begin{pmatrix}0&-1\\1&0\end{pmatrix}
-=
-2i\sigma_2,
-\end{align*}
-Bis auf eine Skalierung stimmt dies überein mit den Kommutatorprodukten
-der Matrizen $\omega_{23}$, $\omega_{31}$ und $\omega_{12}$
-in \eqref{buch:gruppen:eqn:so3-kommutatoren}.
-Die Matrizen $-\frac12i\sigma_j$ haben die Kommutatorprodukte
-\begin{align*}
-\bigl[-{\textstyle\frac12}i\sigma_1,-{\textstyle\frac12}i\sigma_2\bigr]
-&=
--{\textstyle\frac14}[\sigma_1,\sigma_2]
-=
--{\textstyle\frac14}\cdot 2i\sigma_3
-=
--{\textstyle\frac12}i\sigma_3
-\\
-\bigl[-{\textstyle\frac12}i\sigma_2,-{\textstyle\frac12}i\sigma_3\bigr]
-&=
--{\textstyle\frac14}[\sigma_2,\sigma_3]
-=
--{\textstyle\frac14}\cdot 2i\sigma_1
-=
--{\textstyle\frac12}i\sigma_1
-\\
-\bigl[-{\textstyle\frac12}i\sigma_3,-{\textstyle\frac12}i\sigma_1\bigr]
-&=
--{\textstyle\frac14}[\sigma_3,\sigma_1]
-=
--{\textstyle\frac14}\cdot 2i\sigma_2
-=
--{\textstyle\frac12}i\sigma_2
-\end{align*}
-Die lineare Abbildung, die
-\begin{align*}
-\omega_{23}&\mapsto -{\textstyle\frac12}i\sigma_1\\
-\omega_{31}&\mapsto -{\textstyle\frac12}i\sigma_2\\
-\omega_{12}&\mapsto -{\textstyle\frac12}i\sigma_3
-\end{align*}
-abbildet ist daher ein Isomorphismus der Lie-Algebra $\operatorname{so}(3)$
-auf die Lie-Algebra $\operatorname{su}(2)$.
-Die Lie-Gruppen $\operatorname{SO}(3)$ und $\operatorname{SU}(2)$
-haben also die gleiche Lie-Algebra.
-
-Tatsächlich kann man Hilfe von Quaternionen die Matrix $\operatorname{SU}(2)$
-als Einheitsquaternionen beschreiben und damit eine Darstellung der
-Drehmatrizen in $\operatorname{SO}(3)$ finden.
-Dies wird in Kapitel~\ref{chapter:clifford} dargestellt.
-
-
-
-
-
+%
+% lie-algebren.tex -- Lie-Algebren
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Lie-Algebren
+\label{buch:section:lie-algebren}}
+\rhead{Lie-Algebren}
+Im vorangegangenen Abschnitt wurde gezeigt, dass alle beschriebenen
+Matrizengruppen als Untermannigfaltigkeiten im $n^2$-dimensionalen
+Vektorraum $M_n(\mathbb{R}9$ betrachtet werden können.
+Die Gruppen haben damit nicht nur die algebraische Struktur einer
+Matrixgruppe, sie haben auch die geometrische Struktur einer
+Mannigfaltigkeit.
+Insbesondere ist es sinnvoll, von Ableitungen zu sprechen.
+
+Eindimensionale Untergruppen einer Gruppe können auch als Kurven
+innerhalb der Gruppe angesehen werden.
+In diesem Abschnitt soll gezeigt werden, wie man zu jeder eindimensionalen
+Untergruppe einen Vektor in $M_n(\mathbb{R})$ finden kann derart, dass
+der Vektor als Tangentialvektor an diese Kurve gelten kann.
+Aus einer Abbildung zwischen der Gruppe und diesen Tagentialvektoren
+erhält man dann auch eine algebraische Struktur auf diesen Tangentialvektoren,
+die sogenannte Lie-Algebra.
+Sie ist charakteristisch für die Gruppe.
+Insbesondere werden wir sehen, wie die Gruppen $\operatorname{SO}(3)$
+und $\operatorname{SU}(2)$ die gleich Lie-Algebra haben und dass die
+Lie-Algebra von $\operatorname{SO}(3)$ mit dem Vektorprodukt in $\mathbb{R}^3$
+übereinstimmt.
+
+%
+% Die Lie-Algebra einer Matrizengruppe
+%
+\subsection{Lie-Algebra einer Matrizengruppe
+\label{buch:section:lie-algebra-einer-matrizengruppe}}
+Zu jedem Tangentialvektor $A$ im Punkt $I$ einer Matrizengruppe gibt es
+eine Einparameteruntergruppe, die mit Hilfe der Exponentialfunktion
+$e^{At}$ konstruiert werden kann.
+Für die folgende Konstruktion arbeiten wir in der Gruppe
+$\operatorname{GL}_n(\mathbb{R})$, in der jede Matrix auch ein
+Tangentialvektor ist.
+Wir werden daraus die Lie-Klammer ableiten und später verifizieren,
+dass diese auch für die Tangentialvektoren der Gruppen
+$\operatorname{SO}(n)$ oder $\operatorname{SL}_n(\mathbb{R})$ funktioniert.
+
+\subsubsection{Lie-Klammer}
+Zu zwei verschiedenen Tagentialvektoren $A\in M_n(\mathbb{R})$ und
+$B\in M_n(\mathbb{R})$ gibt es zwei verschiedene Einparameteruntergruppen
+$e^{At}$ und $e^{Bt}$.
+Wenn die Matrizen $A$ und $B$ oder die Einparameteruntergruppen
+$e^{At}$ und $e^{Bt}$ vertauschbar sind, dann stimmen
+$e^{At}e^{Bt}$ und $e^{Bt}e^{At}$ nicht überein.
+Die zugehörigen Potenzreihen sind:
+\begin{align*}
+e^{At}
+&=
+I+At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \dots
+\\
+e^{Bt}
+&=
+I+Bt + \frac{B^2t^2}{2!} + \frac{B^3t^3}{3!} + \dots
+\\
+e^{At}e^{Bt}
+&=
+\biggl(I+At + \frac{A^2t^2}{2!} + \dots\biggr)
+\biggl(I+Bt + \frac{B^2t^2}{2!} + \dots\biggr)
+\\
+&=
+I+(A+B)t + \biggl(\frac{A^2}{2!}+AB+\frac{B^2}{2!}\biggr)t^2 +\dots
+\\
+e^{Bt}e^{At}
+&=
+\biggl(I+Bt + \frac{B^2t^2}{2!} + \dots\biggr)
+\biggl(I+At + \frac{A^2t^2}{2!} + \dots\biggr)
+\\
+&=
+I+(B+A)t + \biggl(\frac{B^2}{2!}+BA+\frac{A^2}{2!}\biggr)t^2 +\dots
+\intertext{%
+Die beiden Kurven $e^{At}e^{Bt}$ und $e^{Bt}e^{At}$ haben zwar den gleichen
+Tangentialvektor für $t=0$, sie unterscheiden
+sich aber untereinander, und sie unterscheiden sich von der
+Einparameteruntergruppe von $A+B$}
+e^{(A+B)t}
+&=
+I + (A+B)t + \frac{t^2}{2}(A^2 + AB + BA + B^2) + \ldots
+\intertext{Für die Unterschiede finden wir}
+e^{At}e^{Bt} - e^{(A+B)t}
+&=
+\biggl(AB-\frac{AB+BA}2\biggr)t^2
++\ldots
+=
+(AB-BA) \frac{t^2}{2} + \ldots
+=
+[A,B]\frac{t^2}{2}+\ldots
+\\
+e^{Bt}e^{At} - e^{(A+B)t}
+&=
+\biggl(BA-\frac{AB+BA}2\biggr)t^2
++\ldots
+=
+(BA-AB)
+\frac{t^2}{2}
++\ldots
+=
+-[A,B]\frac{t^2}{2}
+\\
+e^{At}e^{Bt}-e^{Bt}e^{At}
+&=
+(AB-BA)t^2+\ldots
+=
+\phantom{-}[A,B]t^2+\ldots
+\end{align*}
+wobei mit $[A,B]=AB-BA$ abgekürzt wird.
+
+\begin{definition}
+\label{buch:gruppen:def:kommutator}
+Der Kommutator zweier Matrizen $A,B\in M_n(\mathbb{R})$ ist die Matrix
+$[A,B]=AB-BA$.
+\end{definition}
+
+Der Kommutator ist bilinear und antisymmetrisch, da
+\begin{align*}
+[\lambda A+\mu B,C]
+&=
+\lambda AC+\mu BC-\lambda CA -\mu CB
+=
+\lambda[A,C]+\mu[B,C]
+\\
+[A,\lambda B+\mu C]
+&=
+\lambda AB + \mu AC - \lambda BA - \mu CA
+=
+\lambda[A,B]+\mu[A,C]
+\\
+[A,B]
+&=
+AB-BA = -(BA-AB) = -[B,A].
+\end{align*}
+Aus der letzten Bedingung folgt insbesodnere $[A,A]=0$
+
+Der Kommutator $[A,B]$ misst in niedrigster Ordnung den Unterschied
+zwischen den $e^{At}$ und $e^{Bt}$.
+Der Kommutator der Tangentialvektoren $A$ und $B$ bildet also die
+Nichtkommutativität der Matrizen $e^{At}$ und $e^{Bt}$ ab.
+
+
+\subsubsection{Die Jacobi-Identität}
+Der Kommutator hat die folgende zusätzliche algebraische Eigenschaft:
+\begin{align*}
+[A,[B,C]]
++
+[B,[C,A]]
++
+[C,[A,B]]
+&=
+[A,BC-CB]
++
+[B,CA-AC]
++
+[C,AB-BA]
+\\
+&=\phantom{+}
+ABC-ACB-BCA+CBA
+\\
+&\phantom{=}+
+BCA-BAC-CAB+ACB
+\\
+&\phantom{=}+
+CAB-CBA-ABC+BAC
+\\
+&=0.
+\end{align*}
+Diese Eigenschaft findet man auch bei anderen Strukturen, zum Beispiel
+bei Vektorfeldern, die man als Differentialoperatoren auf Funktionen
+betrachten kann.
+Man kann dann einen Kommutator $[X,Y]$ für zwei Vektorfelder
+$X$ und $Y$ definieren.
+Dieser Kommutator von Vektorfeldern erfüllt ebenfalls die gleiche
+Identität.
+
+\begin{definition}
+\label{buch:gruppen:def:jacobi}
+Ein bilineares Produkt $[\;,\;]\colon V\times V\to V$ auf dem Vektorraum
+erfüllt die {\em Jacobi-Identität}, wenn
+\[
+[u,[v,w]] + [v,[w,u]] + [w,[u,v]]=0
+\]
+ist für beliebige Vektoren $u,v,w\in V$.
+\end{definition}
+
+\subsubsection{Lie-Algebra}
+Die Tangentialvektoren einer Lie-Gruppe tragen also mit dem Kommutator
+eine zusätzliche Struktur, nämlich die Struktur einer Lie-Algebra.
+
+\begin{definition}
+Ein Vektorraum $V$ mit einem bilinearen, Produkt
+\[
+[\;,\;]\colon V\times V \to V : (u,v) \mapsto [u,v],
+\]
+welches zusätzlich die Jacobi-Identität~\ref{buch:gruppen:def:jacobi}
+erfüllt, heisst eine {\em Lie-Algebra}.
+\end{definition}
+
+Die Lie-Algebra einer Lie-Gruppe $G$ wird mit $LG$ bezeichnet.
+$LG$ besteht aus den Tangentialvektoren im Punkt $I$.
+Die Exponentialabbildung $\exp\colon LG\to G:A\mapsto e^A$
+ist eine differenzierbare Abbildung von $LG$ in die Gruppe $G$.
+Insbesondere kann die Inverse der Exponentialabbildung als eine
+Karte in einer Umgebung von $I$ verwendet werden.
+
+Für die Lie-Algebren der Matrizengruppen, die früher definiert worden
+sind, verwenden wir die als Notationskonvention, dass der Name der
+Lie-Algebra der mit kleinen Buchstaben geschrieben Name der Lie-Gruppe ist.
+Die Lie-Algebra von $\operatorname{SO}(n)$ ist also
+$L\operatorname{SO}(n) = \operatorname{os}(n)$,
+die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ ist
+$L\operatorname{SL}_n(\mathbb{R})=\operatorname{sl}_n(\mathbb{R})$.
+
+
+%
+% Die Lie-Algebra von SO(3)
+%
+\subsection{Die Lie-Algebra von $\operatorname{SO}(3)$
+\label{buch:subsection:die-lie-algebra-von-so3}}
+Zur Gruppe $\operatorname{SO}(3)$ der Drehmatrizen gehört die Lie-Algebra
+$\operatorname{so}(3)$ der antisymmetrischen $3\times 3$-Matrizen.
+Solche Matrizen haben die Form
+\[
+\Omega
+=
+\begin{pmatrix}
+ 0 & \omega_3&-\omega_2\\
+-\omega_3& 0 & \omega_1\\
+ \omega_2&-\omega_1& 0
+\end{pmatrix}
+\]
+Der Vektorraum $\operatorname{so}(3)$ ist also dreidimensional.
+
+Die Wirkung von $I+t\Omega$ auf einem Vektor $x$ ist
+\[
+(I+t\Omega)
+\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}
+=
+\begin{pmatrix}
+ 1 & t\omega_3&-t\omega_2\\
+-t\omega_3& 1 & t\omega_1\\
+ t\omega_2&-t\omega_1& 1
+\end{pmatrix}
+\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}
+=
+\begin{pmatrix}
+x_1-t(-\omega_3x_2+\omega_2x_3)\\
+x_2-t( \omega_3x_1-\omega_1x_3)\\
+x_3-t(-\omega_2x_1+\omega_1x_2)
+\end{pmatrix}
+=
+x- t\begin{pmatrix}\omega_1\\\omega_2\\\omega_3\end{pmatrix}\times x
+=
+x+ tx\times \omega.
+\]
+Die Matrix $\Omega$ ist als die infinitesimale Version einer Drehung
+um die Achse $\omega$.
+
+Wir können die Analogie zwischen Matrizen in $\operatorname{so}(3)$ und
+Vektoren in $\mathbb R^3$ noch etwas weiter treiben. Zu jedem Vektor
+in $\mathbb R^3$ konstruieren wir eine Matrix in $\operatorname{so}(3)$
+mit Hilfe der Abbildung
+\[
+\mathbb R^3\to\operatorname{so}(3)
+:
+\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}
+\mapsto
+\begin{pmatrix}
+ 0 & v_3&-v_1\\
+-v_3& 0 & v_2\\
+ v_1&-v_2& 0
+\end{pmatrix}.
+\]
+Der Kommutator von zwei so aus Vektoren $\vec u$ und $\vec v$
+konstruierten Matrizen $U$ und $V$ ist:
+\begin{align*}
+[U,V]
+&=
+UV-VU
+\\
+&=
+\begin{pmatrix}
+ 0 & u_3&-u_1\\
+-u_3& 0 & u_2\\
+ u_1&-u_2& 0
+\end{pmatrix}
+\begin{pmatrix}
+ 0 & v_3&-v_1\\
+-v_3& 0 & v_2\\
+ v_1&-v_2& 0
+\end{pmatrix}
+-
+\begin{pmatrix}
+ 0 & v_3&-v_1\\
+-v_3& 0 & v_2\\
+ v_1&-v_2& 0
+\end{pmatrix}
+\begin{pmatrix}
+ 0 & u_3&-u_1\\
+-u_3& 0 & u_2\\
+ u_1&-u_2& 0
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+u_3v_3+u_1v_1 - u_3v_3 - u_1v_1
+ & u_1v_2 - u_2v_1
+ & u_3v_2 - u_2v_3
+\\
+u_2v_1 - u_1v_2
+ & -u_3v_3-u_2v_2 + u_3v_3+u_2v_2
+ & u_3v_1 - u_1v_3
+\\
+u_2v_3 - u_3v_2
+ & u_1v_3 - u_3v_1
+ &-u_1v_1-u_2v_2 u_1v_1+u_2v_2
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+0
+ & u_1v_2 - u_2v_1
+ &-(u_2v_3-u_3v_2)
+\\
+-( u_1v_2 - u_2v_1)
+ & 0
+ & u_3v_1 - u_1v_3
+\\
+u_2v_3 - u_3v_2
+ &-( u_3v_1 - u_1v_3)
+ & 0
+\end{pmatrix}
+\end{align*}
+Die Matrix $[U,V]$ gehört zum Vektor $\vec u\times\vec v$.
+Damit können wir aus der Jacobi-Identität jetzt folgern, dass
+\[
+\vec u\times(\vec v\times w)
++
+\vec v\times(\vec w\times u)
++
+\vec w\times(\vec u\times v)
+=0
+\]
+für drei beliebige Vektoren $\vec u$, $\vec v$ und $\vec w$ ist.
+Dies bedeutet, dass der dreidimensionale Vektorraum $\mathbb R^3$
+mit dem Vektorprodukt zu einer Lie-Algebra wird.
+In der Tat verwenden einige Bücher statt der vertrauten Notation
+$\vec u\times \vec v$ für das Vektorprodukt die aus der Theorie der
+Lie-Algebren entlehnte Notation $[\vec u,\vec v]$, zum Beispiel
+das Lehrbuch der Theoretischen Physik \cite{skript:landaulifschitz1}
+von Landau und Lifschitz.
+
+Die Lie-Algebren sind vollständig klassifiziert worden, es gibt
+keine nicht trivialen zweidimensionalen Lie-Algebren.
+Unser dreidimensionaler Raum ist also auch in dieser Hinsicht speziell:
+es ist der kleinste Vektorraum, in dem eine nichttriviale Lie-Algebra-Struktur
+möglich ist.
+
+Die antisymmetrischen Matrizen
+\[
+\omega_{23}
+=
+\begin{pmatrix} 0&1&0\\-1&0&0\\0&0&0\end{pmatrix}
+\quad
+\omega_{31}
+=
+\begin{pmatrix} 0&0&-1\\0&0&0\\1&0&0\end{pmatrix}
+\quad
+\omega_{12}
+=
+\begin{pmatrix} 0&0&0\\0&0&1\\0&-1&0\end{pmatrix}
+\]
+haben die Kommutatoren
+\begin{equation}
+\begin{aligned}
+[\omega_{23},\omega_{31}]
+&=
+\begin{pmatrix}
+0&0&0\\
+0&0&1\\
+0&-1&0
+\end{pmatrix}
+=
+\omega_{12}
+\\
+[\omega_{31},\omega_{12}]
+&=
+\begin{pmatrix}
+0&1&0\\
+-1&0&0\\
+0&0&0
+\end{pmatrix}
+=
+\omega_{23}
+\\
+[\omega_{12},\omega_{23}]
+&=
+\begin{pmatrix}
+0&0&-1\\
+0&0&0\\
+1&0&0
+\end{pmatrix}
+=
+\omega_{31}
+\end{aligned}
+\label{buch:gruppen:eqn:so3-kommutatoren}
+\end{equation}
+
+\subsection{Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$}
+Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ besteht aus den
+spurlosen Matrizen in $M_n(\mathbb{R})$.
+Der Kommutator solcher Matrizen erfüllt
+\[
+\operatorname{Spur}([A,B])
+=
+\operatorname{Spur}(AB-BA)
+=
+\operatorname{Spur}(AB)-\operatorname{Spur}(BA)
+=
+0,
+\]
+somit ist
+\[
+\operatorname{sl}_n(\mathbb{R})
+=
+\{
+A\in M_n(\mathbb{R})\;|\; \operatorname{Spur}(A)=0
+\}
+\]
+mit dem Kommutator eine Lie-Algebra.
+
+%
+% Die Lie-Algebra von U(n)
+%
+\subsection{Die Lie-Algebra von $\operatorname{U}(n)$}
+Die Lie-Gruppe
+\[
+U(n)
+=
+\{
+A\in M_n(\mathbb{C}
+\;|\;
+AA^*=I
+\}
+\]
+heisst die unitäre Gruppe, sie besteht aus den Matrizen, die
+das sesquilineare Standardskalarprodukt auf dem komplexen
+Vektorraum $\mathbb{C}^n$ invariant lassen.
+Sei eine $\gamma(t)$ ein differenzierbare Kurve in $\operatorname{U}(n)$
+derart, dass $\gamma(0)=I$.
+Die Ableitung der Identität $AA^*=I$ führt dann auf
+\begin{align*}
+0
+=
+\frac{d}{dt}
+\gamma(t)\gamma(t)^*
+\bigg|_{t=0}
+=
+\dot{\gamma}(0)\gamma(0)^*
++
+\gamma(0)\dot{\gamma}(0)^*
+=
+\dot{\gamma}(0)
++
+\dot{\gamma}(0)^*
+\quad\Rightarrow\quad
+\dot{\gamma}(0)&=-\dot{\gamma}(0)^*.
+A&=-A^*
+\end{align*}
+Die Lie-Algebra $\operatorname{u}(n)$ besteht daher aus den antihermiteschen
+Matrizen.
+
+Wir sollten noch verifizieren, dass der Kommutator zweier antihermiteschen
+Matrizen wieder anithermitesch ist:
+\begin{align*}
+[A,B]^*
+&=
+(AB-BA)^*
+=
+B^*A^*-A^*B^*
+=
+BA - AB
+=
+-[B,A].
+\end{align*}
+
+Eine antihermitesche Matrix erfüllt $a_{ij}=-\overline{a}_{ji}$,
+für die Diagonalelemente folgt daher $a_{ii} = -\overline{a}_{ii}$
+oder $\overline{a}_{ii}=-a_{ii}$.
+Der Realteil von $a_{ii}$ ist
+\[
+\Re a_{ii}
+=
+\frac{a_{ii}+\overline{a}_{ii}}2
+=
+0,
+\]
+die Diagonalelemente einer antihermiteschen Matrix sind daher rein
+imaginär.
+
+
+%
+% Die Lie-Algebra SU(2)
+%
+\subsection{Die Lie-Algebra von $\operatorname{SU}(2)$}
+Die Lie-Algebra $\operatorname{su}(n)$ besteht aus den
+spurlosen antihermiteschen Matrizen.
+Sie erfüllen daher die folgenden Bedingungen:
+\[
+A=\begin{pmatrix}a&b\\c&d\end{pmatrix}
+\qquad
+\text{mit}
+\qquad
+\left\{
+\begin{aligned}
+a+d&=0&&\Rightarrow& a=is = -d
+\\
+b^*&=-c
+\end{aligned}
+\right.
+\]
+Damit hat $A$ die Form
+\begin{align*}
+A=\begin{pmatrix}
+is&u+iv\\
+-u+iv&-is
+\end{pmatrix}
+&=
+s
+\begin{pmatrix}
+i&0\\
+0&-i
+\end{pmatrix}
++
+u
+\begin{pmatrix}
+ 0&1\\
+-1&0
+\end{pmatrix}
++
+v
+\begin{pmatrix}
+0&i\\
+i&0
+\end{pmatrix}
+\\
+&=
+iv\underbrace{\begin{pmatrix}0&1\\1&0\end{pmatrix}}_{\displaystyle=\sigma_1}
++
+iu\underbrace{\begin{pmatrix}0&-i\\i&0\end{pmatrix}}_{\displaystyle=\sigma_2}
++
+is\underbrace{\begin{pmatrix}1&0\\0&-1\end{pmatrix}}_{\displaystyle=\sigma_3}
+\end{align*}
+Diese Matrizen heissen die {\em Pauli-Matrizen}, sie haben die Kommutatoren
+\begin{align*}
+[\sigma_1,\sigma_2]
+&=
+\begin{pmatrix}0&1\\1&0\end{pmatrix}
+\begin{pmatrix}0&-i\\i&0\end{pmatrix}
+-
+\begin{pmatrix}0&-i\\i&0\end{pmatrix}
+\begin{pmatrix}0&1\\1&0\end{pmatrix}
+=
+2\begin{pmatrix}i&0\\0&-i \end{pmatrix}
+=
+2i\sigma_3,
+\\
+[\sigma_2,\sigma_3]
+&=
+\begin{pmatrix}0&-i\\i&0\end{pmatrix}
+\begin{pmatrix}1&0\\0&-1\end{pmatrix}
+-
+\begin{pmatrix}1&0\\0&-1\end{pmatrix}
+\begin{pmatrix}0&-i\\i&0\end{pmatrix}
+=
+2
+\begin{pmatrix}0&i\\i&0\end{pmatrix}
+=
+2i\sigma_1.
+\\
+[\sigma_1,\sigma_3]
+&=
+\begin{pmatrix}0&1\\1&0\end{pmatrix}
+\begin{pmatrix}1&0\\0&-1\end{pmatrix}
+-
+\begin{pmatrix}1&0\\0&-1\end{pmatrix}
+\begin{pmatrix}0&1\\1&0\end{pmatrix}
+=
+2i
+\begin{pmatrix}0&-1\\1&0\end{pmatrix}
+=
+2i\sigma_2,
+\end{align*}
+Bis auf eine Skalierung stimmt dies überein mit den Kommutatorprodukten
+der Matrizen $\omega_{23}$, $\omega_{31}$ und $\omega_{12}$
+in \eqref{buch:gruppen:eqn:so3-kommutatoren}.
+Die Matrizen $-\frac12i\sigma_j$ haben die Kommutatorprodukte
+\begin{align*}
+\bigl[-{\textstyle\frac12}i\sigma_1,-{\textstyle\frac12}i\sigma_2\bigr]
+&=
+-{\textstyle\frac14}[\sigma_1,\sigma_2]
+=
+-{\textstyle\frac14}\cdot 2i\sigma_3
+=
+-{\textstyle\frac12}i\sigma_3
+\\
+\bigl[-{\textstyle\frac12}i\sigma_2,-{\textstyle\frac12}i\sigma_3\bigr]
+&=
+-{\textstyle\frac14}[\sigma_2,\sigma_3]
+=
+-{\textstyle\frac14}\cdot 2i\sigma_1
+=
+-{\textstyle\frac12}i\sigma_1
+\\
+\bigl[-{\textstyle\frac12}i\sigma_3,-{\textstyle\frac12}i\sigma_1\bigr]
+&=
+-{\textstyle\frac14}[\sigma_3,\sigma_1]
+=
+-{\textstyle\frac14}\cdot 2i\sigma_2
+=
+-{\textstyle\frac12}i\sigma_2
+\end{align*}
+Die lineare Abbildung, die
+\begin{align*}
+\omega_{23}&\mapsto -{\textstyle\frac12}i\sigma_1\\
+\omega_{31}&\mapsto -{\textstyle\frac12}i\sigma_2\\
+\omega_{12}&\mapsto -{\textstyle\frac12}i\sigma_3
+\end{align*}
+abbildet ist daher ein Isomorphismus der Lie-Algebra $\operatorname{so}(3)$
+auf die Lie-Algebra $\operatorname{su}(2)$.
+Die Lie-Gruppen $\operatorname{SO}(3)$ und $\operatorname{SU}(2)$
+haben also die gleiche Lie-Algebra.
+
+Tatsächlich kann man Hilfe von Quaternionen die Matrix $\operatorname{SU}(2)$
+als Einheitsquaternionen beschreiben und damit eine Darstellung der
+Drehmatrizen in $\operatorname{SO}(3)$ finden.
+Dies wird in Kapitel~\ref{chapter:clifford} dargestellt.
+
+
+
+
+
diff --git a/buch/chapters/60-gruppen/lie-gruppen.tex b/buch/chapters/60-gruppen/lie-gruppen.tex
index 2c88b76..e92c254 100644
--- a/buch/chapters/60-gruppen/lie-gruppen.tex
+++ b/buch/chapters/60-gruppen/lie-gruppen.tex
@@ -1,881 +1,881 @@
-%
-% lie-gruppen.tex -- Lie-Gruppebn
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Lie-Gruppen
-\label{buch:section:lie-gruppen}}
-\rhead{Lie-Gruppen}
-Die in bisherigen Beispielen untersuchten Matrizengruppen zeichnen sich
-durch zusätzliche Eigenschaften aus.
-Die Gruppe
-\[
-\operatorname{GL}_n(\mathbb{R})
-=
-\{ A \in M_n(\mathbb{R})\;|\; \det A \ne 0\}
-\]
-besteht aus den Matrizen, deren Determinante nicht $0$ ist.
-Da die Menge der Matrizen mit $\det A=0$ eine abgeschlossene Menge
-in $M_n(\mathbb{R}) \simeq \mathbb{R}^{n^2}$ ist, ist
-$\operatorname{GL}_n(\mathbb{R})$ eine offene Teilmenge in $\mathbb{R}^{n^2}$,
-sie besitzt also automatisch die Struktur einer $n^2$-Mannigfaltigkeit.
-Dies gilt jedoch auch für alle anderen Matrizengruppen, die in diesem
-Abschnitt genauer untersucht werden sollen.
-
-\subsection{Mannigfaltigkeitsstruktur der Matrizengruppen
-\label{buch:subsection:mannigfaltigkeitsstruktur-der-matrizengruppen}}
-Eine Matrizengruppe wird automatsich zu einer Mannigfaltigkeit,
-wenn es gelingt, eine Karte für eine Umgebung des neutralen Elements
-zu finden.
-Dazu muss gezeigt werden, dass sich aus einer solchen Karte für jedes
-andere Gruppenelement eine Karte für eine Umgebung ableiten lässt.
-Sei also $\varphi_e\colon U_e\mathbb{R}^N$ eine Karte für die Umgebung
-$U_e\subset G$ von $e\in G$.
-Für $g\in G$ ist dann die Abbildung
-\[
-\varphi_g
-\colon
-U_g
-=
-gU_e
-\to
-\mathbb{R}
-:
-h\mapsto \varphi_e(g^{-1}h)
-\]
-eine Karte für die Umgebung $U_g$ des Gruppenelementes $g$.
-schreibt man $l_{g}$ für die Abbildung $h\mapsto gh$, dann
-kann man die Kartenabbildung auch $\varphi_g = \varphi_e\circ l_{g^{-1}}$
-schreiben.
-
-\subsubsection{Kartenwechsel}
-Die Kartenwechsel-Abbildungen für zwei Karten $\varphi_{g_1}$
-und $\varphi_{g_2}$ ist die Abbildung
-\[
-\varphi_{g_1,g_2}
-=
-\varphi_{g_1}\circ \varphi_{g_2}^{-1}
-=
-\varphi_e\circ l_{g_1^{-1}} \circ (\varphi_e\circ l_{g_2^{-1}})^{-1}
-=
-\varphi_e\circ l_{g_1^{-1}} \circ l_{g_2^{-1}}^{-1} \varphi_e^{-1}
-=
-\varphi_e\circ l_{g_1^{-1}} \circ l_{g_2}\varphi_e^{-1}
-=
-\varphi_e\circ l_{g_1^{-1}g_2}\varphi_e^{-1}
-\]
-mit der Ableitung
-\[
-D\varphi_e\circ Dl_{g_1^{-1}g_2} D\varphi_e^{-1}
-=
-D\varphi_e\circ Dl_{g_1^{-1}g_2} (D\varphi_e)^{-1}.
-\]
-Die Abbildung $l_{g_1^{-1}g_2}$ ist aber nur die Multiplikation mit
-einer Matrix, also eine lineare Abbildung, so dass der Kartenwechsel
-nichts anderes ist als die Darstellung der Matrix der Linksmultiplikation
-$l_{g_1^{-1}g_2}$ im Koordinatensystem der Karte $U_e$ ist.
-Differenzierbarkeit der Kartenwechsel ist damit sichergestellt,
-die Matrizengruppen sind automatisch differenzierbare Mannigfaltigkeiten.
-
-Die Konstruktion aller Karten aus einer einzigen Karte für eine
-Umgebung des neutralen Elements zeigt auch, dass es für die Matrizengruppen
-reicht, wenn man die Elemente in einer Umgebung des neutralen
-Elementes parametrisieren kann.
-Dies ist jedoch nicht nur für die Matrizengruppen möglich.
-Wenn eine Gruppe gleichzeitig eine differenzierbare Mannigfaltigkeit
-ist, dann können Karten über die ganze Gruppe transportiert werden,
-wenn die Multiplikation mit Gruppenelementen eine differenzierbare
-Abbildung ist.
-Solche Gruppen heissen auch Lie-Gruppen gemäss der folgenden Definition.
-
-\begin{definition}
-\index{Lie-Gruppe}%
-Eine {\em Lie-Gruppe} ist eine Gruppe, die gleichzeitig eine differenzierbare
-Mannigfaltigkeit ist derart, dass die Abbildungen
-\begin{align*}
-G\times G \to G &: (g_1,g_2)\mapsto g_1g_2
-\\
-G\to G &: g \mapsto g^{-1}
-\end{align*}
-differenzierbare Abbildungen zwischen Mannigfaltigkeiten sind.
-\end{definition}
-
-Die Abstraktheit dieser Definition täuscht etwas über die
-Tatsache hinweg, dass sich mit Hilfe der Darstellungstheorie
-jede beliebige Lie-Gruppe als Untermannigfaltigkeit einer
-Matrizengruppe verstehen lässt.
-Das Studium der Matrizengruppen erlaubt uns daher ohne grosse
-Einschränkungen ein Verständnis für die Theorie der Lie-Gruppen
-zu entwickeln.
-
-\subsubsection{Tangentialvektoren und die Exponentialabbildung}
-Die Matrizengruppen sind alle in der
-$n^2$-dimensionalen Mannigfaltigkeit $\operatorname{GL}_n(\mathbb{R})$
-enthalten.
-Diffferenzierbare Kurven $\gamma(t)$ in $\operatorname{GL}_n(\mathbb{R})$
-haben daher in jedem Punkt Tangentialvektoren, die als Matrizen in
-$M_n(\mathbb{R})$ betrachtet werden können.
-Wenn $\gamma(t)$ die Matrixelemente $\gamma_{ij}(t)$ hat, dann ist der
-Tangentialvektor im Punkt $\gamma(t)$ durch
-\[
-\frac{d}{dt}
-\gamma(t)
-=
-\begin{pmatrix}
-\dot{\gamma}_{11}(t)&\dots &\dot{\gamma}_{1n}(t)\\
-\vdots &\ddots&\vdots \\
-\dot{\gamma}_{n1}(t)&\dots &\dot{\gamma}_{nn}(t)
-\end{pmatrix}
-\]
-gegeben.
-
-Im Allgemeinen kann man Tangentialvektoren in verschiedenen Punkten
-einer Mannigfaltigkeit nicht miteinander vergleichen.
-Die Multiplikation $l_g$, die den Punkt $e$ in den Punkt $g$ verschiebt,
-transportiert auch die Tangentialvektoren im Punkt $e$ in
-Tangentialvektoren im Punkt $g$.
-
-\begin{aufgabe}
-Gibt es eine Kurve $\gamma(t)\in\mathbb{GL}_n(\mathbb{R})$ mit
-$\gamma(0)=e$ derart, dass der Tangentialvektor im Punkt $\gamma(t)$
-für $t>0$ derselbe ist wie der Tangentialvektor im Punkt $e$, transportiert
-durch Matrixmultiplikation mit $\gamma(t)$?
-\end{aufgabe}
-
-Eine solche Kurve muss die Differentialgleichung
-\begin{equation}
-\frac{d}{dt}\gamma(t)
-=
-\gamma(t)\cdot A
-\label{buch:gruppen:eqn:expdgl}
-\end{equation}
-erfüllen, wobei $A\in M_n(\mathbb{R})$ der gegebene Tangentialvektor
-in $e=I$ ist.
-
-Die Matrixexponentialfunktion
-\[
-e^{At}
-=
-1+At+\frac{A^2t^2}{2!}+\frac{A^3t^3}{3!}+\frac{A^4t^4}{4!}+\dots
-\]
-liefert eine Einparametergruppe
-$\mathbb{R}\to \operatorname{GL}_n(\mathbb{R})$ mit der Ableitung
-\[
-\frac{d}{dt} e^{At}
-=
-\lim_{h\to 0} \frac{e^{A(t+h)}-e^{At}}{h}
-=
-\lim_{h\to 0} e^{At}\frac{e^{Ah}-I}{h}
-=
-e^{At} A.
-\]
-Sie ist also Lösung der Differentialgleichung~\eqref{buch:gruppen:eqn:expdgl}.
-
-\subsection{Drehungen in der Ebene
-\label{buch:gruppen:drehungen2d}}
-Die Drehungen der Ebene sind die orientierungserhaltenden Symmetrien
-des Einheitskreises, der in Abbildung~\ref{buch:gruppen:fig:kartenkreis}
-als Mannigfaltigkeit erkannt wurde.
-Sie bilden eine Lie-Gruppe, die auf verschiedene Arten als Matrix
-beschrieben werden kann.
-
-\subsubsection{Die Untergruppe
-$\operatorname{SO}(2)\subset \operatorname{GL}_2(\mathbb{R})$}
-Drehungen der Ebene können in einer orthonormierten Basis durch
-Matrizen der Form
-\[
-D_{\alpha}
-=
-\begin{pmatrix}
-\cos\alpha&-\sin\alpha\\
-\sin\alpha& \cos\alpha
-\end{pmatrix}
-\]
-dargestellt werden.
-Wir bezeichnen die Menge der Drehmatrizen in der Ebene mit
-$\operatorname{SO}(2)\subset\operatorname{GL}_2(\mathbb{R})$.
-Die Abbildung
-\[
-D_{\bullet}
-\colon
-\mathbb{R}\to \operatorname{SO}(2)
-:
-\alpha \mapsto D_{\alpha}
-\]
-hat die Eigenschaften
-\begin{align*}
-D_{\alpha+\beta}&= D_{\alpha}D_{\beta}
-\\
-D_0&=I
-\\
-D_{2k\pi}&=I\qquad \forall k\in\mathbb{Z}.
-\end{align*}
-Daraus folgt zum Beispiel, dass $D_{\bullet}$ eine $2\pi$-periodische
-Funktion ist.
-$D_{\bullet}$ bildet die Menge der Winkel $[0,2\pi)$ bijektiv auf
-die Menge der Drehmatrizen in der Ebene ab.
-
-Für jedes Intervall $(a,b)\subset\mathbb{R}$ mit Länge
-$b-a < 2\pi$ ist die Abbildung $\alpha\mapsto D_{\alpha}$ umkehrbar,
-die Umkehrung kann als Karte verwendet werden.
-Zwei verschiedene Karten $\alpha_1\colon U_1\to\mathbb{R}$ und
-$\alpha_2\colon U_2\to\mathbb{R}$ bilden die Elemente $g\in U_1\cap U_2$
-in Winkel $\alpha_1(g)$ und $\alpha_2(g)$ ab, für die
-$D_{\alpha_1(g)}=D_{\alpha_2(g)}$ gilt.
-Dies ist gleichbedeutend damit, dass $\alpha_1(g)=\alpha_2(g)+2\pi k$
-mit $k\in \mathbb{Z}$.
-In einem Intervall in $U_1\cap U_2$ muss $k$ konstant sein.
-Die Kartenwechselabblidung ist also nur die Addition eines Vielfachen
-von $2\pi$, mit der identischen Abbildung als Ableitung.
-Diese Karten führen also auf besonders einfache Kartenwechselabbildungen.
-
-\subsubsection{Die Untergruppe $S^1\subset\mathbb{C}$}
-Ein alternatives Bild für die Drehungen der Ebene kann man in der komplexen
-Ebene $\mathbb{C}$ erhalten.
-Die Multiplikation mit der komplexen Zahl $e^{i\alpha}$ beschreibt eine
-Drehung der komplexen Ebene um den Winkel $\alpha$.
-Die Zahlen der Form $e^{i\alpha}$ haben den Betrag $1$ und die Abbildung
-\[
-f\colon \mathbb{R}\to \mathbb{C}:\alpha \mapsto e^{i\alpha}
-\]
-hat die Eigenschaften
-\begin{align*}
-f(\alpha+\beta) &= f(\alpha)f(\beta)
-\\
-f(0)&=1
-\\
-f(2\pi k)&=1\qquad\forall k\in\mathbb{Z},
-\end{align*}
-die zu den Eigenschaften der Abbildung $\alpha\mapsto D_{\alpha}$
-analog sind.
-
-Jede komplexe Zahl $z$ vom Betrag $1$ kann geschrieben werden in der Form
-$z=e^{i\alpha}$, die Abbildung $f$ ist also eine Parametrisierung des
-Einheitskreises in der Ebene.
-Wir bezeichen $S^1=\{z\in\mathbb{C}\;|\; |z|=1\}$ die komplexen Zahlen vom
-Betrag $1$.
-$S^1$ ist eine Gruppe bezüglich der Multiplikation, da für jede Zahl
-$z,w\in S^1$ gilt
-$|z^{-1}|=1$ und $|zw|=1$ und damit $z^{-1}\in S^1$ und $zw\in S^1$.
-
-Zu einer komplexen Zahl $z\in S^1$ gibt es einen bis auf Vielfache
-von $2\pi$ eindeutigen Winkel $\alpha(z)$ derart, dass $e^{i\alpha(z)}=z$.
-Damit kann man jetzt die Abbildung
-\[
-\varphi
-\colon
-S^1\to \operatorname{SO}(2)
-:
-z\mapsto D_{\alpha(z)}
-\]
-konstruieren.
-Da $D_{\alpha}$ $2\pi$-periodisch ist, geben um Vielfache
-von $2\pi$ verschiedene Wahlen von $\alpha(z)$ die gleiche
-Matrix $D_{\alpha(z)}$, die Abbildung $\varphi$ ist daher
-wohldefiniert.
-$\varphi$ erfüllt ausserdem die Bedingungen
-\begin{align*}
-\varphi(z_1z_2)
-&=
-D_{\alpha(z_1z_2)}
-=
-D_{\alpha(z_1)+\alpha(z_2)}
-=
-D_{\alpha(z_1)}D_{\alpha(z_2)}
-=
-\varphi(z_1)\varphi(z_2)
-\\
-\varphi(1)
-&=
-D_{\alpha(1)}
-=
-D_0
-=
-I
-\end{align*}
-Die Abbildung $\varphi$ ist ein Homomorphismus der Gruppe $S^1$
-in die Gruppe $\operatorname{SO}(2)$.
-Die Menge der Drehmatrizen in der Ebene kann also mit dem Einheitskreis
-in der komplexen Ebene identifiziert werden.
-
-\subsubsection{Tangentialvektoren von $\operatorname{SO}(2)$}
-Da die Gruppe $\operatorname{SO}(2)$ eine eindimensionale Gruppe
-ist, kann jede Kurve $\gamma(t)$ durch den Drehwinkel $\alpha(t)$
-mit $\gamma(t) = D_{\alpha(t)}$ beschrieben werden.
-Die Ableitung in $M_2(\mathbb{R})$ ist
-\begin{align*}
-\frac{d}{dt} \gamma(t)
-&=
-\frac{d}{d\alpha}
-\begin{pmatrix}
-\cos\alpha(t) & - \sin\alpha(t)\\
-\sin\alpha(t) & \cos\alpha(t)
-\end{pmatrix}
-\cdot
-\frac{d\alpha}{dt}
-\\
-&=
-\begin{pmatrix}
--\sin\alpha(t)&-\cos\alpha(t)\\
- \cos\alpha(t)&-\sin\alpha(t)
-\end{pmatrix}
-\cdot
-\dot{\alpha}(t)
-\\
-&=
-\begin{pmatrix}
-\cos\alpha(t) & - \sin\alpha(t)\\
-\sin\alpha(t) & \cos\alpha(t)
-\end{pmatrix}
-\begin{pmatrix}
-0&-1\\
-1&0
-\end{pmatrix}
-\cdot
-\dot{\alpha}(t)
-=
-D_{\alpha(t)}J\cdot\dot{\alpha}(t).
-\end{align*}
-Alle Tangentialvektoren von $\operatorname{SO}(2)$ im Punkt $D_\alpha$
-entstehen aus $J$ durch Drehung mit der Matrix $D_\alpha$ und Skalierung
-mit $\dot{\alpha}(t)$.
-
-%
-% Isometrien von R^n
-%
-\subsection{Isometrien von $\mathbb{R}^n$
-\label{buch:gruppen:isometrien}}
-
-\subsubsection{Skalarprodukt}
-Lineare Abbildungen des Raumes $\mathbb{R}^n$ können durch
-$n\times n$-Matrizen beschrieben werden.
-Die Matrizen, die das Standardskalarprodukt $\mathbb{R}^n$ erhalten,
-bilden eine Gruppe, die in diesem Abschnitt genauer untersucht werden soll.
-Eine Matrix $A\in M_{n}(\mathbb{R})$ ändert das Skalarprodukt, wenn
-für jedes beliebige Paar $x,y$ von Vektoren gilt
-$\langle Ax,Ay\rangle = \langle x,y\rangle$.
-Das Standardskalarprodukt kann mit dem Matrixprodukt ausgedrückt werden:
-\[
-\langle Ax,Ay\rangle
-=
-(Ax)^tAy
-=
-x^tA^tAy
-=
-x^ty
-=
-\langle x,y\rangle
-\]
-für jedes Paar von Vektoren $x,y\in\mathbb{R}$.
-
-Mit dem Skalarprodukt kann man auch die Matrixelemente einer Matrix
-einer Abbildung $f$ in der Standardbasis bestimmen.
-Das Skalarprodukt $\langle e_i, v\rangle$ ist die Länge der Projektion
-des Vektors $v$ auf die Richtung $e_i$.
-Die Komponenten von $Ae_j$ sind daher $a_{ij}=\langle e_i,f(e_j)\rangle$.
-Die Matrix $A$ der Abbildung $f$ hat also die Matrixelemente
-$a_{ij}=e_i^tAe_j$.
-
-\subsubsection{Die orthogonale Gruppe $\operatorname{O}(n)$}
-Die Matrixelemente von $A^tA$ sind
-$\langle A^tAe_i, e_j\rangle =\langle e_i,e_j\rangle = \delta_{ij}$
-sind diejenigen der Einheitsmatrix,
-die Matrix $A$ erfüllt $AA^t=I$ oder $A^{-1}=A^t$.
-Dies sind die {\em orthogonalen} Matrizen.
-Die Menge $\operatorname{O}(n)$ der isometrischen Abbildungen besteht
-daher aus den Matrizen
-\[
-\operatorname{O}(n)
-=
-\{ A\in M_n(\mathbb{R})\;|\; AA^t=I\}.
-\]
-Die Matrixgleichung $AA^t=I$ liefert $n(n+1)/2$ unabhängige Bedingungen,
-die die orthogonalen Matrizen innerhalb der $n^2$-dimensionalen
-Menge $M_n(\mathbb{R})$ auszeichnen.
-Die Menge $\operatorname{O}(n)$ der orthogonalen Matrizen hat daher
-die Dimension
-\[
-n^2 - \frac{n(n+1)}{2}
-=
-\frac{2n^2-n^2-n}{2}
-=
-\frac{n(n-1)}2.
-\]
-Im Spezialfall $n=2$ ist die Gruppe $O(2)$ eindimensional.
-
-\subsubsection{Tangentialvektoren}
-Die orthogonalen Matrizen bilden eine abgeschlossene Untermannigfaltigkeit
-von $\operatorname{GL}_n(\mathbb{R})$, nicht jede Matrix $M_n(\mathbb{R})$
-kann also ein Tangentialvektor von $O(n)$ sein.
-Um herauszufinden, welche Matrizen als Tangentialvektoren in Frage
-kommen, betrachten wir eine Kurve $\gamma\colon\mathbb{R}\to O(n)$
-von orthogonalen Matrizen mit $\gamma(0)=I$.
-Orthogonal bedeutet
-\[
-\begin{aligned}
-&&
-0
-&=
-\frac{d}{dt}I
-=
-\frac{d}{dt}
-(\gamma(t)^t\gamma(t))
-=
-\dot{\gamma}(t)^t\gamma(t))
-+
-\gamma(t)^t\dot{\gamma}(t))
-\\
-&\Rightarrow&
-0
-&=
-\dot{\gamma}(0)^t \cdot I + I\cdot \dot{\gamma(0)}
-=
-\dot{\gamma}(0)^t + \dot{\gamma}(0)
-=
-A^t+A=0
-\\
-&\Rightarrow&
-A^t&=-A
-\end{aligned}
-\]
-Die Tangentialvektoren von $\operatorname{O}(n)$ sind also genau
-die antisymmetrischen Matrizen.
-
-Für $n=2$ sind alle antisymmetrischen Matrizen Vielfache der Matrix
-$J$, wie in Abschnitt~\ref{buch:gruppen:drehungen2d}
-gezeigt wurde.
-
-Für jedes Paar $i<j$ ist die Matrix $A_{ij}$ mit den Matrixelementen
-$(A_{ij})_{ij}=-1$ und $(A_{ij})_{ji}=1$
-antisymmetrisch.
-Für $n=2$ ist $A_{12}=J$.
-Die $n(n-1)/2$ Matrizen $A_{ij}$ bilden eine Basis des
-$n(n-1)/2$-dimensionale Tangentialraumes von $\operatorname{O}(n)$.
-
-Tangentialvektoren in einem anderen Punkt $g\in\operatorname{O}(n)$
-haben die Form $gA$, wobei $A$ eine antisymmetrische Matrix ist.
-Diese Matrizen sind nur noch in speziellen Fällen antisymmetrisch,
-zum Beispiel im Punkt $-I\in\operatorname{O}(n)$.
-
-\subsubsection{Die Gruppe $\operatorname{SO}(n)$}
-Die Gruppe $\operatorname{O}(n)$ enhält auch Isometrien, die
-die Orientierung des Raumes umkehren, wie zum Beispiel Spiegelungen.
-Wegen $\det (AA^t)=\det A\det A^t = (\det A)^2=1$ kann die Determinante
-einer orthogonalen Matrix nur $\pm 1$ sein.
-Orientierungserhaltende Isometrien haben Determinante $1$.
-
-Die Gruppe
-\[
-\operatorname{SO}(n)
-=
-\{A\in\operatorname{O}(n)\;|\; \det A=1\}
-\]
-heisst die {\em spezielle orthogonale Gruppe}.
-Die Dimension der Gruppe $\operatorname{O}(n)$ ist $n(n-1)/2$.
-
-\subsubsection{Die Gruppe $\operatorname{SO}(3)$}
-Die Gruppe $\operatorname{SO}(3)$ der Drehungen des dreidimensionalen
-Raumes hat die Dimension $3(3-1)/2=3$.
-Eine Drehung wird festgelegt durch die Richtung der Drehachse und den
-Drehwinkel.
-Die Richtung der Drehachse ist ein Einheitsvektor, also ein Punkt
-auf der zweidimensionalen Kugel.
-Der Drehwinkel ist der dritte Parameter.
-
-Drehungen mit kleinen Drehwinkeln können zusammengesetzt werden
-aus den Matrizen
-\begin{align*}
-D_{x,\alpha}
-&=
-\begin{pmatrix}
-1&0&0\\
-0&\cos\alpha&-\sin\alpha\\
-0&\sin\alpha& \cos\alpha
-\end{pmatrix},
-&
-D_{y,\beta}
-&=
-\begin{pmatrix}
- \cos\beta&0&\sin\beta\\
- 0 &1& 0 \\
--\sin\beta&0&\cos\beta
-\end{pmatrix},
-&
-D_{z,\gamma}
-&=
-\begin{pmatrix}
-\cos\gamma&-\sin\gamma&0\\
-\sin\gamma& \cos\gamma&0\\
- 0 & 0 &1
-\end{pmatrix}
-\\
-&=
-e^{A_{23}t}
-&
-&=
-e^{-A_{13}t}
-&
-&=
-e^{A_{21}t}
-\end{align*}
-die Drehungen um die Koordinatenachsen um den Winkel $\alpha$
-beschreiben.
-Auch die Winkel $\alpha$, $\beta$ und $\gamma$ können als die
-drei Koordinaten der Mannigkfaltigkeit $\operatorname{SO}(3)$
-angesehen werden.
-
-%
-% Spezielle lineare Gruppe
-%
-\subsection{Volumenerhaltende Abbildungen und
-die Gruppe $\operatorname{SL}_n(\mathbb{R})$
-\label{buch:gruppen:sl}}
-Die Elemente der Gruppe $SO(n)$ erhalten Längen, Winkel und die
-Orientierung, also auch das Volumen.
-Es gibt aber volumenerhaltende Abbildungen, die Längen oder Winkel
-nicht notwendigerweise erhalten.
-Matrizen $A\in M_n(\mathbb{R})$, die das Volumen erhalten,
-haben die Determinante $\det A=1$.
-Wegen $\det(AB)=\det A\det B$ ist das Produkt zweier Matrizen mit
-Determinante $1$ wieder eine solche, sie bilden daher eine Gruppe.
-
-\begin{definition}
-Die volumenerhaltenden Abbildungen bilden die Gruppe
-\[
-\operatorname{SL}_n(\mathbb{R})
-=
-\{
-A\in M_n(\mathbb{R})
-\;|\;
-\det (A) = 1
-\}
-\]
-sie heisst die {\em spezielle lineare Gruppe}.
-\end{definition}
-
-Wir wollen jetzt die Tangentialvektoren von $\operatorname{SL}_n(\mathbb{R})$
-bestimmen.
-Dazu sei $A(t)$ eine Kurve in $\operatorname{SL}_n(\mathbb{R})$
-mit $A(0)=I$.
-Für alle $t\in\mathbb{R}$ ist $\det A(t)=1$, daher ist die Ableitung
-\[
-\frac{d}{dt} \det A(t) = 0
-\quad\text{an der Stelle $t=0$.}
-\]
-Für $n=2$ ist
-\begin{align*}
-A(t)
-&=
-\begin{pmatrix}
-a(t)&b(t)\\
-c(t)&d(t)
-\end{pmatrix}
-\in
-\operatorname{SL}_2(\mathbb{R})
-&&\Rightarrow&
-\frac{d}{dt}
-\det A(t)\bigg|_{t=0}
-&=
-\dot{a}(0) d(0)+a(0)\dot{d}(0)
--
-\dot{b}(0) c(0)-b(0)\dot{c}(0)
-\\
-&&&&
-&=
-\dot{a}(0) + \dot{d}(0)
-\\
-&&&&
-&=
-\operatorname{Spur}\frac{dA}{dt}.
-\end{align*}
-Dies gilt nicht nur im Falle $n=2$, sondern ganz allgemein für beliebige
-$n\times n$-Matrizen.
-
-\begin{satz}
-Ist $A(t)$ eine differenzierbare Kurve in $\operatorname{SL}_n(\mathbb{B})$
-mit $A(0)=I$, dann ist $\operatorname{Spur}\dot{A}(0)=0$.
-\end{satz}
-
-\begin{proof}[Beweis]
-Die Entwicklung der Determinante von $A$ nach der ersten Spalte ist
-\[
-\det A(t) = \sum_{i=1}^n (-1)^{i+1} a_{i1}(t) \det A_{i1}(t).
-\]
-Die Ableitung nach $t$ ist
-\[
-\frac{d}{dt} \det A(t)
-=
-\sum_{i=1}^n (-1)^{i+1} \dot{a}_{i1}(t) \det A_{i1}(t).
-+
-\sum_{i=1}^n (-1)^{i+1} a_{i1}(t) \frac{d}{dt}\det A_{i1}(t).
-\]
-An der Stelle $t=0$ enthält $\det A_{i1}(0)$ für $i\ne 1$
-eine Nullzeile, der einzige nichtverschwindende Term in der ersten
-Summe ist daher der erste.
-In der zweiten Summe ist das einzige nicht verschwindende $a_{i1}(0)$
-jenes für $i=1$, somit ist die Ableitung von $\det A(t)$
-\begin{equation}
-\frac{d}{dt} \det A(t)
-=
-\dot{a}_{11}(t) \det A_{11}(t).
-+
-\frac{d}{dt}\det A_{11}(t)
-=
-\dot{a}_{11}(0)
-+
-\frac{d}{dt}\det A_{11}(t).
-\label{buch:gruppen:eqn:detspur}
-\end{equation}
-Die Beziehung \eqref{buch:gruppen:eqn:detspur} kann für einen Beweis mit
-vollständiger Induktion verwendet werden.
-
-Die Induktionsverankerung für $n=1$ besagt, dass $\det A(t)=a_{11}(t)$
-genau dann konstant $=1$ ist, wenn $\dot{a}_{11}(0)=\operatorname{Spur}A(0)$
-ist.
-Unter der Induktionsannahme, dass für eine $(n-1)\times(n-1)$-Matrix
-$\tilde{A}(t)$ mit $\tilde{A}(0)=I$ die Ableitung der Determinante
-\[
-\frac{d}{dt}\tilde{A}(0)
-=
-\operatorname{Spur}\dot{\tilde{A}}(0)
-\]
-ist, folgt jetzt mit
-\eqref{buch:gruppen:eqn:detspur}, dass
-\[
-\frac{d}{dt}A(0)
-=
-\dot{a}_{11}(0)
-+
-\frac{d}{dt} \det A_{11}(t)\bigg|_{t=0}
-=
-\dot{a}_{11}(0)
-+
-\operatorname{Spur}\dot{A}_{11}(0)
-=
-\operatorname{Spur}\dot{A}(0).
-\]
-Damit folgt jetzt die Behauptung für alle $n$.
-\end{proof}
-
-\begin{beispiel}
-Die Tangentialvektoren von $\operatorname{SL}_2(\mathbb{R})$ sind
-die spurlosen Matrizen
-\[
-A=\begin{pmatrix}a&b\\c&d\end{pmatrix}
-\quad\Rightarrow\quad
-\operatorname{Spur}A=a+d=0
-\quad\Rightarrow\quad
-A=\begin{pmatrix}a&b\\c&-a\end{pmatrix}.
-\]
-Der Tangentialraum ist also dreidimensional.
-Als Basis könnte man die folgenden Vektoren verwenden:
-\begin{align*}
-A
-&=
-\begin{pmatrix}1&0\\0&-1\end{pmatrix}
-&&\Rightarrow&
-e^{At}
-&=
-\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}
-\\
-B
-&=
-\begin{pmatrix}0&-1\\1&0\end{pmatrix}
-&&\Rightarrow&
-e^{Bt}
-&=
-\begin{pmatrix}
-\cos t & -\sin t\\
-\sin t & \cos t
-\end{pmatrix}
-\\
-C
-&=
-\begin{pmatrix}0&1\\1&0\end{pmatrix}
-&&\Rightarrow&
-e^{Ct}
-&=
-I + Ct + \frac{C^2t^2}{2!} + \frac{C^3t^3}{3!} + \frac{C^4t^4}{4!}+\dots
-\\
-&&&&
-&=
-I\biggl(1 + \frac{t^2}{2!} + \frac{t^4}{4!}+\dots \biggr)
-+
-C\biggl(t + \frac{t^3}{3!} + \frac{t^5}{5!}+\dots \biggr)
-\\
-&&&&
-&=
-I\cosh t + C \sinh t
-=
-\begin{pmatrix}
-\cosh t & \sinh t\\
-\sinh t & \cosh t
-\end{pmatrix},
-\end{align*}
-wobei in der Auswertung der Potenzreihe für $e^{Ct}$ verwendet wurde,
-dass $C^2=I$.
-
-Die Matrizen $e^{At}$ Streckungen der einen Koordinatenachse und
-Stauchungen der anderen derart, dass das Volumen erhalten bleibt.
-Die Matrizen $e^{Bt}$ sind Drehmatrizen, die Längen und Winkel und
-damit erst recht den Flächeninhalt erhalten.
-Die Matrizen der Form $e^{Ct}$ haben die Vektoren $(1,\pm1)$ als
-Eigenvektoren:
-\begin{align*}
-\begin{pmatrix}1\\1\end{pmatrix}
-&\mapsto
-e^{Ct}
-\begin{pmatrix}1\\1\end{pmatrix}
-=
-(\cosh t +\sinh t)
-\begin{pmatrix}1\\1\end{pmatrix}
-=
-\biggl(
-\frac{e^t+e^{-t}}2
-+
-\frac{e^t-e^{-t}}2
-\biggr)
-\begin{pmatrix}1\\1\end{pmatrix}
-=
-e^t
-\begin{pmatrix}1\\1\end{pmatrix}
-\\
-\begin{pmatrix}1\\-1\end{pmatrix}
-&\mapsto
-e^{Ct}
-\begin{pmatrix}1\\-1\end{pmatrix}
-=
-(\cosh t -\sinh t)
-\begin{pmatrix}1\\-1\end{pmatrix}
-=
-\biggl(
-\frac{e^t+e^{-t}}2
--
-\frac{e^t-e^{-t}}2
-\biggr)
-\begin{pmatrix}1\\-1\end{pmatrix}
-=
-e^{-t}
-\begin{pmatrix}1\\-1\end{pmatrix}
-\end{align*}
-Die Matrizen $e^{Ct}$ strecken die Richtung $(1,1)$ um $e^t$ und
-die dazu orthogonale Richtung $(1,-1)$ um den Faktor $e^{-t}$.
-Dies ist die gegenüber $e^{At}$ um $45^\circ$ verdrehte Situation,
-auch diese Matrizen sind flächenerhaltend.
-\begin{figure}
-\centering
-\includegraphics{chapters/60-gruppen/images/sl2.pdf}
-\caption{Tangentialvektoren und die davon erzeugen Einparameteruntergruppen
-für die Lie-Gruppe $\operatorname{SL}_2(\mathbb{R})$ der flächenerhaltenden
-linearen Abbildungen von $\mathbb{R}^2$.
-In allen drei Fällen wird ein blauer Rhombus mit den Ecken in den
-Standardbasisvektoren von einer Matrix der Einparameteruntergruppe zu
-zum roten Viereck verzerrt, der Flächeninhalt bleibt aber erhalten.
-In den beiden Fällen $B$ und $C$ stellen die grünen Kurven die Bahnen
-der Bilder der Standardbasisvektoren dar.
-\label{buch:gruppen:fig:sl2}}
-\end{figure}%
-\begin{figure}
-\centering
-\includegraphics{chapters/60-gruppen/images/scherungen.pdf}
-\caption{Weitere Matrizen mit Spur $0$ und ihre Wirkung
-Die inken beiden Beispiele $M$ und $N$ sind nilpotente Matrizen,
-die zugehörigen Einparameter-Untergruppen beschreiben Schwerungen.
-\label{buch:gruppen:fig:scherungen}}
-\end{figure}
-\end{beispiel}
-
-%
-% Die Gruppe SU(2)
-%
-\subsection{Die Gruppe $\operatorname{SU}(2)$
-\label{buch:gruppen:su2}}
-Die Menge der Matrizen
-\[
-\operatorname{SU}(2)
-=
-\left\{
-\left.
-A=\begin{pmatrix} a&b\\c&d\end{pmatrix}
-\;\right|\;
-a,b,c,d\in\mathbb{C},\det(A)=1, AA^*=I
-\right\}
-\]
-heisst die {\em spezielle unitäre Gruppe}.
-Wegen $\det(AB)=\det(A)\det(B)=1$ und $(AB)^*AB=B^*A^*AB=B^*B=I$ ist
-$\operatorname{SU}(2)$ eine Untergruppe von $\operatorname{GL}_2(\mathbb{C})$.
-Die Bedingungen $\det A=1$ und $AA^*=I$ schränken die möglichen Werte
-von $a$ und $b$ weiter ein.
-Aus
-\[
-A^*
-=
-\begin{pmatrix}
-\overline{a}&\overline{c}\\
-\overline{b}&\overline{d}
-\end{pmatrix}
-\]
-und den Bedingungen führen die Gleichungen
-\[
-\begin{aligned}
-a\overline{a}+b\overline{b}&=1
-&&\Rightarrow&|a|^2+|b|^2&=1
-\\
-a\overline{c}+b\overline{d}&=0
-&&\Rightarrow&
-\frac{a}{b}&=-\frac{\overline{d}}{\overline{c}}
-\\
-c\overline{a}+d\overline{b}&=0
-&&\Rightarrow&
-\frac{c}{d}&=-\frac{\overline{b}}{\overline{a}}
-\\
-c\overline{c}+d\overline{d}&=1&&\Rightarrow&|c|^2+|d|^2&=1
-\\
-ad-bc&=1
-\end{aligned}
-\]
-Aus der zweiten Gleichung kann man ableiten, dass es eine Zahl $t\in\mathbb{C}$
-gibt derart, dass $c=-t\overline{b}$ und $d=t\overline{a}$.
-Damit wird die Bedingung an die Determinante zu
-\[
-1
-=
-ad-bc = at\overline{a} - b(-t\overline{b})
-=
-t(|a|^2+|b|^2)
-=
-t,
-\]
-also muss die Matrix $A$ die Form haben
-\[
-A
-=
-\begin{pmatrix}
-a&b\\
--\overline{b}&\overline{a}
-\end{pmatrix}
-\qquad\text{mit}\quad |a|^2+|b|^2=1.
-\]
-Schreibt man $a=a_1+ia_2$ und $b=b_1+ib_2$ mit rellen $a_i$ und $b_i$,
-dann besteht $SU(2)$ aus den Matrizen der Form
-\[
-A=
-\begin{pmatrix}
- a_1+ia_2&b_1+ib_2\\
--b_1+ib_2&a_1-ia_2
-\end{pmatrix}
-\]
-mit der zusätzlichen Bedingung
-\[
-|a|^2+|b|^2
-=
-a_1^2 + a_2^2 + b_1^2 + b_2^2 = 1.
-\]
-Die Matrizen von $\operatorname{SU}(2)$ stehen daher in einer
-eins-zu-eins-Beziehung zu den Vektoren $(a_1,a_2,b_1,b_2)\in\mathbb{R}^4$
-eines vierdimensionalen reellen Vektorraums mit Länge $1$.
-Geometrisch betrachtet ist also $\operatorname{SU}(2)$ eine dreidmensionalen
-Kugel, die in einem vierdimensionalen Raum eingebettet ist.
-
-
-
+%
+% lie-gruppen.tex -- Lie-Gruppebn
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Lie-Gruppen
+\label{buch:section:lie-gruppen}}
+\rhead{Lie-Gruppen}
+Die in bisherigen Beispielen untersuchten Matrizengruppen zeichnen sich
+durch zusätzliche Eigenschaften aus.
+Die Gruppe
+\[
+\operatorname{GL}_n(\mathbb{R})
+=
+\{ A \in M_n(\mathbb{R})\;|\; \det A \ne 0\}
+\]
+besteht aus den Matrizen, deren Determinante nicht $0$ ist.
+Da die Menge der Matrizen mit $\det A=0$ eine abgeschlossene Menge
+in $M_n(\mathbb{R}) \simeq \mathbb{R}^{n^2}$ ist, ist
+$\operatorname{GL}_n(\mathbb{R})$ eine offene Teilmenge in $\mathbb{R}^{n^2}$,
+sie besitzt also automatisch die Struktur einer $n^2$-Mannigfaltigkeit.
+Dies gilt jedoch auch für alle anderen Matrizengruppen, die in diesem
+Abschnitt genauer untersucht werden sollen.
+
+\subsection{Mannigfaltigkeitsstruktur der Matrizengruppen
+\label{buch:subsection:mannigfaltigkeitsstruktur-der-matrizengruppen}}
+Eine Matrizengruppe wird automatsich zu einer Mannigfaltigkeit,
+wenn es gelingt, eine Karte für eine Umgebung des neutralen Elements
+zu finden.
+Dazu muss gezeigt werden, dass sich aus einer solchen Karte für jedes
+andere Gruppenelement eine Karte für eine Umgebung ableiten lässt.
+Sei also $\varphi_e\colon U_e \to \mathbb{R}^N$ eine Karte für die Umgebung
+$U_e\subset G$ von $e\in G$.
+Für $g\in G$ ist dann die Abbildung
+\[
+\varphi_g
+\colon
+U_g
+=
+gU_e
+\to
+\mathbb{R}
+:
+h\mapsto \varphi_e(g^{-1}h)
+\]
+eine Karte für die Umgebung $U_g$ des Gruppenelementes $g$.
+schreibt man $l_{g}$ für die Abbildung $h\mapsto gh$, dann
+kann man die Kartenabbildung auch $\varphi_g = \varphi_e\circ l_{g^{-1}}$
+schreiben.
+
+\subsubsection{Kartenwechsel}
+Die Kartenwechsel-Abbildungen für zwei Karten $\varphi_{g_1}$
+und $\varphi_{g_2}$ ist die Abbildung
+\[
+\varphi_{g_1,g_2}
+=
+\varphi_{g_1}\circ \varphi_{g_2}^{-1}
+=
+\varphi_e\circ l_{g_1^{-1}} \circ (\varphi_e\circ l_{g_2^{-1}})^{-1}
+=
+\varphi_e\circ l_{g_1^{-1}} \circ l_{g_2^{-1}}^{-1} \varphi_e^{-1}
+=
+\varphi_e\circ l_{g_1^{-1}} \circ l_{g_2}\varphi_e^{-1}
+=
+\varphi_e\circ l_{g_1^{-1}g_2}\varphi_e^{-1}
+\]
+mit der Ableitung
+\[
+D\varphi_e\circ Dl_{g_1^{-1}g_2} D\varphi_e^{-1}
+=
+D\varphi_e\circ Dl_{g_1^{-1}g_2} (D\varphi_e)^{-1}.
+\]
+Die Abbildung $l_{g_1^{-1}g_2}$ ist aber nur die Multiplikation mit
+einer Matrix, also eine lineare Abbildung, so dass der Kartenwechsel
+nichts anderes ist als die Darstellung der Matrix der Linksmultiplikation
+$l_{g_1^{-1}g_2}$ im Koordinatensystem der Karte $U_e$ ist.
+Differenzierbarkeit der Kartenwechsel ist damit sichergestellt,
+die Matrizengruppen sind automatisch differenzierbare Mannigfaltigkeiten.
+
+Die Konstruktion aller Karten aus einer einzigen Karte für eine
+Umgebung des neutralen Elements zeigt auch, dass es für die Matrizengruppen
+reicht, wenn man die Elemente in einer Umgebung des neutralen
+Elementes parametrisieren kann.
+Dies ist jedoch nicht nur für die Matrizengruppen möglich.
+Wenn eine Gruppe gleichzeitig eine differenzierbare Mannigfaltigkeit
+ist, dann können Karten über die ganze Gruppe transportiert werden,
+wenn die Multiplikation mit Gruppenelementen eine differenzierbare
+Abbildung ist.
+Solche Gruppen heissen auch Lie-Gruppen gemäss der folgenden Definition.
+
+\begin{definition}
+\index{Lie-Gruppe}%
+Eine {\em Lie-Gruppe} ist eine Gruppe, die gleichzeitig eine differenzierbare
+Mannigfaltigkeit ist derart, dass die Abbildungen
+\begin{align*}
+G\times G \to G &: (g_1,g_2)\mapsto g_1g_2
+\\
+G\to G &: g \mapsto g^{-1}
+\end{align*}
+differenzierbare Abbildungen zwischen Mannigfaltigkeiten sind.
+\end{definition}
+
+Die Abstraktheit dieser Definition täuscht etwas über die
+Tatsache hinweg, dass sich mit Hilfe der Darstellungstheorie
+jede beliebige Lie-Gruppe als Untermannigfaltigkeit einer
+Matrizengruppe verstehen lässt.
+Das Studium der Matrizengruppen erlaubt uns daher ohne grosse
+Einschränkungen ein Verständnis für die Theorie der Lie-Gruppen
+zu entwickeln.
+
+\subsubsection{Tangentialvektoren und die Exponentialabbildung}
+Die Matrizengruppen sind alle in der
+$n^2$-dimensionalen Mannigfaltigkeit $\operatorname{GL}_n(\mathbb{R})$
+enthalten.
+Diffferenzierbare Kurven $\gamma(t)$ in $\operatorname{GL}_n(\mathbb{R})$
+haben daher in jedem Punkt Tangentialvektoren, die als Matrizen in
+$M_n(\mathbb{R})$ betrachtet werden können.
+Wenn $\gamma(t)$ die Matrixelemente $\gamma_{ij}(t)$ hat, dann ist der
+Tangentialvektor im Punkt $\gamma(t)$ durch
+\[
+\frac{d}{dt}
+\gamma(t)
+=
+\begin{pmatrix}
+\dot{\gamma}_{11}(t)&\dots &\dot{\gamma}_{1n}(t)\\
+\vdots &\ddots&\vdots \\
+\dot{\gamma}_{n1}(t)&\dots &\dot{\gamma}_{nn}(t)
+\end{pmatrix}
+\]
+gegeben.
+
+Im Allgemeinen kann man Tangentialvektoren in verschiedenen Punkten
+einer Mannigfaltigkeit nicht miteinander vergleichen.
+Die Multiplikation $l_g$, die den Punkt $e$ in den Punkt $g$ verschiebt,
+transportiert auch die Tangentialvektoren im Punkt $e$ in
+Tangentialvektoren im Punkt $g$.
+
+\begin{aufgabe}
+Gibt es eine Kurve $\gamma(t)\in\mathbb{GL}_n(\mathbb{R})$ mit
+$\gamma(0)=e$ derart, dass der Tangentialvektor im Punkt $\gamma(t)$
+für $t>0$ derselbe ist wie der Tangentialvektor im Punkt $e$, transportiert
+durch Matrixmultiplikation mit $\gamma(t)$?
+\end{aufgabe}
+
+Eine solche Kurve muss die Differentialgleichung
+\begin{equation}
+\frac{d}{dt}\gamma(t)
+=
+\gamma(t)\cdot A
+\label{buch:gruppen:eqn:expdgl}
+\end{equation}
+erfüllen, wobei $A\in M_n(\mathbb{R})$ der gegebene Tangentialvektor
+in $e=I$ ist.
+
+Die Matrixexponentialfunktion
+\[
+e^{At}
+=
+1+At+\frac{A^2t^2}{2!}+\frac{A^3t^3}{3!}+\frac{A^4t^4}{4!}+\dots
+\]
+liefert eine Einparametergruppe
+$\mathbb{R}\to \operatorname{GL}_n(\mathbb{R})$ mit der Ableitung
+\[
+\frac{d}{dt} e^{At}
+=
+\lim_{h\to 0} \frac{e^{A(t+h)}-e^{At}}{h}
+=
+\lim_{h\to 0} e^{At}\frac{e^{Ah}-I}{h}
+=
+e^{At} A.
+\]
+Sie ist also Lösung der Differentialgleichung~\eqref{buch:gruppen:eqn:expdgl}.
+
+\subsection{Drehungen in der Ebene
+\label{buch:gruppen:drehungen2d}}
+Die Drehungen der Ebene sind die orientierungserhaltenden Symmetrien
+des Einheitskreises, der in Abbildung~\ref{buch:gruppen:fig:kartenkreis}
+als Mannigfaltigkeit erkannt wurde.
+Sie bilden eine Lie-Gruppe, die auf verschiedene Arten als Matrix
+beschrieben werden kann.
+
+\subsubsection{Die Untergruppe
+$\operatorname{SO}(2)\subset \operatorname{GL}_2(\mathbb{R})$}
+Drehungen der Ebene können in einer orthonormierten Basis durch
+Matrizen der Form
+\[
+D_{\alpha}
+=
+\begin{pmatrix}
+\cos\alpha&-\sin\alpha\\
+\sin\alpha& \cos\alpha
+\end{pmatrix}
+\]
+dargestellt werden.
+Wir bezeichnen die Menge der Drehmatrizen in der Ebene mit
+$\operatorname{SO}(2)\subset\operatorname{GL}_2(\mathbb{R})$.
+Die Abbildung
+\[
+D_{\bullet}
+\colon
+\mathbb{R}\to \operatorname{SO}(2)
+:
+\alpha \mapsto D_{\alpha}
+\]
+hat die Eigenschaften
+\begin{align*}
+D_{\alpha+\beta}&= D_{\alpha}D_{\beta}
+\\
+D_0&=I
+\\
+D_{2k\pi}&=I\qquad \forall k\in\mathbb{Z}.
+\end{align*}
+Daraus folgt zum Beispiel, dass $D_{\bullet}$ eine $2\pi$-periodische
+Funktion ist.
+$D_{\bullet}$ bildet die Menge der Winkel $[0,2\pi)$ bijektiv auf
+die Menge der Drehmatrizen in der Ebene ab.
+
+Für jedes Intervall $(a,b)\subset\mathbb{R}$ mit Länge
+$b-a < 2\pi$ ist die Abbildung $\alpha\mapsto D_{\alpha}$ umkehrbar,
+die Umkehrung kann als Karte verwendet werden.
+Zwei verschiedene Karten $\alpha_1\colon U_1\to\mathbb{R}$ und
+$\alpha_2\colon U_2\to\mathbb{R}$ bilden die Elemente $g\in U_1\cap U_2$
+in Winkel $\alpha_1(g)$ und $\alpha_2(g)$ ab, für die
+$D_{\alpha_1(g)}=D_{\alpha_2(g)}$ gilt.
+Dies ist gleichbedeutend damit, dass $\alpha_1(g)=\alpha_2(g)+2\pi k$
+mit $k\in \mathbb{Z}$.
+In einem Intervall in $U_1\cap U_2$ muss $k$ konstant sein.
+Die Kartenwechselabblidung ist also nur die Addition eines Vielfachen
+von $2\pi$, mit der identischen Abbildung als Ableitung.
+Diese Karten führen also auf besonders einfache Kartenwechselabbildungen.
+
+\subsubsection{Die Untergruppe $S^1\subset\mathbb{C}$}
+Ein alternatives Bild für die Drehungen der Ebene kann man in der komplexen
+Ebene $\mathbb{C}$ erhalten.
+Die Multiplikation mit der komplexen Zahl $e^{i\alpha}$ beschreibt eine
+Drehung der komplexen Ebene um den Winkel $\alpha$.
+Die Zahlen der Form $e^{i\alpha}$ haben den Betrag $1$ und die Abbildung
+\[
+f\colon \mathbb{R}\to \mathbb{C}:\alpha \mapsto e^{i\alpha}
+\]
+hat die Eigenschaften
+\begin{align*}
+f(\alpha+\beta) &= f(\alpha)f(\beta)
+\\
+f(0)&=1
+\\
+f(2\pi k)&=1\qquad\forall k\in\mathbb{Z},
+\end{align*}
+die zu den Eigenschaften der Abbildung $\alpha\mapsto D_{\alpha}$
+analog sind.
+
+Jede komplexe Zahl $z$ vom Betrag $1$ kann geschrieben werden in der Form
+$z=e^{i\alpha}$, die Abbildung $f$ ist also eine Parametrisierung des
+Einheitskreises in der Ebene.
+Wir bezeichen $S^1=\{z\in\mathbb{C}\;|\; |z|=1\}$ die komplexen Zahlen vom
+Betrag $1$.
+$S^1$ ist eine Gruppe bezüglich der Multiplikation, da für jede Zahl
+$z,w\in S^1$ gilt
+$|z^{-1}|=1$ und $|zw|=1$ und damit $z^{-1}\in S^1$ und $zw\in S^1$.
+
+Zu einer komplexen Zahl $z\in S^1$ gibt es einen bis auf Vielfache
+von $2\pi$ eindeutigen Winkel $\alpha(z)$ derart, dass $e^{i\alpha(z)}=z$.
+Damit kann man jetzt die Abbildung
+\[
+\varphi
+\colon
+S^1\to \operatorname{SO}(2)
+:
+z\mapsto D_{\alpha(z)}
+\]
+konstruieren.
+Da $D_{\alpha}$ $2\pi$-periodisch ist, geben um Vielfache
+von $2\pi$ verschiedene Wahlen von $\alpha(z)$ die gleiche
+Matrix $D_{\alpha(z)}$, die Abbildung $\varphi$ ist daher
+wohldefiniert.
+$\varphi$ erfüllt ausserdem die Bedingungen
+\begin{align*}
+\varphi(z_1z_2)
+&=
+D_{\alpha(z_1z_2)}
+=
+D_{\alpha(z_1)+\alpha(z_2)}
+=
+D_{\alpha(z_1)}D_{\alpha(z_2)}
+=
+\varphi(z_1)\varphi(z_2)
+\\
+\varphi(1)
+&=
+D_{\alpha(1)}
+=
+D_0
+=
+I
+\end{align*}
+Die Abbildung $\varphi$ ist ein Homomorphismus der Gruppe $S^1$
+in die Gruppe $\operatorname{SO}(2)$.
+Die Menge der Drehmatrizen in der Ebene kann also mit dem Einheitskreis
+in der komplexen Ebene identifiziert werden.
+
+\subsubsection{Tangentialvektoren von $\operatorname{SO}(2)$}
+Da die Gruppe $\operatorname{SO}(2)$ eine eindimensionale Gruppe
+ist, kann jede Kurve $\gamma(t)$ durch den Drehwinkel $\alpha(t)$
+mit $\gamma(t) = D_{\alpha(t)}$ beschrieben werden.
+Die Ableitung in $M_2(\mathbb{R})$ ist
+\begin{align*}
+\frac{d}{dt} \gamma(t)
+&=
+\frac{d}{d\alpha}
+\begin{pmatrix}
+\cos\alpha(t) & - \sin\alpha(t)\\
+\sin\alpha(t) & \cos\alpha(t)
+\end{pmatrix}
+\cdot
+\frac{d\alpha}{dt}
+\\
+&=
+\begin{pmatrix}
+-\sin\alpha(t)&-\cos\alpha(t)\\
+ \cos\alpha(t)&-\sin\alpha(t)
+\end{pmatrix}
+\cdot
+\dot{\alpha}(t)
+\\
+&=
+\begin{pmatrix}
+\cos\alpha(t) & - \sin\alpha(t)\\
+\sin\alpha(t) & \cos\alpha(t)
+\end{pmatrix}
+\begin{pmatrix}
+0&-1\\
+1&0
+\end{pmatrix}
+\cdot
+\dot{\alpha}(t)
+=
+D_{\alpha(t)}J\cdot\dot{\alpha}(t).
+\end{align*}
+Alle Tangentialvektoren von $\operatorname{SO}(2)$ im Punkt $D_\alpha$
+entstehen aus $J$ durch Drehung mit der Matrix $D_\alpha$ und Skalierung
+mit $\dot{\alpha}(t)$.
+
+%
+% Isometrien von R^n
+%
+\subsection{Isometrien von $\mathbb{R}^n$
+\label{buch:gruppen:isometrien}}
+
+\subsubsection{Skalarprodukt}
+Lineare Abbildungen des Raumes $\mathbb{R}^n$ können durch
+$n\times n$-Matrizen beschrieben werden.
+Die Matrizen, die das Standardskalarprodukt $\mathbb{R}^n$ erhalten,
+bilden eine Gruppe, die in diesem Abschnitt genauer untersucht werden soll.
+Eine Matrix $A\in M_{n}(\mathbb{R})$ ändert das Skalarprodukt, wenn
+für jedes beliebige Paar $x,y$ von Vektoren gilt
+$\langle Ax,Ay\rangle = \langle x,y\rangle$.
+Das Standardskalarprodukt kann mit dem Matrixprodukt ausgedrückt werden:
+\[
+\langle Ax,Ay\rangle
+=
+(Ax)^tAy
+=
+x^tA^tAy
+=
+x^ty
+=
+\langle x,y\rangle
+\]
+für jedes Paar von Vektoren $x,y\in\mathbb{R}$.
+
+Mit dem Skalarprodukt kann man auch die Matrixelemente einer Matrix
+einer Abbildung $f$ in der Standardbasis bestimmen.
+Das Skalarprodukt $\langle e_i, v\rangle$ ist die Länge der Projektion
+des Vektors $v$ auf die Richtung $e_i$.
+Die Komponenten von $Ae_j$ sind daher $a_{ij}=\langle e_i,f(e_j)\rangle$.
+Die Matrix $A$ der Abbildung $f$ hat also die Matrixelemente
+$a_{ij}=e_i^tAe_j$.
+
+\subsubsection{Die orthogonale Gruppe $\operatorname{O}(n)$}
+Die Matrixelemente von $A^tA$ sind
+$\langle A^tAe_i, e_j\rangle =\langle e_i,e_j\rangle = \delta_{ij}$
+sind diejenigen der Einheitsmatrix,
+die Matrix $A$ erfüllt $AA^t=I$ oder $A^{-1}=A^t$.
+Dies sind die {\em orthogonalen} Matrizen.
+Die Menge $\operatorname{O}(n)$ der isometrischen Abbildungen besteht
+daher aus den Matrizen
+\[
+\operatorname{O}(n)
+=
+\{ A\in M_n(\mathbb{R})\;|\; AA^t=I\}.
+\]
+Die Matrixgleichung $AA^t=I$ liefert $n(n+1)/2$ unabhängige Bedingungen,
+die die orthogonalen Matrizen innerhalb der $n^2$-dimensionalen
+Menge $M_n(\mathbb{R})$ auszeichnen.
+Die Menge $\operatorname{O}(n)$ der orthogonalen Matrizen hat daher
+die Dimension
+\[
+n^2 - \frac{n(n+1)}{2}
+=
+\frac{2n^2-n^2-n}{2}
+=
+\frac{n(n-1)}2.
+\]
+Im Spezialfall $n=2$ ist die Gruppe $O(2)$ eindimensional.
+
+\subsubsection{Tangentialvektoren}
+Die orthogonalen Matrizen bilden eine abgeschlossene Untermannigfaltigkeit
+von $\operatorname{GL}_n(\mathbb{R})$, nicht jede Matrix $M_n(\mathbb{R})$
+kann also ein Tangentialvektor von $O(n)$ sein.
+Um herauszufinden, welche Matrizen als Tangentialvektoren in Frage
+kommen, betrachten wir eine Kurve $\gamma\colon\mathbb{R}\to O(n)$
+von orthogonalen Matrizen mit $\gamma(0)=I$.
+Orthogonal bedeutet
+\[
+\begin{aligned}
+&&
+0
+&=
+\frac{d}{dt}I
+=
+\frac{d}{dt}
+(\gamma(t)^t\gamma(t))
+=
+\dot{\gamma}(t)^t\gamma(t))
++
+\gamma(t)^t\dot{\gamma}(t))
+\\
+&\Rightarrow&
+0
+&=
+\dot{\gamma}(0)^t \cdot I + I\cdot \dot{\gamma(0)}
+=
+\dot{\gamma}(0)^t + \dot{\gamma}(0)
+=
+A^t+A=0
+\\
+&\Rightarrow&
+A^t&=-A
+\end{aligned}
+\]
+Die Tangentialvektoren von $\operatorname{O}(n)$ sind also genau
+die antisymmetrischen Matrizen.
+
+Für $n=2$ sind alle antisymmetrischen Matrizen Vielfache der Matrix
+$J$, wie in Abschnitt~\ref{buch:gruppen:drehungen2d}
+gezeigt wurde.
+
+Für jedes Paar $i<j$ ist die Matrix $A_{ij}$ mit den Matrixelementen
+$(A_{ij})_{ij}=-1$ und $(A_{ij})_{ji}=1$
+antisymmetrisch.
+Für $n=2$ ist $A_{12}=J$.
+Die $n(n-1)/2$ Matrizen $A_{ij}$ bilden eine Basis des
+$n(n-1)/2$-dimensionale Tangentialraumes von $\operatorname{O}(n)$.
+
+Tangentialvektoren in einem anderen Punkt $g\in\operatorname{O}(n)$
+haben die Form $gA$, wobei $A$ eine antisymmetrische Matrix ist.
+Diese Matrizen sind nur noch in speziellen Fällen antisymmetrisch,
+zum Beispiel im Punkt $-I\in\operatorname{O}(n)$.
+
+\subsubsection{Die Gruppe $\operatorname{SO}(n)$}
+Die Gruppe $\operatorname{O}(n)$ enhält auch Isometrien, die
+die Orientierung des Raumes umkehren, wie zum Beispiel Spiegelungen.
+Wegen $\det (AA^t)=\det A\det A^t = (\det A)^2=1$ kann die Determinante
+einer orthogonalen Matrix nur $\pm 1$ sein.
+Orientierungserhaltende Isometrien haben Determinante $1$.
+
+Die Gruppe
+\[
+\operatorname{SO}(n)
+=
+\{A\in\operatorname{O}(n)\;|\; \det A=1\}
+\]
+heisst die {\em spezielle orthogonale Gruppe}.
+Die Dimension der Gruppe $\operatorname{O}(n)$ ist $n(n-1)/2$.
+
+\subsubsection{Die Gruppe $\operatorname{SO}(3)$}
+Die Gruppe $\operatorname{SO}(3)$ der Drehungen des dreidimensionalen
+Raumes hat die Dimension $3(3-1)/2=3$.
+Eine Drehung wird festgelegt durch die Richtung der Drehachse und den
+Drehwinkel.
+Die Richtung der Drehachse ist ein Einheitsvektor, also ein Punkt
+auf der zweidimensionalen Kugel.
+Der Drehwinkel ist der dritte Parameter.
+
+Drehungen mit kleinen Drehwinkeln können zusammengesetzt werden
+aus den Matrizen
+\begin{align*}
+D_{x,\alpha}
+&=
+\begin{pmatrix}
+1&0&0\\
+0&\cos\alpha&-\sin\alpha\\
+0&\sin\alpha& \cos\alpha
+\end{pmatrix},
+&
+D_{y,\beta}
+&=
+\begin{pmatrix}
+ \cos\beta&0&\sin\beta\\
+ 0 &1& 0 \\
+-\sin\beta&0&\cos\beta
+\end{pmatrix},
+&
+D_{z,\gamma}
+&=
+\begin{pmatrix}
+\cos\gamma&-\sin\gamma&0\\
+\sin\gamma& \cos\gamma&0\\
+ 0 & 0 &1
+\end{pmatrix}
+\\
+&=
+e^{A_{23}t}
+&
+&=
+e^{-A_{13}t}
+&
+&=
+e^{A_{21}t}
+\end{align*}
+die Drehungen um die Koordinatenachsen um den Winkel $\alpha$
+beschreiben.
+Auch die Winkel $\alpha$, $\beta$ und $\gamma$ können als die
+drei Koordinaten der Mannigkfaltigkeit $\operatorname{SO}(3)$
+angesehen werden.
+
+%
+% Spezielle lineare Gruppe
+%
+\subsection{Volumenerhaltende Abbildungen und
+die Gruppe $\operatorname{SL}_n(\mathbb{R})$
+\label{buch:gruppen:sl}}
+Die Elemente der Gruppe $SO(n)$ erhalten Längen, Winkel und die
+Orientierung, also auch das Volumen.
+Es gibt aber volumenerhaltende Abbildungen, die Längen oder Winkel
+nicht notwendigerweise erhalten.
+Matrizen $A\in M_n(\mathbb{R})$, die das Volumen erhalten,
+haben die Determinante $\det A=1$.
+Wegen $\det(AB)=\det A\det B$ ist das Produkt zweier Matrizen mit
+Determinante $1$ wieder eine solche, sie bilden daher eine Gruppe.
+
+\begin{definition}
+Die volumenerhaltenden Abbildungen bilden die Gruppe
+\[
+\operatorname{SL}_n(\mathbb{R})
+=
+\{
+A\in M_n(\mathbb{R})
+\;|\;
+\det (A) = 1
+\}
+\]
+sie heisst die {\em spezielle lineare Gruppe}.
+\end{definition}
+
+Wir wollen jetzt die Tangentialvektoren von $\operatorname{SL}_n(\mathbb{R})$
+bestimmen.
+Dazu sei $A(t)$ eine Kurve in $\operatorname{SL}_n(\mathbb{R})$
+mit $A(0)=I$.
+Für alle $t\in\mathbb{R}$ ist $\det A(t)=1$, daher ist die Ableitung
+\[
+\frac{d}{dt} \det A(t) = 0
+\quad\text{an der Stelle $t=0$.}
+\]
+Für $n=2$ ist
+\begin{align*}
+A(t)
+&=
+\begin{pmatrix}
+a(t)&b(t)\\
+c(t)&d(t)
+\end{pmatrix}
+\in
+\operatorname{SL}_2(\mathbb{R})
+&&\Rightarrow&
+\frac{d}{dt}
+\det A(t)\bigg|_{t=0}
+&=
+\dot{a}(0) d(0)+a(0)\dot{d}(0)
+-
+\dot{b}(0) c(0)-b(0)\dot{c}(0)
+\\
+&&&&
+&=
+\dot{a}(0) + \dot{d}(0)
+\\
+&&&&
+&=
+\operatorname{Spur}\frac{dA}{dt}.
+\end{align*}
+Dies gilt nicht nur im Falle $n=2$, sondern ganz allgemein für beliebige
+$n\times n$-Matrizen.
+
+\begin{satz}
+Ist $A(t)$ eine differenzierbare Kurve in $\operatorname{SL}_n(\mathbb{B})$
+mit $A(0)=I$, dann ist $\operatorname{Spur}\dot{A}(0)=0$.
+\end{satz}
+
+\begin{proof}[Beweis]
+Die Entwicklung der Determinante von $A$ nach der ersten Spalte ist
+\[
+\det A(t) = \sum_{i=1}^n (-1)^{i+1} a_{i1}(t) \det A_{i1}(t).
+\]
+Die Ableitung nach $t$ ist
+\[
+\frac{d}{dt} \det A(t)
+=
+\sum_{i=1}^n (-1)^{i+1} \dot{a}_{i1}(t) \det A_{i1}(t).
++
+\sum_{i=1}^n (-1)^{i+1} a_{i1}(t) \frac{d}{dt}\det A_{i1}(t).
+\]
+An der Stelle $t=0$ enthält $\det A_{i1}(0)$ für $i\ne 1$
+eine Nullzeile, der einzige nichtverschwindende Term in der ersten
+Summe ist daher der erste.
+In der zweiten Summe ist das einzige nicht verschwindende $a_{i1}(0)$
+jenes für $i=1$, somit ist die Ableitung von $\det A(t)$
+\begin{equation}
+\frac{d}{dt} \det A(t)
+=
+\dot{a}_{11}(t) \det A_{11}(t).
++
+\frac{d}{dt}\det A_{11}(t)
+=
+\dot{a}_{11}(0)
++
+\frac{d}{dt}\det A_{11}(t).
+\label{buch:gruppen:eqn:detspur}
+\end{equation}
+Die Beziehung \eqref{buch:gruppen:eqn:detspur} kann für einen Beweis mit
+vollständiger Induktion verwendet werden.
+
+Die Induktionsverankerung für $n=1$ besagt, dass $\det A(t)=a_{11}(t)$
+genau dann konstant $=1$ ist, wenn $\dot{a}_{11}(0)=\operatorname{Spur}A(0)$
+ist.
+Unter der Induktionsannahme, dass für eine $(n-1)\times(n-1)$-Matrix
+$\tilde{A}(t)$ mit $\tilde{A}(0)=I$ die Ableitung der Determinante
+\[
+\frac{d}{dt}\tilde{A}(0)
+=
+\operatorname{Spur}\dot{\tilde{A}}(0)
+\]
+ist, folgt jetzt mit
+\eqref{buch:gruppen:eqn:detspur}, dass
+\[
+\frac{d}{dt}A(0)
+=
+\dot{a}_{11}(0)
++
+\frac{d}{dt} \det A_{11}(t)\bigg|_{t=0}
+=
+\dot{a}_{11}(0)
++
+\operatorname{Spur}\dot{A}_{11}(0)
+=
+\operatorname{Spur}\dot{A}(0).
+\]
+Damit folgt jetzt die Behauptung für alle $n$.
+\end{proof}
+
+\begin{beispiel}
+Die Tangentialvektoren von $\operatorname{SL}_2(\mathbb{R})$ sind
+die spurlosen Matrizen
+\[
+A=\begin{pmatrix}a&b\\c&d\end{pmatrix}
+\quad\Rightarrow\quad
+\operatorname{Spur}A=a+d=0
+\quad\Rightarrow\quad
+A=\begin{pmatrix}a&b\\c&-a\end{pmatrix}.
+\]
+Der Tangentialraum ist also dreidimensional.
+Als Basis könnte man die folgenden Vektoren verwenden:
+\begin{align*}
+A
+&=
+\begin{pmatrix}1&0\\0&-1\end{pmatrix}
+&&\Rightarrow&
+e^{At}
+&=
+\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}
+\\
+B
+&=
+\begin{pmatrix}0&-1\\1&0\end{pmatrix}
+&&\Rightarrow&
+e^{Bt}
+&=
+\begin{pmatrix}
+\cos t & -\sin t\\
+\sin t & \cos t
+\end{pmatrix}
+\\
+C
+&=
+\begin{pmatrix}0&1\\1&0\end{pmatrix}
+&&\Rightarrow&
+e^{Ct}
+&=
+I + Ct + \frac{C^2t^2}{2!} + \frac{C^3t^3}{3!} + \frac{C^4t^4}{4!}+\dots
+\\
+&&&&
+&=
+I\biggl(1 + \frac{t^2}{2!} + \frac{t^4}{4!}+\dots \biggr)
++
+C\biggl(t + \frac{t^3}{3!} + \frac{t^5}{5!}+\dots \biggr)
+\\
+&&&&
+&=
+I\cosh t + C \sinh t
+=
+\begin{pmatrix}
+\cosh t & \sinh t\\
+\sinh t & \cosh t
+\end{pmatrix},
+\end{align*}
+wobei in der Auswertung der Potenzreihe für $e^{Ct}$ verwendet wurde,
+dass $C^2=I$.
+
+Die Matrizen $e^{At}$ Streckungen der einen Koordinatenachse und
+Stauchungen der anderen derart, dass das Volumen erhalten bleibt.
+Die Matrizen $e^{Bt}$ sind Drehmatrizen, die Längen und Winkel und
+damit erst recht den Flächeninhalt erhalten.
+Die Matrizen der Form $e^{Ct}$ haben die Vektoren $(1,\pm1)$ als
+Eigenvektoren:
+\begin{align*}
+\begin{pmatrix}1\\1\end{pmatrix}
+&\mapsto
+e^{Ct}
+\begin{pmatrix}1\\1\end{pmatrix}
+=
+(\cosh t +\sinh t)
+\begin{pmatrix}1\\1\end{pmatrix}
+=
+\biggl(
+\frac{e^t+e^{-t}}2
++
+\frac{e^t-e^{-t}}2
+\biggr)
+\begin{pmatrix}1\\1\end{pmatrix}
+=
+e^t
+\begin{pmatrix}1\\1\end{pmatrix}
+\\
+\begin{pmatrix}1\\-1\end{pmatrix}
+&\mapsto
+e^{Ct}
+\begin{pmatrix}1\\-1\end{pmatrix}
+=
+(\cosh t -\sinh t)
+\begin{pmatrix}1\\-1\end{pmatrix}
+=
+\biggl(
+\frac{e^t+e^{-t}}2
+-
+\frac{e^t-e^{-t}}2
+\biggr)
+\begin{pmatrix}1\\-1\end{pmatrix}
+=
+e^{-t}
+\begin{pmatrix}1\\-1\end{pmatrix}
+\end{align*}
+Die Matrizen $e^{Ct}$ strecken die Richtung $(1,1)$ um $e^t$ und
+die dazu orthogonale Richtung $(1,-1)$ um den Faktor $e^{-t}$.
+Dies ist die gegenüber $e^{At}$ um $45^\circ$ verdrehte Situation,
+auch diese Matrizen sind flächenerhaltend.
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/sl2.pdf}
+\caption{Tangentialvektoren und die davon erzeugen Einparameteruntergruppen
+für die Lie-Gruppe $\operatorname{SL}_2(\mathbb{R})$ der flächenerhaltenden
+linearen Abbildungen von $\mathbb{R}^2$.
+In allen drei Fällen wird ein blauer Rhombus mit den Ecken in den
+Standardbasisvektoren von einer Matrix der Einparameteruntergruppe zu
+zum roten Viereck verzerrt, der Flächeninhalt bleibt aber erhalten.
+In den beiden Fällen $B$ und $C$ stellen die grünen Kurven die Bahnen
+der Bilder der Standardbasisvektoren dar.
+\label{buch:gruppen:fig:sl2}}
+\end{figure}%
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/scherungen.pdf}
+\caption{Weitere Matrizen mit Spur $0$ und ihre Wirkung
+Die inken beiden Beispiele $M$ und $N$ sind nilpotente Matrizen,
+die zugehörigen Einparameter-Untergruppen beschreiben Schwerungen.
+\label{buch:gruppen:fig:scherungen}}
+\end{figure}
+\end{beispiel}
+
+%
+% Die Gruppe SU(2)
+%
+\subsection{Die Gruppe $\operatorname{SU}(2)$
+\label{buch:gruppen:su2}}
+Die Menge der Matrizen
+\[
+\operatorname{SU}(2)
+=
+\left\{
+\left.
+A=\begin{pmatrix} a&b\\c&d\end{pmatrix}
+\;\right|\;
+a,b,c,d\in\mathbb{C},\det(A)=1, AA^*=I
+\right\}
+\]
+heisst die {\em spezielle unitäre Gruppe}.
+Wegen $\det(AB)=\det(A)\det(B)=1$ und $(AB)^*AB=B^*A^*AB=B^*B=I$ ist
+$\operatorname{SU}(2)$ eine Untergruppe von $\operatorname{GL}_2(\mathbb{C})$.
+Die Bedingungen $\det A=1$ und $AA^*=I$ schränken die möglichen Werte
+von $a$ und $b$ weiter ein.
+Aus
+\[
+A^*
+=
+\begin{pmatrix}
+\overline{a}&\overline{c}\\
+\overline{b}&\overline{d}
+\end{pmatrix}
+\]
+und den Bedingungen führen die Gleichungen
+\[
+\begin{aligned}
+a\overline{a}+b\overline{b}&=1
+&&\Rightarrow&|a|^2+|b|^2&=1
+\\
+a\overline{c}+b\overline{d}&=0
+&&\Rightarrow&
+\frac{a}{b}&=-\frac{\overline{d}}{\overline{c}}
+\\
+c\overline{a}+d\overline{b}&=0
+&&\Rightarrow&
+\frac{c}{d}&=-\frac{\overline{b}}{\overline{a}}
+\\
+c\overline{c}+d\overline{d}&=1&&\Rightarrow&|c|^2+|d|^2&=1
+\\
+ad-bc&=1
+\end{aligned}
+\]
+Aus der zweiten Gleichung kann man ableiten, dass es eine Zahl $t\in\mathbb{C}$
+gibt derart, dass $c=-t\overline{b}$ und $d=t\overline{a}$.
+Damit wird die Bedingung an die Determinante zu
+\[
+1
+=
+ad-bc = at\overline{a} - b(-t\overline{b})
+=
+t(|a|^2+|b|^2)
+=
+t,
+\]
+also muss die Matrix $A$ die Form haben
+\[
+A
+=
+\begin{pmatrix}
+a&b\\
+-\overline{b}&\overline{a}
+\end{pmatrix}
+\qquad\text{mit}\quad |a|^2+|b|^2=1.
+\]
+Schreibt man $a=a_1+ia_2$ und $b=b_1+ib_2$ mit rellen $a_i$ und $b_i$,
+dann besteht $SU(2)$ aus den Matrizen der Form
+\[
+A=
+\begin{pmatrix}
+ a_1+ia_2&b_1+ib_2\\
+-b_1+ib_2&a_1-ia_2
+\end{pmatrix}
+\]
+mit der zusätzlichen Bedingung
+\[
+|a|^2+|b|^2
+=
+a_1^2 + a_2^2 + b_1^2 + b_2^2 = 1.
+\]
+Die Matrizen von $\operatorname{SU}(2)$ stehen daher in einer
+eins-zu-eins-Beziehung zu den Vektoren $(a_1,a_2,b_1,b_2)\in\mathbb{R}^4$
+eines vierdimensionalen reellen Vektorraums mit Länge $1$.
+Geometrisch betrachtet ist also $\operatorname{SU}(2)$ eine dreidmensionalen
+Kugel, die in einem vierdimensionalen Raum eingebettet ist.
+
+
+
diff --git a/buch/chapters/60-gruppen/symmetrien.tex b/buch/chapters/60-gruppen/symmetrien.tex
index c0a0fb8..7364c85 100644
--- a/buch/chapters/60-gruppen/symmetrien.tex
+++ b/buch/chapters/60-gruppen/symmetrien.tex
@@ -1,725 +1,725 @@
-%
-% symmetrien.tex -- Geometrische Beschreibung von Symmetrien, O(n), SO(n),
-% Spiegelungen
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Symmetrien
-\label{buch:section:symmetrien}}
-\rhead{Symmetrien}
-Der geometrische Begriff der Symmetrie meint die Eigenschaft eines
-geometrischen Objektes, dass es bei einer Bewegung auf sich selbst
-abgebildet wird.
-Das Wort stammt aus dem altgriechischen, wo es {\em Gleichmass}
-bedeutet.
-Spiegelsymmetrische Objekte zeichnen sich zum Beispiel dadurch aus,
-dass Messungen von Strecken die gleichen Werte ergeben wie die Messungen
-der entsprechenden gespiegelten Strecken (siehe auch
-Abbildung~\ref{buch:lie:bild:castlehoward}, was die Herkunft des
-Begriffs verständlich macht.
-\begin{figure}
-\centering
-\includegraphics[width=\textwidth]{chapters/60-gruppen/images/castle.jpeg}
-\caption{Das Castle Howard in Yorkshire war in dieser ausgeprägt symmetrischen
-Form geplant, wurde dann aber in modifizeirter Form gebaut.
-Messungen zwischen Punkten in der rechten Hälfte des Bildes
-ergeben die gleichen Werte wie Messungen entsprechenden Strecken
-in der linken Hälfte, was den Begriff Symmetrie rechtfertigt.
-\label{buch:lie:bild:castlehoward}}
-\end{figure}
-In der Physik wird dem Begriff der Symmetrie daher auch eine erweiterte
-Bedeutung gegeben.
-Jede Transformation eines Systems, welche bestimmte Grössen nicht
-verändert, wird als Symmetrie bezeichnet.
-Die Gesetze der Physik sind typischerweise unabhängig davon, wo man den
-den Nullpunkt der Zeit oder das räumlichen Koordinatensystems ansetzt,
-eine Transformation des Zeitnullpunktes oder des Ursprungs des
-Koordinatensystems ändert daher die Bewegungsgleichungen nicht, sie ist
-eine Symmetrie des Systems.
-
-Umgekehrt kann man fragen, welche Symmetrien ein System hat.
-Da sich Symmetrien zusammensetzen und umkehren lassen, kann man in davon
-ausgehen, dass die Symmetrietransformationen eine Gruppe bilden.
-Besonders interessant ist dies im Falle von Transformationen, die
-durch Matrizen beschrieben weren.
-Eine unter der Symmetrie erhaltene Eigenschaft definiert so eine
-Untergruppe der Gruppe $\operatorname{GL}_n(\mathbb{R})$ der
-invertierbaren Matrizen.
-Die erhaltenen Eigenschaften definieren eine Menge von Gleichungen,
-denen die Elemente der Untergruppe genügen müssen.
-Als Lösungsmenge einer Gleichung erhält die Untergruppe damit eine
-zusätzliche geometrische Struktur, man nennt sie eine differenzierbare
-Mannigfaltigkeit.
-Dieser Begriff wird im Abschnitt~\ref{buch:subsection:mannigfaltigkeit}
-eingeführt.
-Es wird sich zum Beispiel zeigen, dass die Menge der Drehungen der
-Ebene mit den Punkten eines Kreises parametrisieren lassen,
-die Lösungen der Gleichung $x^2+y^2=1$ sind.
-
-Eine Lie-Gruppe ist eine Gruppe, die gleichzeitig eine differenzierbare
-Mannigfaltigkeit ist.
-Die Existenz von geometrischen Konzepten wie Tangentialvektoren
-ermöglicht zusätzliche Werkzeuge, mit denen diese Gruppe untersucht
-und verstanden werden können.
-Ziel dieses Abschnitts ist, die Grundlagen für diese Untersuchung zu
-schaffen, die dann im Abschnitt~\ref{buch:section:lie-algebren}
-durchgeführt werden soll.
-
-\subsection{Algebraische Symmetrien
-\label{buch:subsection:algebraische-symmetrien}}
-Mit Matrizen lassen sich Symmetrien in einem geometrischen Problem
-oder in einem physikalischen System beschreiben.
-Man denkt dabei gerne zuerst an geometrische Symmetrien wie die
-Symmetrie unter Punktspiegelung oder die Spiegelung an der $x_1$-$x_2$-Ebene,
-wie sie zum Beispiel durch die Abbildungen
-\[
-\mathbb{R}^3\to\mathbb{R}^3 : x\mapsto -x
-\qquad\text{oder}\qquad
-\mathbb{R}^3\to\mathbb{R}^3 :
-\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}
-\mapsto
-\begin{pmatrix}-x_1\\x_2\\x_3\end{pmatrix}
-\]
-dargestellt werden.
-Beide haben zunächst die Eigenschaft, dass Längen und Winkel und damit
-das Skalarprodukt erhalten sind.
-Diese Eigenschaft allein erlaubt aber noch nicht, die beiden Transformationen
-zu unterscheiden.
-Die Punktspiegelung zeichnet sich dadurch aus, das alle Geraden und alle
-Ebenen durch den Ursprung auf sich selbst abgebildet werden.
-Dies funktioniert für die Ebenenspiegelung nicht, dort bleibt nur die
-Spiegelungsebene (die $x_1$-$x_2$-Ebene im vorliegenden Fall) und
-ihre Normale erhalten.
-Die folgenden Beispiele sollen zeigen, wie solche Symmetriedefinitionen
-auf algebraische Bedingungen an die Matrixelemente führen.
-
-Zu jeder Abbildung $f\colon\mathbb{R}^n\to\mathbb{R}^n$, unter der
-ein geometrisches Objekt in $\mathbb{R}^n$ symmetrisch ist, können wir
-sofort weitere Abbildungen angeben, die ebenfalls Symmetrien sind.
-Zum Beispiel sind die iterierten Abbildungen $f\circ f$, $f\circ f\circ f$
-u.~s.~w., die wir auch $f^n$ mit $n\in\mathbb{N}$ schreiben werden,
-ebenfalls Symmetrien.
-Wenn die Symmetrie auch umkehrbar ist, dann gilt dies sogar für alle
-$n\in\mathbb{Z}$.
-Wir erhalten so eine Abbildung
-$\varphi\colon \mathbb{Z}\to \operatorname{GL}_n(\mathbb{R}):n\mapsto f^n$
-mit den Eigenschaften $\varphi(0)=f^0 = I$ und
-$\varphi(n+m)=f^{n+m}=f^n\circ f^m = \varphi(n)\circ\varphi(m)$.
-$\varphi$ ist ein Homomorphismus der Gruppe $\mathbb{Z}$ in die Gruppe
-$\operatorname{GL}_n(\mathbb{R})$.
-Wir nennen dies eine {\em diskrete Symmetrie}.
-
-\subsection{Kontinuierliche Symmetrien
-\label{buch:subsection:kontinuierliche-symmetrien}}
-Von besonderem Interesse sind kontinuierliche Symmetrien.
-Dies sind Abbildungen eines Systems, die von einem Parameter
-abhängen.
-Zum Beispiel können wir Drehungen der Ebene $\mathbb{R}^2$ um den
-Winkel $\alpha$ durch Matrizen
-\[
-D_{\alpha}
-=
-\begin{pmatrix}
-\cos\alpha&-\sin\alpha\\
-\sin\alpha& \cos\alpha
-\end{pmatrix}
-\]
-beschrieben werden.
-Ein Kreis um den Nullpunkt bleibt unter jeder dieser Drehungen invariant.
-Im Gegensatz dazu sind alle $3n$-Ecke mit Schwerpunkt $0$ nur invariant
-unter der einen Drehung $D_{\frac{2\pi}3}$ invariant.
-Die kleinste Menge, die einen vorgegebenen Punkt enthält und unter
-allen Drehungen $D_\alpha$ invariant ist, ist immer ein Kreis um
-den Nullpunkt.
-
-\begin{definition}
-Ein Homomorphismus $\varphi\colon\mathbb{R}\to\operatorname{GL}_n(\mathbb{R})$
-von der additiven Gruppe $\mathbb{R}$ in die allgemeine lineare Gruppe
-heisst eine {\em Einparameter-Untergruppe} von
-$\operatorname{GL}_n(\mathbb{R})$.
-\end{definition}
-
-Die Abbildung
-\[
-\varphi
-\colon
-\mathbb{R}\to\operatorname{GL}_n(\mathbb{R})
-:
-\alpha \mapsto
-D_{\alpha}
-=
-\begin{pmatrix}
-\cos\alpha&-\sin\alpha\\
-\sin\alpha& \cos\alpha
-\end{pmatrix}
-\]
-ist also eine Einparameter-Untergruppe von $\operatorname{GL}_2(\mathbb{R})$.
-
-\subsubsection{Der harmonische Oszillator}
-\begin{figure}
-\centering
-\includegraphics{chapters/60-gruppen/images/phasenraum.pdf}
-\caption{Die Lösungen der
-Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl}
-im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$.
-\label{chapter:gruppen:fig:phasenraum}}
-\end{figure}
-Eine Masse $m$ verbunden mit einer Feder mit der Federkonstanten $K$
-schwingt um die Ruhelage $x=0$ entsprechend der Differentialgleichung
-\[
-m\frac{d^2}{dt^2} x(t) = -Kx(t).
-\]
-Die Kreisfrequenz der Schwingung ist
-\[
-\omega = \sqrt{\frac{K}{m}}.
-\]
-Das System kann als zweidimensionales System im Phasenraum mit den
-Koordinaten $x_1=x$ und $x_2=p=m\dot{x}$ beschrieben werden.
-Die zweidimensionale Differentialgleichung ist
-\begin{equation}
-\left.
-\begin{aligned}
-\dot{x}(t) &= \frac{1}{m}p(t)\\
-\dot{p}(t) &= -Kx(t)
-\end{aligned}
-\quad
-\right\}
-\qquad\Rightarrow\qquad
-\frac{d}{dt}
-\begin{pmatrix}x(t)\\p(t)\end{pmatrix}
-=
-\begin{pmatrix}
-0&\frac{1}{m}\\
--K&0
-\end{pmatrix}
-\begin{pmatrix}x(t)\\p(t)\end{pmatrix}.
-\label{chapter:gruppen:eqn:phasenraumdgl}
-\end{equation}
-Die Lösung der Differentialgleichung für die Anfangsbedingung $x(0)=1$ und
-$p(0)=0$ ist
-\[
-x(t)
-=
-\cos \omega t
-\qquad\Rightarrow\qquad
-p(t)
-=
--\omega \sin\omega t,
-\]
-die Lösung zur Anfangsbedingung $x(0)=0$ und $p(0)=1$ ist
-\[
-x(t) = \frac{1}{\omega} \sin\omega t,
-\qquad
-p(t) = \cos \omega t.
-\]
-In Matrixform kann man die allgemeine Lösung zur Anfangsbedingun $x(0)=x_0$
-und $p(0)=p_0$
-\begin{equation}
-\begin{pmatrix}
-x(t)\\
-p(t)
-\end{pmatrix}
-=
-\underbrace{
-\begin{pmatrix}
- \cos \omega t & \frac{1}{\omega} \sin\omega t \\
--\omega \sin\omega t & \cos\omega t
-\end{pmatrix}
-}_{\displaystyle =\Phi_t}
-\begin{pmatrix}x_0\\p_0\end{pmatrix}
-\label{buch:gruppen:eqn:phi}
-\end{equation}
-schreiben.
-Die Matrizen $\Phi_t$ bilden eine Einparameter-Untergruppe von
-$\operatorname{GL}_n(\mathbb{R})$, da
-\begin{align*}
-\Phi_s\Phi_t
-&=
-\begin{pmatrix}
- \cos\omega s & \frac{1}{\omega} \sin\omega s \\
--\omega \sin\omega s & \cos\omega s
-\end{pmatrix}
-\begin{pmatrix}
- \cos\omega t & \frac{1}{\omega} \sin\omega t \\
--\omega \sin\omega t & \cos\omega t
-\end{pmatrix}
-\\
-&=
-\begin{pmatrix}
-\cos\omega s \cos\omega t - \sin\omega s \sin\omega t
-& \frac{1}{\omega} ( \cos\omega s \sin\omega t + \sin\omega s \cos \omega t)
-\\
--\omega (\sin\omega s \cos\omega t + \cos\omega s \sin\omega t )
-& \cos\omega s \cos\omega t -\sin\omega s \sin\omega t
-\end{pmatrix}
-\\
-&=
-\begin{pmatrix}
- \cos\omega(s+t) & \frac{1}{\omega}\sin\omega(s+t) \\
--\omega \sin\omega(s+t) & \cos\omega(s+t)
-\end{pmatrix}
-=
-\Phi_{s+t}
-\end{align*}
-gilt.
-Die Lösungen der
-Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl}
-sind in Abbildung~\ref{chapter:gruppen:fig:phasenraum}
-Die Matrizen $\Phi_t$ beschreiben eine kontinuierliche Symmetrie
-des Differentialgleichungssystems, welches den harmonischen Oszillator
-beschreibt.
-
-\subsubsection{Fluss einer Differentialgleichung}
-Die Abbildungen $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} sind jeweils
-Matrizen in $\operatorname{GL}_n(\mathbb{R})$.
-Der Grund dafür ist, dass die
-Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl}
-linear ist.
-Dies hat zur Folge, dass für zwei Anfangsbedingungen $x_1,x_2\in\mathbb{R}^2$
-die Lösung für Linearkombinationen $\lambda x_1+\mu x_2$ durch
-Linearkombination der Lösungen erhalten werden kann, also
-aus der Formel
-\[
-\Phi_t (\lambda x_1 + \mu x_2) = \lambda \Phi_t x_1 + \mu \Phi_t x_2.
-\]
-Dies zeigt, dass $\Phi_t$ für jedes $t$ eine lineare Abbildung sein muss.
-
-Für eine beliebige Differentialgleichung kann man immer noch eine Abbildung
-$\Phi$ konstruieren, die aber nicht mehr linear ist.
-Sei dazu die Differentialgleichung erster Ordnung
-\begin{equation}
-\frac{dx}{dt}
-=
-f(t,x)
-\qquad\text{mit}\qquad
-f\colon \mathbb{R}\times\mathbb{R}^n \to \mathbb{R}^n
-\label{buch:gruppen:eqn:dgl}
-\end{equation}
-gegeben.
-Für jeden Anfangswert $x_0\in\mathbb{R}^n$ kann man mindestens für eine
-gewisse Zeit $t <\varepsilon$ eine Lösung $x(t,x_0)$ finden mit $x(t,x_0)=x_0$.
-Aus der Theorie der gewöhnlichen Differentialgleichungen ist auch
-bekannt, dass $x(t,x_0)$ mindestens in der Nähe von $x_0$ differenzierbar von
-$x_0$ abhängt.
-Dies erlaubt eine Abbildung
-\[
-\Phi\colon \mathbb{R}\times \mathbb{R}^n \to \mathbb{R}^n
-:
-(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0)
-\]
-zu definieren, die sowohl von $t$ als auch von $x_0$ differenzierbar
-abhängt.
-Aus der Definition folgt unmittelbar, dass $\Phi_0(x_0)=x_0$ ist, dass
-also $\Phi_0$ die identische Abbildung von $\mathbb{R}^n$ ist.
-
-Aus der Definition lässt sich auch ableiten, dass
-$\Phi_{s+t}=\Phi_s\circ\Phi_t$ gilt.
-$\Phi_t(x_0)=x(t,x_0)$ ist der Endpunkt der Bahn, die bei $x_0$ beginnt
-und sich während der Zeit $t$ entwickelt.
-$\Phi_s(x(t,x_0))$ ist dann der Endpunkt der Bahn, die bei $x(t,x_0)$
-beginnt und sich während der Zeit $s$ entwickelt.
-Somit ist $\Phi_s\circ \Phi_t(x_0)$ der Endpunkt der Bahn, die bei
-$x_0$ beginnt und sich über die Zeit $s+t$ entwickelt.
-In Formeln bedeutet dies
-\[
-\Phi_{s+t} = \Phi_s\circ \Phi_t.
-\]
-Die Abbildung $t\mapsto \Phi_t$ ist also wieder ein Homomorphismus
-von der additiven Gruppe $\mathbb{R}$ in eine Gruppe von differenzierbaren
-Abbildungen $\mathbb{R}^n\to\mathbb{R}^n$.
-
-\begin{definition}
-Die Abbildung
-\[
-\Phi\colon \mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n
-:
-(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0)
-\]
-heisst der {\em Fluss} der Differentialgleichung
-\eqref{buch:gruppen:eqn:dgl},
-wenn für jedes $x_0\in\mathbb{R}^n$ die Kurve $t\mapsto \Phi_t(x_0)$
-eine Lösung der Differentialgleichung ist mit Anfangsbedingung $x_0$.
-\end{definition}
-
-Die Abbildung $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} ist also
-der Fluss der Differentialgleichung des harmonischen Oszillators.
-
-\subsection{Mannigfaltigkeiten
-\label{buch:subsection:mannigfaltigkeit}}
-Eine Differentialgleichung der Form~\eqref{buch:gruppen:eqn:dgl}
-stellt einen Zusammenhang her zwischen einem Punkt $x$ und der
-Tangentialrichtung einer Bahnkurve $f(t,x)$.
-Die Ableitung liefert die lineare Näherung der Bahkurve
-\[
-x(t_0+h) = x(t_0) + h f(t_0,x_0) + o(h)
-\]
-für $h$ in einer kleinen Umgebung von $0$.
-Das funktioniert auch, weil $f(t_0,x_0)$ selbst ein Vektor von
-$\mathbb{R}^n$ ist, in dem die Bahnkurve verläuft.
-
-Diese Idee funktioniert nicht mehr zum Beispiel für eine
-Differentialgleichung auf einer Kugeloberfläche, weil alle Punkte
-$x(t_0)+hf(t_0,x_0)$ für alle $h\ne 0$ nicht mehr auf der Kugeloberfläche
-liegen.
-Physikalisch äussert sich das ein einer zusätzlichen Kraft, die nötig
-ist, die Bahn auf der Kugeloberfläche zu halten.
-Diese Kraft stellt zum Beispiel sicher, dass die Vektoren $f(t,x)$ für
-Punkte $x$ auf der Kugeloberfläche immer tangential an die Kugel sind.
-Trotzdem ist der Tangentialvektor oder der Geschwindigkeitsvektor
-nicht mehr ein Objekt, welches als Teil der Kugeloberfläche definiert
-werden kann, er kann nur definiert werden, wenn man sich die Kugel als
-in einen höherdimensionalen Raum eingebettet vorstellen kann.
-
-Um die Idee der Differentialgleichung auf einer beliebigen Fläche
-konsistent zu machen ist daher notwendig, die Idee einer Tagentialrichtung
-auf eine Art zu definieren, die nicht von der Einbettung der Fläche
-in den $n$-dimensionalen Raum abhängig ist.
-Das in diesem Abschnitt entwickelte Konzept der {\em Mannigfaltigkeit}
-löst dieses Problem.
-
-\subsubsection{Karten}
-Die Navigation auf der Erdoberfläche verwendet das Koordinatensystem
-der geographischen Länge und Breite.
-Dieses Koordinatensystem funktioniert gut, solange man sich nicht an
-den geographischen Polen befindet, denn deren Koordinaten sind
-nicht mehr eindeutig.
-Alle Punkte mit geographischer Breite $90^\circ$ und beliebiger
-geographischer Länge beschreiben den Nordpol.
-Auch die Ableitung funktioniert dort nicht mehr.
-Bewegt man sich mit konstanter Geschwindigkeit über den Nordpol,
-springt die Ableitung der geographischen Breite von einem positiven
-Wert auf einen negativen Wert, sie kann also nicht differenzierbar sein.
-Diese Einschränkungen sind in der Praxis nur ein geringes Problem dar,
-da die meisten Reisen nicht über die Pole erfolgen.
-
-Der Polarforscher, der in unmittelbarer Umgebung des Poles arbeitet,
-kann das Problem lösen, indem er eine lokale Karte für das Gebiet
-um den Pol erstellt.
-Dafür kann er beliebige Koordinaten verwenden, zum Beispiel auch
-ein kartesisches Koordinatensystem, er muss nur eine Methode haben,
-wie er seine Koordinaten wieder auf geographische Länge und Breite
-umrechnen will.
-Und wenn er über Geschwindigkeiten kommunizieren will, dann muss
-er auch Ableitungen von Kurven in seinem kartesischen Koordinatensystem
-umrechnen können auf die Kugelkoordinaten.
-Dazu muss seine Umrechnungsformel von kartesischen Koordinaten
-auf Kugelkoordinaten differenzierbar sein.
-
-Diese Idee wird durch das Konzept der Mannigfaltigkeit verallgemeinert.
-Eine $n$-dimensionale {\em Mannigfaltigkeit} ist eine Menge $M$ von Punkten,
-die lokal, also in der Umgebung eines Punktes, mit möglicherweise mehreren
-verschiedenen Koordinatensystemen versehen werden kann.
-Ein Koordinatensystem ist eine umkehrbare Abbildung einer offenen Teilmenge
-$U\subset M$ in den Raum $\mathbb{R}^n$.
-Die Komponenten dieser Abbildung heissen die {\em Koordinaten}.
-
-\begin{figure}
-\centering
-\includegraphics{chapters/60-gruppen/images/karten.pdf}
-\caption{Karten
-$\varphi_\alpha\colon U_\alpha\to \mathbb{R}^2$
-und
-$\varphi_\beta\colon U_\beta\to \mathbb{R}^2$
-auf einem Torus.
-Auf dem Überschneidungsgebiet $\varphi_\alpha^{-1}(U_\alpha\cap U_\beta)$
-ist der Kartenwechsel $\varphi_\beta\circ\varphi_\alpha^{-1}$ wohldefiniert
-und muss differnzierbar sein, wenn eine differenzierbare Mannigfaltigkeit
-entstehen soll.
-\label{buch:gruppen:fig:karten}}
-\end{figure}
-
-\begin{definition}
-Eine Karte auf $M$ ist eine umkehrbare Abbildung
-$\varphi\colon U\to \mathbb{R}^n$ (siehe auch
-Abbildung~\ref{buch:gruppen:fig:karten}).
-Ein differenzierbarer Atlas ist eine Familie von Karten $\varphi_\alpha$
-derart, dass die Definitionsgebiete $U_\alpha$ die ganze Menge $M$
-überdecken, und dass die Kartenwechsel Abbildungen
-\[
-\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}
-\colon
-\varphi_\alpha(U_\alpha\cap U_\beta)
-\to
-\varphi_\beta(U_\alpha\cap U_\beta)
-\]
-als Abbildung von offenen Teilmengen von $\mathbb{R}^n$ differenzierbar
-ist.
-Eine {$n$-dimensionale differenzierbare Mannigfaltigkeit} ist eine
-Menge $M$ mit einem differenzierbaren Atlas.
-\end{definition}
-
-Karten und Atlanten regeln also nur, wie sich verschiedene lokale
-Koordinatensysteme ineinander umrechnen lassen.
-
-\begin{beispiel}
-$M=\mathbb{R}^n$ ist eine differenzierbare Mannigfaltigkeit denn
-die identische Abbildung $M\to \mathbb{R}^n$ ist eine Karte und ein
-Atlas von $M$.
-\end{beispiel}
-
-\begin{beispiel}
-\begin{figure}
-\centering
-\includegraphics{chapters/60-gruppen/images/kartenkreis.pdf}
-\caption{Karten für die Kreislinie $S^1\subset\mathbb{R}^2$.
-\label{buch:gruppen:fig:kartenkreis}}
-\end{figure}
-Die Kreislinie in in der Ebene ist eine $1$-dimensionale Mannigfaltigkeit.
-Natürlich kann sie nicht mit einer einzigen Karte beschrieben werden,
-da es keine umkehrbaren Abbildungen zwischen $\mathbb{R}$ und der Kreislinie
-gibt.
-Die Projektionen auf die einzelnen Koordinaten liefern die folgenden
-vier Karten:
-\begin{align*}
-\varphi_1&\colon U_{x>0}\{(x,y)\;|\;x^2+y^2=1\wedge x>0\} \to\mathbb{R}
-:
-(x,y) \mapsto y
-\\
-\varphi_2&\colon U_{x<0}\{(x,y)\;|\;x^2+y^2=1\wedge x<0\} \to\mathbb{R}
-:
-(x,y) \mapsto y
-\\
-\varphi_3&\colon U_{y>0}\{(x,y)\;|\;x^2+y^2=1\wedge y>0\} \to\mathbb{R}
-:
-(x,y) \mapsto x
-\\
-\varphi_4&\colon U_{y<0}\{(x,y)\;|\;x^2+y^2=1\wedge y<0\} \to\mathbb{R}
-:
-(x,y) \mapsto x
-\end{align*}
-Die Werte der Kartenabbildungen sind genau die $x$- und $y$-Koordinaten
-auf der in den Raum $\mathbb{R}^2$ eingebetteten Kreislinie.
-
-Für $\varphi_1$ und $\varphi_2$ sind die Definitionsgebiete disjunkt,
-hier gibt es also keine Notwendigkeit, Koordinatenumrechnungen vornehmen
-zu können.
-Dasselbe gilt für $\varphi_3$ und $\varphi_4$.
-
-Die nichtleeren Schnittmengen der verschiedenen Kartengebiete beschreiben
-jeweils die Punkte der Kreislinie in einem Quadranten.
-Die Umrechnung zwischen den Koordinaten und ihre Ableitung
-ist je nach Quadrant durch
-\begin{align*}
-&\text{1.~Quadrant}&
-\varphi_{31}
-&=
-\varphi_3\circ\varphi_1^{-1}\colon y\mapsto\phantom{-}\sqrt{1-y^2\mathstrut}
-&
-D\varphi_{31}
-&=
--\frac{y}{\sqrt{1-y^2\mathstrut}}
-\\
-&\text{2.~Quadrant}&
-\varphi_{24}
-&=
-\varphi_3\circ\varphi_1^{-1}\colon x\mapsto\phantom{-}\sqrt{1-x^2\mathstrut}
-&
-D\varphi_{24}
-&=
--\frac{x}{\sqrt{1-x^2\mathstrut}}
-\\
-&\text{3.~Quadrant}&
-\varphi_{42}
-&=
-\varphi_3\circ\varphi_1^{-1}\colon y\mapsto-\sqrt{1-y^2\mathstrut}
-&
-D\varphi_{42}
-&=
-\phantom{-}\frac{y}{\sqrt{1-y^2\mathstrut}}
-\\
-&\text{4.~Quadrant}&
-\varphi_{14}
-&=
-\varphi_3\circ\varphi_1^{-1}\colon x\mapsto-\sqrt{1-x^2\mathstrut}
-&
-D\varphi_{14}
-&=
-\phantom{-}\frac{x}{\sqrt{1-x^2\mathstrut}}
-\end{align*}
-gegeben.
-Diese Abbildungen sind im offenen Intervall $(-1,1)$ differenzierbar,
-Schwierigkeiten mit der Ableitungen ergeben sich nur an den Stellen
-$x=\pm1$ und $y=\pm 1$, die in einem Überschneidungsgebiet von Karten
-nicht vorkommen können.
-Somit bilden die vier Karten einen differenzierbaren Atlas für
-die Kreislinie (Abbildung~\ref{buch:gruppen:fig:kartenkreis}).
-\end{beispiel}
-
-\begin{beispiel}
-Ganz analog zum vorangegangenen Beispiel über die Kreisline lässt sich
-für eine $n$-di\-men\-sio\-nale Sphäre
-\[
-S^n = \{ (x_1,\dots,x_{n+1})\;|\; x_0^2+\dots+x_n^2=1\}
-\]
-immer ein Atlas aus $2^{n+1}$ Karten mit den Koordinatenabbildungen
-\[
-\varphi_{i,\pm}
-\colon
-U_{i,\pm}
-=
-\{p\in S^n\;|\; \pm x_i >0\}
-\to
-\mathbb{R}^n
-:
-p\mapsto (x_1,\dots,\hat{x}_i,\dots,x_{n+1})
-\]
-konstruieren, der $S^n$ zu einer $n$-dimensionalen Mannigfaltigkeit macht.
-\end{beispiel}
-
-\subsubsection{Tangentialraum}
-Mit Hilfe einer Karte $\varphi_\alpha\colon U_\alpha\to\mathbb{R}^n$
-kann das Geschehen in einer Mannigfaltigkeit in den vertrauten
-$n$-dimensionalen Raum $\mathbb{B}^n$ transportiert werden.
-Eine Kurve $\gamma\colon \mathbb{R}\to M$, die so parametrisiert sein
-soll, dass $\gamma(t)\in U_\alpha$ für $t$ in einer Umgebung $I$ von $0$ ist,
-wird von der Karte in eine Kurve
-$\gamma_\alpha=\varphi_\alpha\circ\gamma\colon I\to \mathbb{R}^n$
-abgebildet,
-deren Tangentialvektor wieder ein Vektor in $\mathbb{R}^n$ ist.
-
-Eine zweite Karte $\varphi_\beta$ führt auf eine andere Kurve
-mit der Parametrisierung
-$\gamma_\beta=\varphi_\beta\circ\gamma\colon I \to \mathbb{R}^n$
-und einem anderen Tangentialvektor.
-Die beiden Tangentialvektoren können aber mit der Ableitung der
-Koordinatenwechsel-Abbildung
-$\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}\colon
-\varphi_\alpha(U_\alpha\cap U_\beta)\to \mathbb{R}^n$
-ineinander umgerechnet werden.
-Aus
-\[
-\gamma_\beta
-=
-\varphi_\beta\circ \gamma
-=
-(
-\varphi_\beta
-\circ
-\varphi_\alpha^{-1}
-)
-\circ
-\varphi_\alpha\circ\gamma
-=
-\varphi_{\beta\alpha}
-\circ
-\varphi_\alpha\circ\gamma
-=
-\varphi_{\beta\alpha}\circ\gamma_\alpha
-\]
-folgt durch Ableitung nach dem Kurvenparameter $t$, dass
-\[
-\frac{d}{dt}\gamma_\beta(t)
-=
-D\varphi_{\beta\alpha}
-\cdot
-\frac{d}{dt}\gamma_\alpha(t).
-\]
-Die Ableitung $D\varphi_{\beta\alpha}$ von $\varphi_{\beta\alpha}$
-an der Stelle $\gamma_\alpha(t)$ berechnet also aus dem Tangentialvektor
-einer Kurve in der Karte $\varphi_\alpha$ den Tangentialvektor der
-Kurve in der Karte $\varphi_\beta$.
-
-Die Forderung nach Differenzierbarkeit der Kartenwechselabbildungen
-$\varphi_{\beta\alpha}$ stellt also nur sicher, dass die Beschreibung
-eines Systemes mit Differentialgleichungen in verschiedenen
-Koordinatensystemen auf die gleichen Lösungskurven in der
-Mannigfaltigkeit führt.
-Insbesondere ist die Verwendung von Karten ist also nur ein Werkzeug,
-mit dem die Unmöglichkeit einer globalen Besschreibung einer
-Mannigfaltigkeit $M$ mit einem einzigen globalen Koordinatensystem
-ohne Singularitäten umgangen werden kann.
-
-\begin{beispiel}
-Das Beispiel des Kreises in Abbildung~\ref{buch:gruppen:fig:kartenkreis}
-zeigt, dass die Tangentialvektoren je nach Karte sehr verschieden
-aussehen können.
-Der Tangentialvektor der Kurve $\gamma(t) = (x(t), y(t))$ im Punkt
-$\gamma(t)$ ist $\dot{y}(t)$ in den Karten $\varphi_1$ und $\varphi_2$
-und $\dot{x}(t)$ in den Karten $\varphi_3$ und $\varphi_4$.
-
-Die spezielle Kurve $\gamma(t) = (\cos t,\sin t)$ hat in einem Punkt
-$t\in (0,\frac{\pi}2)$.
-in der Karte $\varphi_1$ den Tangentialvektor $\dot{y}(t)=\cos t$,
-in der Karte $\varphi_3$ aber den Tangentialvektor $\dot{x}=-\sin t$.
-Die Ableitung des Kartenwechsels in diesem Punkt ist die $1\times 1$-Matrix
-\[
-D\varphi_{31}(\gamma(t))
-=
--\frac{y(t)}{\sqrt{1-y(t)^2}}
-=
--\frac{\sin t}{\sqrt{1-\sin^2 t}}
-=
--\frac{\sin t}{\cos t}
-=
--\tan t.
-\]
-Die Koordinatenumrechnung ist gegeben durch
-\[
-\dot{x}(t)
-=
-D\varphi_{31}(\gamma(t))
-\dot{y}(t)
-\]
-wird für die spezielle Kurve $\gamma(t)=(\cos t,\sin t)$ wird dies zu
-\[
-D\varphi_{31}(\gamma(t))
-\cdot
-\dot{y}(t)
-=
--\tan t\cdot \cos t
-=
--\frac{\sin t}{\cos t}\cdot \cos t
-=
--\sin t
-=
-\dot{x}(t).
-\qedhere
-\]
-\end{beispiel}
-
-Betrachtet man die Kreislinie als Kurve in $\mathbb{R}^2$,
-dann ist der Tangentialvektor durch
-$\dot{\gamma}(t)=(\dot{x}(t),\dot{y}(t))$ gegeben.
-Da die Karten Projektionen auf die $x$- bzw.~$y$-Achsen sind,
-entsteht der Tangentialvektor in der Karte durch Projektion
-von $(\dot{x}(t),\dot{y}(t))$ auf die entsprechende Komponente.
-
-Die Tangentialvektoren in zwei verschiedenen Punkten der Kurve können
-im Allgemeinen nicht miteinander verglichen werden.
-Darüber hinweg hilft auch die Tatsache nicht, dass die Kreislinie
-in den Vektorraum $\mathbb{R}^2$ eingebettet sind, wo sich Vektoren
-durch Translation miteinander vergleichen lassen.
-Ein nichtverschwindender Tangentialvektor im Punkt $(1,0)$ hat,
-betrachtet als Vektor in $\mathbb{R}^2$ verschwindende $x$-Komponente,
-für Tangentialvektoren im Inneren eines Quadranten ist dies nicht
-der Fall.
-
-Eine Möglichkeit, einen Tangentialvektor in $(1,0)$ mit einem
-Tangentialvektor im Punkt $(\cos t,\sin t)$ zu vergleichen, besteht
-darin, den Vektor um den Winkel $t$ zu drehen.
-Dies ist möglich, weil die Kreislinie eine kontinuierliche Symmetrie,
-nämlich die Drehung um den Winkel $t$ hat, die es erlaubt, den Punkt $(1,0)$
-in den Punkt $(\cos t,\sin t)$ abzubilden.
-Erst diese Symmetrie ermöglicht den Vergleich.
-Dieser Ansatz ist für alle Matrizen erfolgreich, wie wir später sehen werden.
-
-Ein weiterer Ansatz, Tangentialvektoren zu vergleichen, ist die Idee,
-einen sogenannten Zusammenhang zu definieren, eine Vorschrift, wie
-Tangentialvektoren infinitesimal entlang von Kurven in der Mannigfaltigkeit
-transportiert werden können.
-Auf einer sogenannten {\em Riemannschen Mannigfaltigkeit} ist zusätzlich
-zur Mannigfaltigkeitsstruktur die Längenmessung definiert.
-Sie kann dazu verwendet werden, den Transport von Vektoren entlang einer
-Kurve so zu definieren, dass dabei Längen und Winkel erhalten bleiben.
-Dieser Ansatz ist die Basis der Theorie der Krümmung sogenannter
-Riemannscher Mannigfaltigkeiten.
-
-\subsection{Der Satz von Noether
-\label{buch:subsection:noether}}
-
-
-
-
-
-
-
+%
+% symmetrien.tex -- Geometrische Beschreibung von Symmetrien, O(n), SO(n),
+% Spiegelungen
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Symmetrien
+\label{buch:section:symmetrien}}
+\rhead{Symmetrien}
+Der geometrische Begriff der Symmetrie meint die Eigenschaft eines
+geometrischen Objektes, dass es bei einer Bewegung auf sich selbst
+abgebildet wird.
+Das Wort stammt aus dem altgriechischen, wo es {\em Gleichmass}
+bedeutet.
+Spiegelsymmetrische Objekte zeichnen sich zum Beispiel dadurch aus,
+dass Messungen von Strecken die gleichen Werte ergeben wie die Messungen
+der entsprechenden gespiegelten Strecken (siehe auch
+Abbildung~\ref{buch:lie:bild:castlehoward}, was die Herkunft des
+Begriffs verständlich macht.
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/60-gruppen/images/castle.jpeg}
+\caption{Das Castle Howard in Yorkshire war in dieser ausgeprägt symmetrischen
+Form geplant, wurde dann aber in modifizeirter Form gebaut.
+Messungen zwischen Punkten in der rechten Hälfte des Bildes
+ergeben die gleichen Werte wie Messungen entsprechenden Strecken
+in der linken Hälfte, was den Begriff Symmetrie rechtfertigt.
+\label{buch:lie:bild:castlehoward}}
+\end{figure}
+In der Physik wird dem Begriff der Symmetrie daher auch eine erweiterte
+Bedeutung gegeben.
+Jede Transformation eines Systems, welche bestimmte Grössen nicht
+verändert, wird als Symmetrie bezeichnet.
+Die Gesetze der Physik sind typischerweise unabhängig davon, wo man den
+den Nullpunkt der Zeit oder das räumlichen Koordinatensystems ansetzt,
+eine Transformation des Zeitnullpunktes oder des Ursprungs des
+Koordinatensystems ändert daher die Bewegungsgleichungen nicht, sie ist
+eine Symmetrie des Systems.
+
+Umgekehrt kann man fragen, welche Symmetrien ein System hat.
+Da sich Symmetrien zusammensetzen und umkehren lassen, kann man in davon
+ausgehen, dass die Symmetrietransformationen eine Gruppe bilden.
+Besonders interessant ist dies im Falle von Transformationen, die
+durch Matrizen beschrieben weren.
+Eine unter der Symmetrie erhaltene Eigenschaft definiert so eine
+Untergruppe der Gruppe $\operatorname{GL}_n(\mathbb{R})$ der
+invertierbaren Matrizen.
+Die erhaltenen Eigenschaften definieren eine Menge von Gleichungen,
+denen die Elemente der Untergruppe genügen müssen.
+Als Lösungsmenge einer Gleichung erhält die Untergruppe damit eine
+zusätzliche geometrische Struktur, man nennt sie eine differenzierbare
+Mannigfaltigkeit.
+Dieser Begriff wird im Abschnitt~\ref{buch:subsection:mannigfaltigkeit}
+eingeführt.
+Es wird sich zum Beispiel zeigen, dass die Menge der Drehungen der
+Ebene mit den Punkten eines Kreises parametrisieren lassen,
+die Lösungen der Gleichung $x^2+y^2=1$ sind.
+
+Eine Lie-Gruppe ist eine Gruppe, die gleichzeitig eine differenzierbare
+Mannigfaltigkeit ist.
+Die Existenz von geometrischen Konzepten wie Tangentialvektoren
+ermöglicht zusätzliche Werkzeuge, mit denen diese Gruppe untersucht
+und verstanden werden können.
+Ziel dieses Abschnitts ist, die Grundlagen für diese Untersuchung zu
+schaffen, die dann im Abschnitt~\ref{buch:section:lie-algebren}
+durchgeführt werden soll.
+
+\subsection{Algebraische Symmetrien
+\label{buch:subsection:algebraische-symmetrien}}
+Mit Matrizen lassen sich Symmetrien in einem geometrischen Problem
+oder in einem physikalischen System beschreiben.
+Man denkt dabei gerne zuerst an geometrische Symmetrien wie die
+Symmetrie unter Punktspiegelung oder die Spiegelung an der $x_1$-$x_2$-Ebene,
+wie sie zum Beispiel durch die Abbildungen
+\[
+\mathbb{R}^3\to\mathbb{R}^3 : x\mapsto -x
+\qquad\text{oder}\qquad
+\mathbb{R}^3\to\mathbb{R}^3 :
+\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}
+\mapsto
+\begin{pmatrix}-x_1\\x_2\\x_3\end{pmatrix}
+\]
+dargestellt werden.
+Beide haben zunächst die Eigenschaft, dass Längen und Winkel und damit
+das Skalarprodukt erhalten sind.
+Diese Eigenschaft allein erlaubt aber noch nicht, die beiden Transformationen
+zu unterscheiden.
+Die Punktspiegelung zeichnet sich dadurch aus, das alle Geraden und alle
+Ebenen durch den Ursprung auf sich selbst abgebildet werden.
+Dies funktioniert für die Ebenenspiegelung nicht, dort bleibt nur die
+Spiegelungsebene (die $x_1$-$x_2$-Ebene im vorliegenden Fall) und
+ihre Normale erhalten.
+Die folgenden Beispiele sollen zeigen, wie solche Symmetriedefinitionen
+auf algebraische Bedingungen an die Matrixelemente führen.
+
+Zu jeder Abbildung $f\colon\mathbb{R}^n\to\mathbb{R}^n$, unter der
+ein geometrisches Objekt in $\mathbb{R}^n$ symmetrisch ist, können wir
+sofort weitere Abbildungen angeben, die ebenfalls Symmetrien sind.
+Zum Beispiel sind die iterierten Abbildungen $f\circ f$, $f\circ f\circ f$
+u.~s.~w., die wir auch $f^n$ mit $n\in\mathbb{N}$ schreiben werden,
+ebenfalls Symmetrien.
+Wenn die Symmetrie auch umkehrbar ist, dann gilt dies sogar für alle
+$n\in\mathbb{Z}$.
+Wir erhalten so eine Abbildung
+$\varphi\colon \mathbb{Z}\to \operatorname{GL}_n(\mathbb{R}):n\mapsto f^n$
+mit den Eigenschaften $\varphi(0)=f^0 = I$ und
+$\varphi(n+m)=f^{n+m}=f^n\circ f^m = \varphi(n)\circ\varphi(m)$.
+$\varphi$ ist ein Homomorphismus der Gruppe $\mathbb{Z}$ in die Gruppe
+$\operatorname{GL}_n(\mathbb{R})$.
+Wir nennen dies eine {\em diskrete Symmetrie}.
+
+\subsection{Kontinuierliche Symmetrien
+\label{buch:subsection:kontinuierliche-symmetrien}}
+Von besonderem Interesse sind kontinuierliche Symmetrien.
+Dies sind Abbildungen eines Systems, die von einem Parameter
+abhängen.
+Zum Beispiel können wir Drehungen der Ebene $\mathbb{R}^2$ um den
+Winkel $\alpha$ durch Matrizen
+\[
+D_{\alpha}
+=
+\begin{pmatrix}
+\cos\alpha&-\sin\alpha\\
+\sin\alpha& \cos\alpha
+\end{pmatrix}
+\]
+beschrieben werden.
+Ein Kreis um den Nullpunkt bleibt unter jeder dieser Drehungen invariant.
+Im Gegensatz dazu sind alle $3n$-Ecke mit Schwerpunkt $0$ nur invariant
+unter der einen Drehung $D_{\frac{2\pi}3}$ invariant.
+Die kleinste Menge, die einen vorgegebenen Punkt enthält und unter
+allen Drehungen $D_\alpha$ invariant ist, ist immer ein Kreis um
+den Nullpunkt.
+
+\begin{definition}
+Ein Homomorphismus $\varphi\colon\mathbb{R}\to\operatorname{GL}_n(\mathbb{R})$
+von der additiven Gruppe $\mathbb{R}$ in die allgemeine lineare Gruppe
+heisst eine {\em Einparameter-Untergruppe} von
+$\operatorname{GL}_n(\mathbb{R})$.
+\end{definition}
+
+Die Abbildung
+\[
+\varphi
+\colon
+\mathbb{R}\to\operatorname{GL}_n(\mathbb{R})
+:
+\alpha \mapsto
+D_{\alpha}
+=
+\begin{pmatrix}
+\cos\alpha&-\sin\alpha\\
+\sin\alpha& \cos\alpha
+\end{pmatrix}
+\]
+ist also eine Einparameter-Untergruppe von $\operatorname{GL}_2(\mathbb{R})$.
+
+\subsubsection{Der harmonische Oszillator}
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/phasenraum.pdf}
+\caption{Die Lösungen der
+Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl}
+im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$.
+\label{chapter:gruppen:fig:phasenraum}}
+\end{figure}
+Eine Masse $m$ verbunden mit einer Feder mit der Federkonstanten $K$
+schwingt um die Ruhelage $x=0$ entsprechend der Differentialgleichung
+\[
+m\frac{d^2}{dt^2} x(t) = -Kx(t).
+\]
+Die Kreisfrequenz der Schwingung ist
+\[
+\omega = \sqrt{\frac{K}{m}}.
+\]
+Das System kann als zweidimensionales System im Phasenraum mit den
+Koordinaten $x_1=x$ und $x_2=p=m\dot{x}$ beschrieben werden.
+Die zweidimensionale Differentialgleichung ist
+\begin{equation}
+\left.
+\begin{aligned}
+\dot{x}(t) &= \frac{1}{m}p(t)\\
+\dot{p}(t) &= -Kx(t)
+\end{aligned}
+\quad
+\right\}
+\qquad\Rightarrow\qquad
+\frac{d}{dt}
+\begin{pmatrix}x(t)\\p(t)\end{pmatrix}
+=
+\begin{pmatrix}
+0&\frac{1}{m}\\
+-K&0
+\end{pmatrix}
+\begin{pmatrix}x(t)\\p(t)\end{pmatrix}.
+\label{chapter:gruppen:eqn:phasenraumdgl}
+\end{equation}
+Die Lösung der Differentialgleichung für die Anfangsbedingung $x(0)=1$ und
+$p(0)=0$ ist
+\[
+x(t)
+=
+\cos \omega t
+\qquad\Rightarrow\qquad
+p(t)
+=
+-\omega \sin\omega t,
+\]
+die Lösung zur Anfangsbedingung $x(0)=0$ und $p(0)=1$ ist
+\[
+x(t) = \frac{1}{\omega} \sin\omega t,
+\qquad
+p(t) = \cos \omega t.
+\]
+In Matrixform kann man die allgemeine Lösung zur Anfangsbedingun $x(0)=x_0$
+und $p(0)=p_0$
+\begin{equation}
+\begin{pmatrix}
+x(t)\\
+p(t)
+\end{pmatrix}
+=
+\underbrace{
+\begin{pmatrix}
+ \cos \omega t & \frac{1}{\omega} \sin\omega t \\
+-\omega \sin\omega t & \cos\omega t
+\end{pmatrix}
+}_{\displaystyle =\Phi_t}
+\begin{pmatrix}x_0\\p_0\end{pmatrix}
+\label{buch:gruppen:eqn:phi}
+\end{equation}
+schreiben.
+Die Matrizen $\Phi_t$ bilden eine Einparameter-Untergruppe von
+$\operatorname{GL}_n(\mathbb{R})$, da
+\begin{align*}
+\Phi_s\Phi_t
+&=
+\begin{pmatrix}
+ \cos\omega s & \frac{1}{\omega} \sin\omega s \\
+-\omega \sin\omega s & \cos\omega s
+\end{pmatrix}
+\begin{pmatrix}
+ \cos\omega t & \frac{1}{\omega} \sin\omega t \\
+-\omega \sin\omega t & \cos\omega t
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+\cos\omega s \cos\omega t - \sin\omega s \sin\omega t
+& \frac{1}{\omega} ( \cos\omega s \sin\omega t + \sin\omega s \cos \omega t)
+\\
+-\omega (\sin\omega s \cos\omega t + \cos\omega s \sin\omega t )
+& \cos\omega s \cos\omega t -\sin\omega s \sin\omega t
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+ \cos\omega(s+t) & \frac{1}{\omega}\sin\omega(s+t) \\
+-\omega \sin\omega(s+t) & \cos\omega(s+t)
+\end{pmatrix}
+=
+\Phi_{s+t}
+\end{align*}
+gilt.
+Die Lösungen der
+Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl}
+sind in Abbildung~\ref{chapter:gruppen:fig:phasenraum}
+Die Matrizen $\Phi_t$ beschreiben eine kontinuierliche Symmetrie
+des Differentialgleichungssystems, welches den harmonischen Oszillator
+beschreibt.
+
+\subsubsection{Fluss einer Differentialgleichung}
+Die Abbildungen $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} sind jeweils
+Matrizen in $\operatorname{GL}_n(\mathbb{R})$.
+Der Grund dafür ist, dass die
+Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl}
+linear ist.
+Dies hat zur Folge, dass für zwei Anfangsbedingungen $x_1,x_2\in\mathbb{R}^2$
+die Lösung für Linearkombinationen $\lambda x_1+\mu x_2$ durch
+Linearkombination der Lösungen erhalten werden kann, also
+aus der Formel
+\[
+\Phi_t (\lambda x_1 + \mu x_2) = \lambda \Phi_t x_1 + \mu \Phi_t x_2.
+\]
+Dies zeigt, dass $\Phi_t$ für jedes $t$ eine lineare Abbildung sein muss.
+
+Für eine beliebige Differentialgleichung kann man immer noch eine Abbildung
+$\Phi$ konstruieren, die aber nicht mehr linear ist.
+Sei dazu die Differentialgleichung erster Ordnung
+\begin{equation}
+\frac{dx}{dt}
+=
+f(t,x)
+\qquad\text{mit}\qquad
+f\colon \mathbb{R}\times\mathbb{R}^n \to \mathbb{R}^n
+\label{buch:gruppen:eqn:dgl}
+\end{equation}
+gegeben.
+Für jeden Anfangswert $x_0\in\mathbb{R}^n$ kann man mindestens für eine
+gewisse Zeit $t <\varepsilon$ eine Lösung $x(t,x_0)$ finden mit $x(t,x_0)=x_0$.
+Aus der Theorie der gewöhnlichen Differentialgleichungen ist auch
+bekannt, dass $x(t,x_0)$ mindestens in der Nähe von $x_0$ differenzierbar von
+$x_0$ abhängt.
+Dies erlaubt eine Abbildung
+\[
+\Phi\colon \mathbb{R}\times \mathbb{R}^n \to \mathbb{R}^n
+:
+(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0)
+\]
+zu definieren, die sowohl von $t$ als auch von $x_0$ differenzierbar
+abhängt.
+Aus der Definition folgt unmittelbar, dass $\Phi_0(x_0)=x_0$ ist, dass
+also $\Phi_0$ die identische Abbildung von $\mathbb{R}^n$ ist.
+
+Aus der Definition lässt sich auch ableiten, dass
+$\Phi_{s+t}=\Phi_s\circ\Phi_t$ gilt.
+$\Phi_t(x_0)=x(t,x_0)$ ist der Endpunkt der Bahn, die bei $x_0$ beginnt
+und sich während der Zeit $t$ entwickelt.
+$\Phi_s(x(t,x_0))$ ist dann der Endpunkt der Bahn, die bei $x(t,x_0)$
+beginnt und sich während der Zeit $s$ entwickelt.
+Somit ist $\Phi_s\circ \Phi_t(x_0)$ der Endpunkt der Bahn, die bei
+$x_0$ beginnt und sich über die Zeit $s+t$ entwickelt.
+In Formeln bedeutet dies
+\[
+\Phi_{s+t} = \Phi_s\circ \Phi_t.
+\]
+Die Abbildung $t\mapsto \Phi_t$ ist also wieder ein Homomorphismus
+von der additiven Gruppe $\mathbb{R}$ in eine Gruppe von differenzierbaren
+Abbildungen $\mathbb{R}^n\to\mathbb{R}^n$.
+
+\begin{definition}
+Die Abbildung
+\[
+\Phi\colon \mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n
+:
+(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0)
+\]
+heisst der {\em Fluss} der Differentialgleichung
+\eqref{buch:gruppen:eqn:dgl},
+wenn für jedes $x_0\in\mathbb{R}^n$ die Kurve $t\mapsto \Phi_t(x_0)$
+eine Lösung der Differentialgleichung ist mit Anfangsbedingung $x_0$.
+\end{definition}
+
+Die Abbildung $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} ist also
+der Fluss der Differentialgleichung des harmonischen Oszillators.
+
+\subsection{Mannigfaltigkeiten
+\label{buch:subsection:mannigfaltigkeit}}
+Eine Differentialgleichung der Form~\eqref{buch:gruppen:eqn:dgl}
+stellt einen Zusammenhang her zwischen einem Punkt $x$ und der
+Tangentialrichtung einer Bahnkurve $f(t,x)$.
+Die Ableitung liefert die lineare Näherung der Bahkurve
+\[
+x(t_0+h) = x(t_0) + h f(t_0,x_0) + o(h)
+\]
+für $h$ in einer kleinen Umgebung von $0$.
+Das funktioniert auch, weil $f(t_0,x_0)$ selbst ein Vektor von
+$\mathbb{R}^n$ ist, in dem die Bahnkurve verläuft.
+
+Diese Idee funktioniert nicht mehr zum Beispiel für eine
+Differentialgleichung auf einer Kugeloberfläche, weil alle Punkte
+$x(t_0)+hf(t_0,x_0)$ für alle $h\ne 0$ nicht mehr auf der Kugeloberfläche
+liegen.
+Physikalisch äussert sich das ein einer zusätzlichen Kraft, die nötig
+ist, die Bahn auf der Kugeloberfläche zu halten.
+Diese Kraft stellt zum Beispiel sicher, dass die Vektoren $f(t,x)$ für
+Punkte $x$ auf der Kugeloberfläche immer tangential an die Kugel sind.
+Trotzdem ist der Tangentialvektor oder der Geschwindigkeitsvektor
+nicht mehr ein Objekt, welches als Teil der Kugeloberfläche definiert
+werden kann, er kann nur definiert werden, wenn man sich die Kugel als
+in einen höherdimensionalen Raum eingebettet vorstellen kann.
+
+Um die Idee der Differentialgleichung auf einer beliebigen Fläche
+konsistent zu machen ist daher notwendig, die Idee einer Tagentialrichtung
+auf eine Art zu definieren, die nicht von der Einbettung der Fläche
+in den $n$-dimensionalen Raum abhängig ist.
+Das in diesem Abschnitt entwickelte Konzept der {\em Mannigfaltigkeit}
+löst dieses Problem.
+
+\subsubsection{Karten}
+Die Navigation auf der Erdoberfläche verwendet das Koordinatensystem
+der geographischen Länge und Breite.
+Dieses Koordinatensystem funktioniert gut, solange man sich nicht an
+den geographischen Polen befindet, denn deren Koordinaten sind
+nicht mehr eindeutig.
+Alle Punkte mit geographischer Breite $90^\circ$ und beliebiger
+geographischer Länge beschreiben den Nordpol.
+Auch die Ableitung funktioniert dort nicht mehr.
+Bewegt man sich mit konstanter Geschwindigkeit über den Nordpol,
+springt die Ableitung der geographischen Breite von einem positiven
+Wert auf einen negativen Wert, sie kann also nicht differenzierbar sein.
+Diese Einschränkungen sind in der Praxis nur ein geringes Problem dar,
+da die meisten Reisen nicht über die Pole erfolgen.
+
+Der Polarforscher, der in unmittelbarer Umgebung des Poles arbeitet,
+kann das Problem lösen, indem er eine lokale Karte für das Gebiet
+um den Pol erstellt.
+Dafür kann er beliebige Koordinaten verwenden, zum Beispiel auch
+ein kartesisches Koordinatensystem, er muss nur eine Methode haben,
+wie er seine Koordinaten wieder auf geographische Länge und Breite
+umrechnen will.
+Und wenn er über Geschwindigkeiten kommunizieren will, dann muss
+er auch Ableitungen von Kurven in seinem kartesischen Koordinatensystem
+umrechnen können auf die Kugelkoordinaten.
+Dazu muss seine Umrechnungsformel von kartesischen Koordinaten
+auf Kugelkoordinaten differenzierbar sein.
+
+Diese Idee wird durch das Konzept der Mannigfaltigkeit verallgemeinert.
+Eine $n$-dimensionale {\em Mannigfaltigkeit} ist eine Menge $M$ von Punkten,
+die lokal, also in der Umgebung eines Punktes, mit möglicherweise mehreren
+verschiedenen Koordinatensystemen versehen werden kann.
+Ein Koordinatensystem ist eine umkehrbare Abbildung einer offenen Teilmenge
+$U\subset M$ in den Raum $\mathbb{R}^n$.
+Die Komponenten dieser Abbildung heissen die {\em Koordinaten}.
+
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/karten.pdf}
+\caption{Karten
+$\varphi_\alpha\colon U_\alpha\to \mathbb{R}^2$
+und
+$\varphi_\beta\colon U_\beta\to \mathbb{R}^2$
+auf einem Torus.
+Auf dem Überschneidungsgebiet $\varphi_\alpha^{-1}(U_\alpha\cap U_\beta)$
+ist der Kartenwechsel $\varphi_\beta\circ\varphi_\alpha^{-1}$ wohldefiniert
+und muss differnzierbar sein, wenn eine differenzierbare Mannigfaltigkeit
+entstehen soll.
+\label{buch:gruppen:fig:karten}}
+\end{figure}
+
+\begin{definition}
+Eine Karte auf $M$ ist eine umkehrbare Abbildung
+$\varphi\colon U\to \mathbb{R}^n$ (siehe auch
+Abbildung~\ref{buch:gruppen:fig:karten}).
+Ein differenzierbarer Atlas ist eine Familie von Karten $\varphi_\alpha$
+derart, dass die Definitionsgebiete $U_\alpha$ die ganze Menge $M$
+überdecken, und dass die Kartenwechsel Abbildungen
+\[
+\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}
+\colon
+\varphi_\alpha(U_\alpha\cap U_\beta)
+\to
+\varphi_\beta(U_\alpha\cap U_\beta)
+\]
+als Abbildung von offenen Teilmengen von $\mathbb{R}^n$ differenzierbar
+ist.
+Eine {$n$-dimensionale differenzierbare Mannigfaltigkeit} ist eine
+Menge $M$ mit einem differenzierbaren Atlas.
+\end{definition}
+
+Karten und Atlanten regeln also nur, wie sich verschiedene lokale
+Koordinatensysteme ineinander umrechnen lassen.
+
+\begin{beispiel}
+$M=\mathbb{R}^n$ ist eine differenzierbare Mannigfaltigkeit denn
+die identische Abbildung $M\to \mathbb{R}^n$ ist eine Karte und ein
+Atlas von $M$.
+\end{beispiel}
+
+\begin{beispiel}
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/kartenkreis.pdf}
+\caption{Karten für die Kreislinie $S^1\subset\mathbb{R}^2$.
+\label{buch:gruppen:fig:kartenkreis}}
+\end{figure}
+Die Kreislinie in in der Ebene ist eine $1$-dimensionale Mannigfaltigkeit.
+Natürlich kann sie nicht mit einer einzigen Karte beschrieben werden,
+da es keine umkehrbaren Abbildungen zwischen $\mathbb{R}$ und der Kreislinie
+gibt.
+Die Projektionen auf die einzelnen Koordinaten liefern die folgenden
+vier Karten:
+\begin{align*}
+\varphi_1&\colon U_{x>0}\{(x,y)\;|\;x^2+y^2=1\wedge x>0\} \to\mathbb{R}
+:
+(x,y) \mapsto y
+\\
+\varphi_2&\colon U_{x<0}\{(x,y)\;|\;x^2+y^2=1\wedge x<0\} \to\mathbb{R}
+:
+(x,y) \mapsto y
+\\
+\varphi_3&\colon U_{y>0}\{(x,y)\;|\;x^2+y^2=1\wedge y>0\} \to\mathbb{R}
+:
+(x,y) \mapsto x
+\\
+\varphi_4&\colon U_{y<0}\{(x,y)\;|\;x^2+y^2=1\wedge y<0\} \to\mathbb{R}
+:
+(x,y) \mapsto x
+\end{align*}
+Die Werte der Kartenabbildungen sind genau die $x$- und $y$-Koordinaten
+auf der in den Raum $\mathbb{R}^2$ eingebetteten Kreislinie.
+
+Für $\varphi_1$ und $\varphi_2$ sind die Definitionsgebiete disjunkt,
+hier gibt es also keine Notwendigkeit, Koordinatenumrechnungen vornehmen
+zu können.
+Dasselbe gilt für $\varphi_3$ und $\varphi_4$.
+
+Die nichtleeren Schnittmengen der verschiedenen Kartengebiete beschreiben
+jeweils die Punkte der Kreislinie in einem Quadranten.
+Die Umrechnung zwischen den Koordinaten und ihre Ableitung
+ist je nach Quadrant durch
+\begin{align*}
+&\text{1.~Quadrant}&
+\varphi_{31}
+&=
+\varphi_3\circ\varphi_1^{-1}\colon y\mapsto\phantom{-}\sqrt{1-y^2\mathstrut}
+&
+D\varphi_{31}
+&=
+-\frac{y}{\sqrt{1-y^2\mathstrut}}
+\\
+&\text{2.~Quadrant}&
+\varphi_{24}
+&=
+\varphi_3\circ\varphi_1^{-1}\colon x\mapsto\phantom{-}\sqrt{1-x^2\mathstrut}
+&
+D\varphi_{24}
+&=
+-\frac{x}{\sqrt{1-x^2\mathstrut}}
+\\
+&\text{3.~Quadrant}&
+\varphi_{42}
+&=
+\varphi_3\circ\varphi_1^{-1}\colon y\mapsto-\sqrt{1-y^2\mathstrut}
+&
+D\varphi_{42}
+&=
+\phantom{-}\frac{y}{\sqrt{1-y^2\mathstrut}}
+\\
+&\text{4.~Quadrant}&
+\varphi_{14}
+&=
+\varphi_3\circ\varphi_1^{-1}\colon x\mapsto-\sqrt{1-x^2\mathstrut}
+&
+D\varphi_{14}
+&=
+\phantom{-}\frac{x}{\sqrt{1-x^2\mathstrut}}
+\end{align*}
+gegeben.
+Diese Abbildungen sind im offenen Intervall $(-1,1)$ differenzierbar,
+Schwierigkeiten mit der Ableitungen ergeben sich nur an den Stellen
+$x=\pm1$ und $y=\pm 1$, die in einem Überschneidungsgebiet von Karten
+nicht vorkommen können.
+Somit bilden die vier Karten einen differenzierbaren Atlas für
+die Kreislinie (Abbildung~\ref{buch:gruppen:fig:kartenkreis}).
+\end{beispiel}
+
+\begin{beispiel}
+Ganz analog zum vorangegangenen Beispiel über die Kreisline lässt sich
+für eine $n$-di\-men\-sio\-nale Sphäre
+\[
+S^n = \{ (x_1,\dots,x_{n+1})\;|\; x_0^2+\dots+x_n^2=1\}
+\]
+immer ein Atlas aus $2^{n+1}$ Karten mit den Koordinatenabbildungen
+\[
+\varphi_{i,\pm}
+\colon
+U_{i,\pm}
+=
+\{p\in S^n\;|\; \pm x_i >0\}
+\to
+\mathbb{R}^n
+:
+p\mapsto (x_1,\dots,\hat{x}_i,\dots,x_{n+1})
+\]
+konstruieren, der $S^n$ zu einer $n$-dimensionalen Mannigfaltigkeit macht.
+\end{beispiel}
+
+\subsubsection{Tangentialraum}
+Mit Hilfe einer Karte $\varphi_\alpha\colon U_\alpha\to\mathbb{R}^n$
+kann das Geschehen in einer Mannigfaltigkeit in den vertrauten
+$n$-dimensionalen Raum $\mathbb{B}^n$ transportiert werden.
+Eine Kurve $\gamma\colon \mathbb{R}\to M$, die so parametrisiert sein
+soll, dass $\gamma(t)\in U_\alpha$ für $t$ in einer Umgebung $I$ von $0$ ist,
+wird von der Karte in eine Kurve
+$\gamma_\alpha=\varphi_\alpha\circ\gamma\colon I\to \mathbb{R}^n$
+abgebildet,
+deren Tangentialvektor wieder ein Vektor in $\mathbb{R}^n$ ist.
+
+Eine zweite Karte $\varphi_\beta$ führt auf eine andere Kurve
+mit der Parametrisierung
+$\gamma_\beta=\varphi_\beta\circ\gamma\colon I \to \mathbb{R}^n$
+und einem anderen Tangentialvektor.
+Die beiden Tangentialvektoren können aber mit der Ableitung der
+Koordinatenwechsel-Abbildung
+$\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}\colon
+\varphi_\alpha(U_\alpha\cap U_\beta)\to \mathbb{R}^n$
+ineinander umgerechnet werden.
+Aus
+\[
+\gamma_\beta
+=
+\varphi_\beta\circ \gamma
+=
+(
+\varphi_\beta
+\circ
+\varphi_\alpha^{-1}
+)
+\circ
+\varphi_\alpha\circ\gamma
+=
+\varphi_{\beta\alpha}
+\circ
+\varphi_\alpha\circ\gamma
+=
+\varphi_{\beta\alpha}\circ\gamma_\alpha
+\]
+folgt durch Ableitung nach dem Kurvenparameter $t$, dass
+\[
+\frac{d}{dt}\gamma_\beta(t)
+=
+D\varphi_{\beta\alpha}
+\cdot
+\frac{d}{dt}\gamma_\alpha(t).
+\]
+Die Ableitung $D\varphi_{\beta\alpha}$ von $\varphi_{\beta\alpha}$
+an der Stelle $\gamma_\alpha(t)$ berechnet also aus dem Tangentialvektor
+einer Kurve in der Karte $\varphi_\alpha$ den Tangentialvektor der
+Kurve in der Karte $\varphi_\beta$.
+
+Die Forderung nach Differenzierbarkeit der Kartenwechselabbildungen
+$\varphi_{\beta\alpha}$ stellt also nur sicher, dass die Beschreibung
+eines Systemes mit Differentialgleichungen in verschiedenen
+Koordinatensystemen auf die gleichen Lösungskurven in der
+Mannigfaltigkeit führt.
+Insbesondere ist die Verwendung von Karten ist also nur ein Werkzeug,
+mit dem die Unmöglichkeit einer globalen Besschreibung einer
+Mannigfaltigkeit $M$ mit einem einzigen globalen Koordinatensystem
+ohne Singularitäten umgangen werden kann.
+
+\begin{beispiel}
+Das Beispiel des Kreises in Abbildung~\ref{buch:gruppen:fig:kartenkreis}
+zeigt, dass die Tangentialvektoren je nach Karte sehr verschieden
+aussehen können.
+Der Tangentialvektor der Kurve $\gamma(t) = (x(t), y(t))$ im Punkt
+$\gamma(t)$ ist $\dot{y}(t)$ in den Karten $\varphi_1$ und $\varphi_2$
+und $\dot{x}(t)$ in den Karten $\varphi_3$ und $\varphi_4$.
+
+Die spezielle Kurve $\gamma(t) = (\cos t,\sin t)$ hat in einem Punkt
+$t\in (0,\frac{\pi}2)$.
+in der Karte $\varphi_1$ den Tangentialvektor $\dot{y}(t)=\cos t$,
+in der Karte $\varphi_3$ aber den Tangentialvektor $\dot{x}=-\sin t$.
+Die Ableitung des Kartenwechsels in diesem Punkt ist die $1\times 1$-Matrix
+\[
+D\varphi_{31}(\gamma(t))
+=
+-\frac{y(t)}{\sqrt{1-y(t)^2}}
+=
+-\frac{\sin t}{\sqrt{1-\sin^2 t}}
+=
+-\frac{\sin t}{\cos t}
+=
+-\tan t.
+\]
+Die Koordinatenumrechnung ist gegeben durch
+\[
+\dot{x}(t)
+=
+D\varphi_{31}(\gamma(t))
+\dot{y}(t)
+\]
+wird für die spezielle Kurve $\gamma(t)=(\cos t,\sin t)$ wird dies zu
+\[
+D\varphi_{31}(\gamma(t))
+\cdot
+\dot{y}(t)
+=
+-\tan t\cdot \cos t
+=
+-\frac{\sin t}{\cos t}\cdot \cos t
+=
+-\sin t
+=
+\dot{x}(t).
+\qedhere
+\]
+\end{beispiel}
+
+Betrachtet man die Kreislinie als Kurve in $\mathbb{R}^2$,
+dann ist der Tangentialvektor durch
+$\dot{\gamma}(t)=(\dot{x}(t),\dot{y}(t))$ gegeben.
+Da die Karten Projektionen auf die $x$- bzw.~$y$-Achsen sind,
+entsteht der Tangentialvektor in der Karte durch Projektion
+von $(\dot{x}(t),\dot{y}(t))$ auf die entsprechende Komponente.
+
+Die Tangentialvektoren in zwei verschiedenen Punkten der Kurve können
+im Allgemeinen nicht miteinander verglichen werden.
+Darüber hinweg hilft auch die Tatsache nicht, dass die Kreislinie
+in den Vektorraum $\mathbb{R}^2$ eingebettet sind, wo sich Vektoren
+durch Translation miteinander vergleichen lassen.
+Ein nichtverschwindender Tangentialvektor im Punkt $(1,0)$ hat,
+betrachtet als Vektor in $\mathbb{R}^2$ verschwindende $x$-Komponente,
+für Tangentialvektoren im Inneren eines Quadranten ist dies nicht
+der Fall.
+
+Eine Möglichkeit, einen Tangentialvektor in $(1,0)$ mit einem
+Tangentialvektor im Punkt $(\cos t,\sin t)$ zu vergleichen, besteht
+darin, den Vektor um den Winkel $t$ zu drehen.
+Dies ist möglich, weil die Kreislinie eine kontinuierliche Symmetrie,
+nämlich die Drehung um den Winkel $t$ hat, die es erlaubt, den Punkt $(1,0)$
+in den Punkt $(\cos t,\sin t)$ abzubilden.
+Erst diese Symmetrie ermöglicht den Vergleich.
+Dieser Ansatz ist für alle Matrizen erfolgreich, wie wir später sehen werden.
+
+Ein weiterer Ansatz, Tangentialvektoren zu vergleichen, ist die Idee,
+einen sogenannten Zusammenhang zu definieren, eine Vorschrift, wie
+Tangentialvektoren infinitesimal entlang von Kurven in der Mannigfaltigkeit
+transportiert werden können.
+Auf einer sogenannten {\em Riemannschen Mannigfaltigkeit} ist zusätzlich
+zur Mannigfaltigkeitsstruktur die Längenmessung definiert.
+Sie kann dazu verwendet werden, den Transport von Vektoren entlang einer
+Kurve so zu definieren, dass dabei Längen und Winkel erhalten bleiben.
+Dieser Ansatz ist die Basis der Theorie der Krümmung sogenannter
+Riemannscher Mannigfaltigkeiten.
+
+\subsection{Der Satz von Noether
+\label{buch:subsection:noether}}
+
+
+
+
+
+
+
diff --git a/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex b/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex
index 5c973fd..2acf6f6 100644
--- a/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex
+++ b/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex
@@ -1,233 +1,233 @@
-Eine Drehung eines Vektors $\vec{x}$ der Ebene $\mathbb{R}^2$
-um den Winkel $\alpha$ gefolgt von einer Translation um $\vec{t}$
-ist gegeben durch $D_\alpha\vec{x}+\vec{t}$.
-Darauf lässt sich jedoch die Theorie der Matrizengruppen nicht
-darauf anwenden, weil die Operation nicht die Form einer Matrixmultiplikation
-schreiben.
-Die Drehung und Translation kann in eine Matrix zusammengefasst werden,
-indem zunächst die Ebene mit
-\[
-\mathbb{R}^2\to\mathbb{R}^3
-:
-\begin{pmatrix}x\\y\end{pmatrix}
-\mapsto
-\begin{pmatrix}x\\y\\1\end{pmatrix}
-\qquad\text{oder in Vektorschreibweise }\qquad
-\vec{x}\mapsto\begin{pmatrix}\vec{x}\\1\end{pmatrix}
-\]
-in den dreidimensionalen Raum eingebettet wird.
-Die Drehung und Verschiebung kann damit in der Form
-\[
-\begin{pmatrix}D_\alpha\vec{x}+\vec{t}\\1
-\end{pmatrix}
-=
-\begin{pmatrix}D_\alpha&\vec{t}\\0&1\end{pmatrix}
-\begin{pmatrix}\vec{x}\\1\end{pmatrix}
-\]
-als Matrizenoperation geschrieben werden.
-Die Gruppe der Drehungen und Verschiebungen der Ebene ist daher
-die Gruppe
-\[
-G
-=
-\left\{
-\left.
-A
-=
-\begin{pmatrix}
-D_\alpha&\vec{t}\\
-0&1
-\end{pmatrix}
-=
-\begin{pmatrix}
-\cos\alpha & -\sin\alpha & t_x \\
-\sin\alpha & \cos\alpha & t_y \\
- 0 & 0 & 1
-\end{pmatrix}
-\;
-\right|
-\;
-\alpha\in\mathbb{R},\vec{t}\in\mathbb{R}^2
-\right\}
-\]
-Wir kürzen die Elemente von $G$ auch als $(\alpha,\vec{t})$ ab.
-\begin{teilaufgaben}
-\item
-Verifizieren Sie, dass das Produkt zweier solcher Matrizen
-$(\alpha_1,\vec{t}_1)$ und $(\alpha_2,\vec{t}_2)$
-wieder die selbe Form $(\alpha,\vec{t})$ hat und berechnen Sie
-$\alpha$ und $\vec{t}_j$.
-\item
-Bestimmen Sie das inverse Element zu $(\alpha,\vec{t}) \in G$.
-\item
-Die Elemente der Gruppe $G$ sind parametrisiert durch den Winkel $\alpha$
-und die Translationskomponenten $t_x$ und $t_y$.
-Rechnen Sie nach, dass
-\[
-\alpha\mapsto \begin{pmatrix} D_{\alpha}&0\\0&1\end{pmatrix},
-\quad
-t_x\mapsto
-\begin{pmatrix} I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix},
-\qquad
-t_y\mapsto
-\begin{pmatrix} I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix}
-\]
-Einparameteruntergruppen von $G$ sind.
-\item
-Berechnen Sie die Tangentialvektoren $D$, $X$ und $Y$,
-die zu den Einparameteruntergruppen von c) gehören.
-\item
-Berechnen Sie die Lie-Klammer für alle Paare von Tangentialvektoren.
-\end{teilaufgaben}
-
-\begin{loesung}
-\begin{teilaufgaben}
-\item
-Die Wirkung beider Gruppenelemente auf dem Vektor $\vec{x}$ ist
-\begin{align*}
-\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix}
-\begin{pmatrix}D_{\alpha_2}&\vec{t}_2\\0&1\end{pmatrix}
-\begin{pmatrix}\vec{x}\\1\end{pmatrix}
-&=
-\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix}
-\begin{pmatrix}D_{\alpha_2}\vec{x}+\vec{t}_2\\1\end{pmatrix}
-=
-\begin{pmatrix}
-D_{\alpha_1}(D_{\alpha_2}\vec{x}+\vec{t}_2)+\vec{t}_1\\1
-\end{pmatrix}
-\\
-&=
-\begin{pmatrix}
-D_{\alpha_1}D_{\alpha_2}\vec{x} + D_{\alpha_1}\vec{t}_2+\vec{t}_1\\1
-\end{pmatrix}
-=
-\begin{pmatrix}
-D_{\alpha_1+\alpha_2}&D_{\alpha_1}\vec{t}_2+\vec{t}_1\\
-0&1
-\end{pmatrix}
-\begin{pmatrix}\vec{x}\\1\end{pmatrix}.
-\end{align*}
-Das Produkt in der Gruppe $G$ kann daher
-\[
-(\alpha_1,\vec{t}_1) (\alpha_2,\vec{t}_2)
-=
-(\alpha_1+\alpha_2,\vec{t}_1+D_{\alpha_1}\vec{t}_2)
-\]
-geschrieben werden.
-\item
-Die Inverse der Abbildung $\vec{x}\mapsto \vec{y}=D_\alpha\vec{x}+\vec{t}$
-kann gefunden werden, indem man auf der rechten Seite nach $\vec{x}$
-auflöst:
-\begin{align*}
-\vec{y}&=D_\alpha\vec{x}+\vec{t}
-&&\Rightarrow&
-D_{\alpha}^{-1}( \vec{y}-\vec{t}) &= \vec{x}
-\\
-&&&& \vec{x} &= D_{-\alpha}\vec{y} + (-D_{-\alpha}\vec{t})
-\end{align*}
-Die Inverse von $(\alpha,\vec{t})$ ist also $(-\alpha,-D_{-\alpha}\vec{t})$.
-\item
-Da $D_\alpha$ eine Einparameteruntergruppe von $\operatorname{SO}(2)$ ist,
-ist $\alpha\mapsto (D_\alpha,0)$ ebenfalls eine Einparameteruntergruppe.
-Für die beiden anderen gilt
-\[
-\biggl(I,\begin{pmatrix}t_{x1}\\0\end{pmatrix}\biggr)
-\biggl(I,\begin{pmatrix}t_{x2}\\0\end{pmatrix}\biggr)
-=
-\biggl(I,\begin{pmatrix}t_{x1}+t_{x2}\\0\end{pmatrix}\biggr)
-\quad\text{und}\quad
-\biggl(I,\begin{pmatrix}0\\t_{y1}\end{pmatrix}\biggr)
-\biggl(I,\begin{pmatrix}0\\t_{y2}\end{pmatrix}\biggr)
-=
-\biggl(I,\begin{pmatrix}0\\t_{y1}+t_{y2}\end{pmatrix}\biggr),
-\]
-also sind dies auch Einparameteruntergruppen.
-\item
-Die Ableitungen sind
-\begin{align*}
-D
-&=
-\frac{d}{d\alpha}\begin{pmatrix}D_\alpha&0\\0&1\end{pmatrix}\bigg|_{\alpha=0}
-=
-\begin{pmatrix}J&0\\0&0\end{pmatrix}
-=
-\begin{pmatrix}
-0&-1&0\\
-1& 0&0\\
-0& 0&0
-\end{pmatrix}
-\\
-X
-&=
-\frac{d}{dt_x}
-\left.
-\begin{pmatrix}I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix}
-\right|_{t_x=0}
-=
-\begin{pmatrix}
-0&0&1\\
-0&0&0\\
-0&0&0
-\end{pmatrix}
-&
-Y
-&=
-\frac{d}{dt_y}
-\left.
-\begin{pmatrix}I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix}
-\right|_{t_y=0}
-=
-\begin{pmatrix}
-0&0&0\\
-0&0&1\\
-0&0&0
-\end{pmatrix}
-\end{align*}
-\item
-Die Vertauschungsrelationen sind
-\begin{align*}
-[D,X]
-&=
-DX-XD
-=
-\begin{pmatrix}
-0&0&0\\
-0&0&1\\
-0&0&0
-\end{pmatrix}
--
-\begin{pmatrix}
-0&0&0\\
-0&0&0\\
-0&0&0
-\end{pmatrix}
-=
-Y
-\\
-[D,Y]
-&=
-DY-YD
-=
-\begin{pmatrix}
-0&0&-1\\
-0&0&0\\
-0&0&0
-\end{pmatrix}
--
-\begin{pmatrix}
-0&0&0\\
-0&0&0\\
-0&0&0
-\end{pmatrix}
-=
--X
-\\
-[X,Y]
-&=
-XY-YX
-=
-0-0=0
-\qedhere
-\end{align*}
-\end{teilaufgaben}
-\end{loesung}
+Eine Drehung eines Vektors $\vec{x}$ der Ebene $\mathbb{R}^2$
+um den Winkel $\alpha$ gefolgt von einer Translation um $\vec{t}$
+ist gegeben durch $D_\alpha\vec{x}+\vec{t}$.
+Darauf lässt sich jedoch die Theorie der Matrizengruppen nicht
+darauf anwenden, weil die Operation nicht die Form einer Matrixmultiplikation
+schreiben.
+Die Drehung und Translation kann in eine Matrix zusammengefasst werden,
+indem zunächst die Ebene mit
+\[
+\mathbb{R}^2\to\mathbb{R}^3
+:
+\begin{pmatrix}x\\y\end{pmatrix}
+\mapsto
+\begin{pmatrix}x\\y\\1\end{pmatrix}
+\qquad\text{oder in Vektorschreibweise }\qquad
+\vec{x}\mapsto\begin{pmatrix}\vec{x}\\1\end{pmatrix}
+\]
+in den dreidimensionalen Raum eingebettet wird.
+Die Drehung und Verschiebung kann damit in der Form
+\[
+\begin{pmatrix}D_\alpha\vec{x}+\vec{t}\\1
+\end{pmatrix}
+=
+\begin{pmatrix}D_\alpha&\vec{t}\\0&1\end{pmatrix}
+\begin{pmatrix}\vec{x}\\1\end{pmatrix}
+\]
+als Matrizenoperation geschrieben werden.
+Die Gruppe der Drehungen und Verschiebungen der Ebene ist daher
+die Gruppe
+\[
+G
+=
+\left\{
+\left.
+A
+=
+\begin{pmatrix}
+D_\alpha&\vec{t}\\
+0&1
+\end{pmatrix}
+=
+\begin{pmatrix}
+\cos\alpha & -\sin\alpha & t_x \\
+\sin\alpha & \cos\alpha & t_y \\
+ 0 & 0 & 1
+\end{pmatrix}
+\;
+\right|
+\;
+\alpha\in\mathbb{R},\vec{t}\in\mathbb{R}^2
+\right\}
+\]
+Wir kürzen die Elemente von $G$ auch als $(\alpha,\vec{t})$ ab.
+\begin{teilaufgaben}
+\item
+Verifizieren Sie, dass das Produkt zweier solcher Matrizen
+$(\alpha_1,\vec{t}_1)$ und $(\alpha_2,\vec{t}_2)$
+wieder die selbe Form $(\alpha,\vec{t})$ hat und berechnen Sie
+$\alpha$ und $\vec{t}_j$.
+\item
+Bestimmen Sie das inverse Element zu $(\alpha,\vec{t}) \in G$.
+\item
+Die Elemente der Gruppe $G$ sind parametrisiert durch den Winkel $\alpha$
+und die Translationskomponenten $t_x$ und $t_y$.
+Rechnen Sie nach, dass
+\[
+\alpha\mapsto \begin{pmatrix} D_{\alpha}&0\\0&1\end{pmatrix},
+\quad
+t_x\mapsto
+\begin{pmatrix} I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix},
+\qquad
+t_y\mapsto
+\begin{pmatrix} I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix}
+\]
+Einparameteruntergruppen von $G$ sind.
+\item
+Berechnen Sie die Tangentialvektoren $D$, $X$ und $Y$,
+die zu den Einparameteruntergruppen von c) gehören.
+\item
+Berechnen Sie die Lie-Klammer für alle Paare von Tangentialvektoren.
+\end{teilaufgaben}
+
+\begin{loesung}
+\begin{teilaufgaben}
+\item
+Die Wirkung beider Gruppenelemente auf dem Vektor $\vec{x}$ ist
+\begin{align*}
+\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix}
+\begin{pmatrix}D_{\alpha_2}&\vec{t}_2\\0&1\end{pmatrix}
+\begin{pmatrix}\vec{x}\\1\end{pmatrix}
+&=
+\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix}
+\begin{pmatrix}D_{\alpha_2}\vec{x}+\vec{t}_2\\1\end{pmatrix}
+=
+\begin{pmatrix}
+D_{\alpha_1}(D_{\alpha_2}\vec{x}+\vec{t}_2)+\vec{t}_1\\1
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+D_{\alpha_1}D_{\alpha_2}\vec{x} + D_{\alpha_1}\vec{t}_2+\vec{t}_1\\1
+\end{pmatrix}
+=
+\begin{pmatrix}
+D_{\alpha_1+\alpha_2}&D_{\alpha_1}\vec{t}_2+\vec{t}_1\\
+0&1
+\end{pmatrix}
+\begin{pmatrix}\vec{x}\\1\end{pmatrix}.
+\end{align*}
+Das Produkt in der Gruppe $G$ kann daher
+\[
+(\alpha_1,\vec{t}_1) (\alpha_2,\vec{t}_2)
+=
+(\alpha_1+\alpha_2,\vec{t}_1+D_{\alpha_1}\vec{t}_2)
+\]
+geschrieben werden.
+\item
+Die Inverse der Abbildung $\vec{x}\mapsto \vec{y}=D_\alpha\vec{x}+\vec{t}$
+kann gefunden werden, indem man auf der rechten Seite nach $\vec{x}$
+auflöst:
+\begin{align*}
+\vec{y}&=D_\alpha\vec{x}+\vec{t}
+&&\Rightarrow&
+D_{\alpha}^{-1}( \vec{y}-\vec{t}) &= \vec{x}
+\\
+&&&& \vec{x} &= D_{-\alpha}\vec{y} + (-D_{-\alpha}\vec{t})
+\end{align*}
+Die Inverse von $(\alpha,\vec{t})$ ist also $(-\alpha,-D_{-\alpha}\vec{t})$.
+\item
+Da $D_\alpha$ eine Einparameteruntergruppe von $\operatorname{SO}(2)$ ist,
+ist $\alpha\mapsto (D_\alpha,0)$ ebenfalls eine Einparameteruntergruppe.
+Für die beiden anderen gilt
+\[
+\biggl(I,\begin{pmatrix}t_{x1}\\0\end{pmatrix}\biggr)
+\biggl(I,\begin{pmatrix}t_{x2}\\0\end{pmatrix}\biggr)
+=
+\biggl(I,\begin{pmatrix}t_{x1}+t_{x2}\\0\end{pmatrix}\biggr)
+\quad\text{und}\quad
+\biggl(I,\begin{pmatrix}0\\t_{y1}\end{pmatrix}\biggr)
+\biggl(I,\begin{pmatrix}0\\t_{y2}\end{pmatrix}\biggr)
+=
+\biggl(I,\begin{pmatrix}0\\t_{y1}+t_{y2}\end{pmatrix}\biggr),
+\]
+also sind dies auch Einparameteruntergruppen.
+\item
+Die Ableitungen sind
+\begin{align*}
+D
+&=
+\frac{d}{d\alpha}\begin{pmatrix}D_\alpha&0\\0&1\end{pmatrix}\bigg|_{\alpha=0}
+=
+\begin{pmatrix}J&0\\0&0\end{pmatrix}
+=
+\begin{pmatrix}
+0&-1&0\\
+1& 0&0\\
+0& 0&0
+\end{pmatrix}
+\\
+X
+&=
+\frac{d}{dt_x}
+\left.
+\begin{pmatrix}I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix}
+\right|_{t_x=0}
+=
+\begin{pmatrix}
+0&0&1\\
+0&0&0\\
+0&0&0
+\end{pmatrix}
+&
+Y
+&=
+\frac{d}{dt_y}
+\left.
+\begin{pmatrix}I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix}
+\right|_{t_y=0}
+=
+\begin{pmatrix}
+0&0&0\\
+0&0&1\\
+0&0&0
+\end{pmatrix}
+\end{align*}
+\item
+Die Vertauschungsrelationen sind
+\begin{align*}
+[D,X]
+&=
+DX-XD
+=
+\begin{pmatrix}
+0&0&0\\
+0&0&1\\
+0&0&0
+\end{pmatrix}
+-
+\begin{pmatrix}
+0&0&0\\
+0&0&0\\
+0&0&0
+\end{pmatrix}
+=
+Y
+\\
+[D,Y]
+&=
+DY-YD
+=
+\begin{pmatrix}
+0&0&-1\\
+0&0&0\\
+0&0&0
+\end{pmatrix}
+-
+\begin{pmatrix}
+0&0&0\\
+0&0&0\\
+0&0&0
+\end{pmatrix}
+=
+-X
+\\
+[X,Y]
+&=
+XY-YX
+=
+0-0=0
+\qedhere
+\end{align*}
+\end{teilaufgaben}
+\end{loesung}
diff --git a/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex b/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex
index 25ac535..14fbe2b 100644
--- a/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex
+++ b/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex
@@ -1,162 +1,162 @@
-Die Elemente der Gruppe $G$ der Translationen und Streckungen von
-$\mathbb{R}$ kann durch Paare $(\lambda,t)\in\mathbb{R}^+\times\mathbb{R}$
-beschrieben werden,
-wobei $\lambda$ durch Streckung und $t$ durch Translation wirkt:
-\[
-(\lambda,t)\colon \mathbb{R}\to\mathbb{R}: x\mapsto \lambda x+t.
-\]
-Dies ist allerdings noch keine Untergruppe einer Matrizengruppe.
-Dazu bettet man $\mathbb{R}$ mit Hilfe der Abbildung
-\[
-\mathbb{R}\to\mathbb{R}^2 : x\mapsto \begin{pmatrix}x\\1\end{pmatrix}
-\]
-in $\mathbb{R}^2$ ein.
-Die Wirkung von $(\lambda,t)$ ist dann
-\[
-\begin{pmatrix}(\lambda,t)\cdot x\\1\end{pmatrix}
-=
-\begin{pmatrix} \lambda x + t\\1\end{pmatrix}
-=
-\begin{pmatrix}\lambda&1\\0&1\end{pmatrix}\begin{pmatrix}x\\1\end{pmatrix}.
-\]
-Die Wirkung des Paares $(\lambda,t)$ kann also mit Hilfe einer
-$2\times 2$-Matrix beschrieben werden.
-Die Abbildung
-\[
-G\to \operatorname{GL}_2(\mathbb{R})
-:
-(\lambda,t)
-\mapsto
-\begin{pmatrix}\lambda&t\\0&1\end{pmatrix}
-\]
-bettet die Gruppe $G$ in $\operatorname{GL}_2(\mathbb{R})$ ein.
-\begin{teilaufgaben}
-\item
-Berechnen Sie das Produkt $g_1g_2$ zweier Elemente
-$g_j=(\lambda_j,t_j)$.
-\item
-Bestimmen Sie das inverse Elemente von $(\lambda,t)$ in $G$.
-\item
-Der sogenannte Kommutator zweier Elemente ist $g_1g_2g_1^{-1}g_2^{-1}$,
-berechnen Sie den Kommutator für die Gruppenelemente von a).
-\item
-Rechnen Sie nach, dass
-\[
-s\mapsto \begin{pmatrix}e^s&0\\0&1\end{pmatrix}
-,\qquad
-t\mapsto \begin{pmatrix}1&t\\0&1\end{pmatrix}
-\]
-Einparameteruntergruppen von $\operatorname{GL}_2(\mathbb{R})$ sind.
-\item
-Berechnen Sie die Tangentialvektoren $S$ und $T$ dieser beiden
-Einparameteruntergruppen.
-\item
-Berechnen Sie den Kommutator $[S,T]$
-\end{teilaufgaben}
-
-\begin{loesung}
-\begin{teilaufgaben}
-\item
-Die beiden Gruppenelemente wirken auf $x$ nach
-\[
-(\lambda_1,t_1)
-(\lambda_2,t_2)
-\cdot
-x
-=
-(\lambda_1,t_1)(\lambda_2x+t_2)
-=
-\lambda_1(\lambda_2x+t_2)+t_1)
-=
-\lambda_1\lambda_2 x + (\lambda_1t_2+t_1),
-\]
-also ist $g_1g_2=(\lambda_1\lambda_2,\lambda_1t_2+t_1)$.
-\item
-Die Inverse von $(\lambda,t)$ kann erhalten werden, indem man die
-Abbildung $x\mapsto y=\lambda x +t$ nach $x$ auflöst:
-\[
-y=\lambda x+t
-\qquad\Rightarrow\qquad
-\lambda^{-1}(y-t)
-=
-\lambda^{-1}y - \lambda^{-1}t.
-\]
-Daraus liest man ab, dass $(\lambda,t)^{-1}=(\lambda^{-1},-\lambda^{-1}t)$
-ist.
-\item
-Mit Hilfe der Identität $g_1g_2g_1^{-1}g_2^{-1}=g_1g_2(g_2g_1)^{-1}$
-kann man den Kommutator leichter berechnen
-\begin{align*}
-g_1g_2&=(\lambda_1\lambda_2,t_1+\lambda_1t_2)
-\\
-g_2g_1&= (\lambda_2\lambda_1,t_2+\lambda_2t_1)
-\\
-(g_2g_1)^{-1}
-&=
-(\lambda_1^{-1}\lambda_2^{-1},
- -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1))
-\\
-g_1g_2g_1^{-1}g_2^{-1}
-&=
-(\lambda_1\lambda_2,t_1+\lambda_1t_2)
-(\lambda_1^{-1}\lambda_2^{-1},
- -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1))
-\\
-&=(1,t_1+\lambda_1t_2 + \lambda_1\lambda_2(
- -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1))
-)
-\\
-&=(1, t_1+\lambda_1t_2 - t_2 -\lambda_2t_1)
-=
-(1,(1-\lambda_2)(t_1-t_2)).
-\end{align*}
-Der Kommutator ist also das neutrale Element, wenn $\lambda_2=1$ ist.
-\item
-Dies ist am einfachsten in der Matrixform nachzurechnen:
-\begin{align*}
-\begin{pmatrix} e^{s_1}&0\\0&1\end{pmatrix}
-\begin{pmatrix} e^{s_2}&0\\0&1\end{pmatrix}
-&=
-\begin{pmatrix}e^{s_1+s_2}&0\\0&1\end{pmatrix}
-&
-\begin{pmatrix} 1&t_1\\0&1\end{pmatrix}
-\begin{pmatrix} 1&t_2\\0&1\end{pmatrix}
-&=
-\begin{pmatrix} 1&t_1+t_2\\0&1\end{pmatrix}
-\end{align*}
-\item
-Die Tangentialvektoren werden erhalten durch ableiten der
-Matrixdarstellung nach dem Parameter
-\begin{align*}
-S
-&=
-\frac{d}{ds} \begin{pmatrix}e^s&0\\0&1\end{pmatrix}\bigg|_{s=0}
-=
-\begin{pmatrix}1&0\\0&0\end{pmatrix}
-\\
-T
-&=
-\frac{d}{dt} \begin{pmatrix}1&t\\0&1\end{pmatrix}\bigg|_{t=0}
-=
-\begin{pmatrix}0&1\\0&0\end{pmatrix}
-\end{align*}
-\item Der Kommutator ist
-\[
-[S,T]
-=
-\begin{pmatrix}1&0\\0&0\end{pmatrix}
-\begin{pmatrix}0&1\\0&0\end{pmatrix}
--
-\begin{pmatrix}0&1\\0&0\end{pmatrix}
-\begin{pmatrix}1&0\\0&0\end{pmatrix}
-=
-\begin{pmatrix}0&1\\0&0\end{pmatrix}
--
-\begin{pmatrix}0&0\\0&0\end{pmatrix}
-=
-T.
-\qedhere
-\]
-\end{teilaufgaben}
-\end{loesung}
-
+Die Elemente der Gruppe $G$ der Translationen und Streckungen von
+$\mathbb{R}$ kann durch Paare $(\lambda,t)\in\mathbb{R}^+\times\mathbb{R}$
+beschrieben werden,
+wobei $\lambda$ durch Streckung und $t$ durch Translation wirkt:
+\[
+(\lambda,t)\colon \mathbb{R}\to\mathbb{R}: x\mapsto \lambda x+t.
+\]
+Dies ist allerdings noch keine Untergruppe einer Matrizengruppe.
+Dazu bettet man $\mathbb{R}$ mit Hilfe der Abbildung
+\[
+\mathbb{R}\to\mathbb{R}^2 : x\mapsto \begin{pmatrix}x\\1\end{pmatrix}
+\]
+in $\mathbb{R}^2$ ein.
+Die Wirkung von $(\lambda,t)$ ist dann
+\[
+\begin{pmatrix}(\lambda,t)\cdot x\\1\end{pmatrix}
+=
+\begin{pmatrix} \lambda x + t\\1\end{pmatrix}
+=
+\begin{pmatrix}\lambda&1\\0&1\end{pmatrix}\begin{pmatrix}x\\1\end{pmatrix}.
+\]
+Die Wirkung des Paares $(\lambda,t)$ kann also mit Hilfe einer
+$2\times 2$-Matrix beschrieben werden.
+Die Abbildung
+\[
+G\to \operatorname{GL}_2(\mathbb{R})
+:
+(\lambda,t)
+\mapsto
+\begin{pmatrix}\lambda&t\\0&1\end{pmatrix}
+\]
+bettet die Gruppe $G$ in $\operatorname{GL}_2(\mathbb{R})$ ein.
+\begin{teilaufgaben}
+\item
+Berechnen Sie das Produkt $g_1g_2$ zweier Elemente
+$g_j=(\lambda_j,t_j)$.
+\item
+Bestimmen Sie das inverse Elemente von $(\lambda,t)$ in $G$.
+\item
+Der sogenannte Kommutator zweier Elemente ist $g_1g_2g_1^{-1}g_2^{-1}$,
+berechnen Sie den Kommutator für die Gruppenelemente von a).
+\item
+Rechnen Sie nach, dass
+\[
+s\mapsto \begin{pmatrix}e^s&0\\0&1\end{pmatrix}
+,\qquad
+t\mapsto \begin{pmatrix}1&t\\0&1\end{pmatrix}
+\]
+Einparameteruntergruppen von $\operatorname{GL}_2(\mathbb{R})$ sind.
+\item
+Berechnen Sie die Tangentialvektoren $S$ und $T$ dieser beiden
+Einparameteruntergruppen.
+\item
+Berechnen Sie den Kommutator $[S,T]$
+\end{teilaufgaben}
+
+\begin{loesung}
+\begin{teilaufgaben}
+\item
+Die beiden Gruppenelemente wirken auf $x$ nach
+\[
+(\lambda_1,t_1)
+(\lambda_2,t_2)
+\cdot
+x
+=
+(\lambda_1,t_1)(\lambda_2x+t_2)
+=
+\lambda_1(\lambda_2x+t_2)+t_1)
+=
+\lambda_1\lambda_2 x + (\lambda_1t_2+t_1),
+\]
+also ist $g_1g_2=(\lambda_1\lambda_2,\lambda_1t_2+t_1)$.
+\item
+Die Inverse von $(\lambda,t)$ kann erhalten werden, indem man die
+Abbildung $x\mapsto y=\lambda x +t$ nach $x$ auflöst:
+\[
+y=\lambda x+t
+\qquad\Rightarrow\qquad
+\lambda^{-1}(y-t)
+=
+\lambda^{-1}y - \lambda^{-1}t.
+\]
+Daraus liest man ab, dass $(\lambda,t)^{-1}=(\lambda^{-1},-\lambda^{-1}t)$
+ist.
+\item
+Mit Hilfe der Identität $g_1g_2g_1^{-1}g_2^{-1}=g_1g_2(g_2g_1)^{-1}$
+kann man den Kommutator leichter berechnen
+\begin{align*}
+g_1g_2&=(\lambda_1\lambda_2,t_1+\lambda_1t_2)
+\\
+g_2g_1&= (\lambda_2\lambda_1,t_2+\lambda_2t_1)
+\\
+(g_2g_1)^{-1}
+&=
+(\lambda_1^{-1}\lambda_2^{-1},
+ -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1))
+\\
+g_1g_2g_1^{-1}g_2^{-1}
+&=
+(\lambda_1\lambda_2,t_1+\lambda_1t_2)
+(\lambda_1^{-1}\lambda_2^{-1},
+ -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1))
+\\
+&=(1,t_1+\lambda_1t_2 + \lambda_1\lambda_2(
+ -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1))
+)
+\\
+&=(1, t_1+\lambda_1t_2 - t_2 -\lambda_2t_1)
+=
+(1,(1-\lambda_2)(t_1-t_2)).
+\end{align*}
+Der Kommutator ist also das neutrale Element, wenn $\lambda_2=1$ ist.
+\item
+Dies ist am einfachsten in der Matrixform nachzurechnen:
+\begin{align*}
+\begin{pmatrix} e^{s_1}&0\\0&1\end{pmatrix}
+\begin{pmatrix} e^{s_2}&0\\0&1\end{pmatrix}
+&=
+\begin{pmatrix}e^{s_1+s_2}&0\\0&1\end{pmatrix}
+&
+\begin{pmatrix} 1&t_1\\0&1\end{pmatrix}
+\begin{pmatrix} 1&t_2\\0&1\end{pmatrix}
+&=
+\begin{pmatrix} 1&t_1+t_2\\0&1\end{pmatrix}
+\end{align*}
+\item
+Die Tangentialvektoren werden erhalten durch ableiten der
+Matrixdarstellung nach dem Parameter
+\begin{align*}
+S
+&=
+\frac{d}{ds} \begin{pmatrix}e^s&0\\0&1\end{pmatrix}\bigg|_{s=0}
+=
+\begin{pmatrix}1&0\\0&0\end{pmatrix}
+\\
+T
+&=
+\frac{d}{dt} \begin{pmatrix}1&t\\0&1\end{pmatrix}\bigg|_{t=0}
+=
+\begin{pmatrix}0&1\\0&0\end{pmatrix}
+\end{align*}
+\item Der Kommutator ist
+\[
+[S,T]
+=
+\begin{pmatrix}1&0\\0&0\end{pmatrix}
+\begin{pmatrix}0&1\\0&0\end{pmatrix}
+-
+\begin{pmatrix}0&1\\0&0\end{pmatrix}
+\begin{pmatrix}1&0\\0&0\end{pmatrix}
+=
+\begin{pmatrix}0&1\\0&0\end{pmatrix}
+-
+\begin{pmatrix}0&0\\0&0\end{pmatrix}
+=
+T.
+\qedhere
+\]
+\end{teilaufgaben}
+\end{loesung}
+
diff --git a/buch/chapters/70-graphen/Makefile.inc b/buch/chapters/70-graphen/Makefile.inc
index d8fe742..2a7d9a6 100644
--- a/buch/chapters/70-graphen/Makefile.inc
+++ b/buch/chapters/70-graphen/Makefile.inc
@@ -7,5 +7,6 @@
CHAPTERFILES = $(CHAPTERFILES) \
chapters/70-graphen/beschreibung.tex \
chapters/70-graphen/spektral.tex \
+ chapters/70-graphen/waerme.tex \
chapters/70-graphen/wavelets.tex \
chapters/70-graphen/chapter.tex
diff --git a/buch/chapters/70-graphen/beschreibung.tex b/buch/chapters/70-graphen/beschreibung.tex
index 25cfcc0..a0f46da 100644
--- a/buch/chapters/70-graphen/beschreibung.tex
+++ b/buch/chapters/70-graphen/beschreibung.tex
@@ -401,7 +401,7 @@ Sie hat für $i\ne j$ die Einträge
\\
&=\text{Anzahl der Kanten, die $i$ mit $j$ verbinden}
\\
-&=a_{ij}
+&=a_{ij}.
\end{align*}
Die Adjazenzmatrix eines Graphen lässt sich also aus der
Inzidenzmatrix berechnen.
diff --git a/buch/chapters/70-graphen/chapter.tex b/buch/chapters/70-graphen/chapter.tex
index b6e02c9..6def393 100644
--- a/buch/chapters/70-graphen/chapter.tex
+++ b/buch/chapters/70-graphen/chapter.tex
@@ -65,5 +65,6 @@ Basis zur Beschreibung von Funktionen auf dem Graphen.
\input{chapters/70-graphen/beschreibung.tex}
\input{chapters/70-graphen/spektral.tex}
+\input{chapters/70-graphen/waerme.tex}
\input{chapters/70-graphen/wavelets.tex}
diff --git a/buch/chapters/70-graphen/images/Makefile b/buch/chapters/70-graphen/images/Makefile
index c1bc5df..5db54c8 100644
--- a/buch/chapters/70-graphen/images/Makefile
+++ b/buch/chapters/70-graphen/images/Makefile
@@ -1,22 +1,31 @@
-#
-# Makefile -- Bilder für Kapitel Graphen
-#
-# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-#
-all: peterson.pdf adjazenzu.pdf adjazenzd.pdf kreis.pdf fundamental.pdf
-
-peterson.pdf: peterson.tex
- pdflatex peterson.tex
-
-adjazenzu.pdf: adjazenzu.tex
- pdflatex adjazenzu.tex
-
-adjazenzd.pdf: adjazenzd.tex
- pdflatex adjazenzd.tex
-
-kreis.pdf: kreis.tex
- pdflatex kreis.tex
-
-fundamental.pdf: fundamental.tex
- pdflatex fundamental.tex
-
+#
+# Makefile -- Bilder für Kapitel Graphen
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+all: peterson.pdf adjazenzu.pdf adjazenzd.pdf kreis.pdf fundamental.pdf \
+ petersonchrind.pdf nine.pdf gh.pdf
+
+peterson.pdf: peterson.tex
+ pdflatex peterson.tex
+
+petersonchrind.pdf: petersonchrind.tex
+ pdflatex petersonchrind.tex
+adjazenzu.pdf: adjazenzu.tex
+ pdflatex adjazenzu.tex
+
+adjazenzd.pdf: adjazenzd.tex
+ pdflatex adjazenzd.tex
+
+kreis.pdf: kreis.tex
+ pdflatex kreis.tex
+
+fundamental.pdf: fundamental.tex
+ pdflatex fundamental.tex
+
+nine.pdf: nine.tex
+ pdflatex nine.tex
+
+gh.pdf: gh.tex
+ pdflatex gh.tex
+
diff --git a/buch/chapters/70-graphen/images/fundamental.tex b/buch/chapters/70-graphen/images/fundamental.tex
index 388bdf7..b7fe9c4 100644
--- a/buch/chapters/70-graphen/images/fundamental.tex
+++ b/buch/chapters/70-graphen/images/fundamental.tex
@@ -1,54 +1,54 @@
-%
-% fundamental.tex -- template for standalon tikz images
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{1}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-
-\begin{scope}[xshift=-4.6cm]
- \draw[color=red,line width=2pt] (1.8,0) -- (1.8,2);
- \draw[color=red,line width=2pt] (0,0) -- (4,0);
- \node at (1.8,0) [below] {$i$};
- \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
- \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
-
- \node at (2,-2.3) [below] {Standarbasis};
-\end{scope}
-
-\begin{scope}
- \draw[color=red,line width=1.4pt]
- plot[domain=0:360,samples=100] ({\x/90},{2*sin(\x)});
- \draw[color=blue,line width=1.4pt]
- plot[domain=0:360,samples=100] ({\x/90},{2*cos(\x)});
- \node[color=blue] at (1,-1) {$\Re f_i$};
- \node[color=red] at (2,1) {$\Im f_i$};
- \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
- \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
- \node at (2,-2.3) [below] {Eigenbasis};
-\end{scope}
-
-\begin{scope}[xshift=4.6cm]
- \foreach \t in {0.02,0.05,0.1,0.2,0.5}{
- \draw[color=red,line width=1.0pt]
- plot[domain=-1.8:2.2,samples=100]
- ({\x+1.8},{exp(-\x*\x/(4*\t))/(sqrt(4*3.1415*\t))});
- }
- \fill[color=red] (1.8,0) circle[radius=0.08];
- \node at (1.8,0) [below] {$\xi$};
- \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
- \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
- \node at (2,-2.3) [below] {Fundamentallösung};
-\end{scope}
-
-\end{tikzpicture}
-\end{document}
-
+%
+% fundamental.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\begin{scope}[xshift=-4.6cm]
+ \draw[color=red,line width=2pt] (1.8,0) -- (1.8,2);
+ \draw[color=red,line width=2pt] (0,0) -- (4,0);
+ \node at (1.8,0) [below] {$i$};
+ \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+
+ \node at (2,-2.3) [below] {Standarbasis};
+\end{scope}
+
+\begin{scope}
+ \draw[color=red,line width=1.4pt]
+ plot[domain=0:360,samples=100] ({\x/90},{2*sin(\x)});
+ \draw[color=blue,line width=1.4pt]
+ plot[domain=0:360,samples=100] ({\x/90},{2*cos(\x)});
+ \node[color=blue] at (1,-1) {$\Re f_i$};
+ \node[color=red] at (2,1) {$\Im f_i$};
+ \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+ \node at (2,-2.3) [below] {Eigenbasis};
+\end{scope}
+
+\begin{scope}[xshift=4.6cm]
+ \foreach \t in {0.02,0.05,0.1,0.2,0.5}{
+ \draw[color=red,line width=1.0pt]
+ plot[domain=-1.8:2.2,samples=100]
+ ({\x+1.8},{exp(-\x*\x/(4*\t))/(sqrt(4*3.1415*\t))});
+ }
+ \fill[color=red] (1.8,0) circle[radius=0.08];
+ \node at (1.8,0) [below] {$\xi$};
+ \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
+ \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+ \node at (2,-2.3) [below] {Fundamentallösung};
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/70-graphen/images/gh.pdf b/buch/chapters/70-graphen/images/gh.pdf
new file mode 100644
index 0000000..c6e48d7
--- /dev/null
+++ b/buch/chapters/70-graphen/images/gh.pdf
Binary files differ
diff --git a/buch/chapters/70-graphen/images/gh.tex b/buch/chapters/70-graphen/images/gh.tex
new file mode 100644
index 0000000..fcceb5f
--- /dev/null
+++ b/buch/chapters/70-graphen/images/gh.tex
@@ -0,0 +1,55 @@
+%
+% gh.tex -- Lokalsierungsfunktionen für Wavelets auf einem Graphen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\def\kurve#1#2{
+ \draw[color=#2,line width=1.4pt]
+ plot[domain=0:6.3,samples=400]
+ ({\x},{7*\x*exp(-(\x/#1)*(\x/#1))/#1});
+}
+
+\begin{scope}
+
+\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}];
+
+\kurve{1}{red}
+\foreach \k in {0,...,4}{
+ \pgfmathparse{0.30*exp(ln(2)*\k)}
+ \xdef\l{\pgfmathresult}
+ \kurve{\l}{blue}
+}
+
+\node[color=red] at ({0.7*1},3) [above] {$g(\lambda)$};
+\node[color=blue] at ({0.7*0.3*16},3) [above] {$g_i(\lambda)$};
+
+\draw[->] (0,-0.1) -- (0,3.3);
+\end{scope}
+
+\begin{scope}[xshift=7cm]
+
+\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}];
+
+\draw[color=darkgreen,line width=1.4pt]
+ plot[domain=0:6.3,samples=100]
+ ({\x},{3*exp(-(\x/0.5)*(\x/0.5)});
+
+\draw[->] (0,-0.1) -- (0,3.3) coordinate[label={right:$\color{darkgreen}h(\lambda)$}];
+
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/70-graphen/images/nine.pdf b/buch/chapters/70-graphen/images/nine.pdf
new file mode 100644
index 0000000..2ae9f68
--- /dev/null
+++ b/buch/chapters/70-graphen/images/nine.pdf
Binary files differ
diff --git a/buch/chapters/70-graphen/images/nine.tex b/buch/chapters/70-graphen/images/nine.tex
new file mode 100644
index 0000000..f214c1e
--- /dev/null
+++ b/buch/chapters/70-graphen/images/nine.tex
@@ -0,0 +1,67 @@
+%
+% nine.tex -- Nine node graph to illustrate Wilf's theorem
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\def\kante#1#2{
+ \draw[shorten >= 0.2cm,shorten <= 0.2cm] (#1) -- (#2);
+}
+\def\knoten#1#2{
+ \fill[color=#2!30] (#1) circle[radius=0.2];
+ \draw[color=#2] (#1) circle[radius=0.2];
+ \draw (#1) circle[radius=0.2];
+}
+\def\R{1.5}
+\definecolor{rot}{rgb}{1,0,0}
+\definecolor{gruen}{rgb}{0,0.6,0}
+\definecolor{blau}{rgb}{0,0,1}
+
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\coordinate (A) at (0:\R);
+\coordinate (B) at (40:\R);
+\coordinate (C) at (80:\R);
+\coordinate (D) at (120:\R);
+\coordinate (E) at (160:\R);
+\coordinate (F) at (200:\R);
+\coordinate (G) at (240:\R);
+\coordinate (H) at (280:\R);
+\coordinate (I) at (320:\R);
+
+\knoten{A}{rot}
+\knoten{B}{blau}
+\knoten{C}{gruen}
+\knoten{D}{blau}
+\knoten{E}{rot}
+\knoten{F}{blau}
+\knoten{G}{rot}
+\knoten{H}{gruen}
+\knoten{I}{blau}
+
+\kante{A}{B}
+\kante{B}{C}
+\kante{C}{D}
+\kante{D}{E}
+\kante{E}{F}
+\kante{F}{G}
+\kante{G}{H}
+\kante{H}{I}
+\kante{I}{A}
+
+\kante{A}{C}
+\kante{A}{D}
+\kante{D}{G}
+
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/70-graphen/images/petersonchrind.pdf b/buch/chapters/70-graphen/images/petersonchrind.pdf
new file mode 100644
index 0000000..23ef6e9
--- /dev/null
+++ b/buch/chapters/70-graphen/images/petersonchrind.pdf
Binary files differ
diff --git a/buch/chapters/70-graphen/images/petersonchrind.tex b/buch/chapters/70-graphen/images/petersonchrind.tex
new file mode 100644
index 0000000..4ae9f39
--- /dev/null
+++ b/buch/chapters/70-graphen/images/petersonchrind.tex
@@ -0,0 +1,142 @@
+%
+% tikztemplate.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\Ra{2}
+\def\Ri{1}
+\def\e{1.0}
+\def\r{0.2}
+
+\begin{scope}[xshift=-3.5cm]
+
+\definecolor{rot}{rgb}{0.8,0,0.8}
+\definecolor{gruen}{rgb}{0.2,0.6,0.2}
+\definecolor{blau}{rgb}{1,0.6,0.2}
+
+\coordinate (PA) at ({\Ri*sin(0*72)},{\e*\Ri*cos(0*72)});
+\coordinate (PB) at ({\Ri*sin(1*72)},{\e*\Ri*cos(1*72)});
+\coordinate (PC) at ({\Ri*sin(2*72)},{\e*\Ri*cos(2*72)});
+\coordinate (PD) at ({\Ri*sin(3*72)},{\e*\Ri*cos(3*72)});
+\coordinate (PE) at ({\Ri*sin(4*72)},{\e*\Ri*cos(4*72)});
+
+\coordinate (QA) at ({\Ra*sin(0*72)},{\e*\Ra*cos(0*72)});
+\coordinate (QB) at ({\Ra*sin(1*72)},{\e*\Ra*cos(1*72)});
+\coordinate (QC) at ({\Ra*sin(2*72)},{\e*\Ra*cos(2*72)});
+\coordinate (QD) at ({\Ra*sin(3*72)},{\e*\Ra*cos(3*72)});
+\coordinate (QE) at ({\Ra*sin(4*72)},{\e*\Ra*cos(4*72)});
+
+\draw (PA)--(PC)--(PE)--(PB)--(PD)--cycle;
+\draw (QA)--(QB)--(QC)--(QD)--(QE)--cycle;
+\draw (PA)--(QA);
+\draw (PB)--(QB);
+\draw (PC)--(QC);
+\draw (PD)--(QD);
+\draw (PE)--(QE);
+
+\fill[color=blau] (PA) circle[radius=\r];
+\fill[color=rot] (PB) circle[radius=\r];
+\fill[color=rot] (PC) circle[radius=\r];
+\fill[color=gruen] (PD) circle[radius=\r];
+\fill[color=gruen] (PE) circle[radius=\r];
+
+\fill[color=rot] (QA) circle[radius=\r];
+\fill[color=blau] (QB) circle[radius=\r];
+\fill[color=gruen] (QC) circle[radius=\r];
+\fill[color=rot] (QD) circle[radius=\r];
+\fill[color=blau] (QE) circle[radius=\r];
+
+\draw (PA) circle[radius=\r];
+\draw (PB) circle[radius=\r];
+\draw (PC) circle[radius=\r];
+\draw (PD) circle[radius=\r];
+\draw (PE) circle[radius=\r];
+
+\draw (QA) circle[radius=\r];
+\draw (QB) circle[radius=\r];
+\draw (QC) circle[radius=\r];
+\draw (QD) circle[radius=\r];
+\draw (QE) circle[radius=\r];
+
+\node at (0,{-\Ra}) [below] {$\operatorname{chr}P=3\mathstrut$};
+
+\end{scope}
+
+\begin{scope}[xshift=3.5cm]
+\definecolor{rot}{rgb}{0.8,0,0.8}
+\definecolor{gruen}{rgb}{0.2,0.6,0.2}
+\definecolor{blau}{rgb}{1,0.6,0.2}
+\definecolor{gelb}{rgb}{0,0,1}
+
+\coordinate (PA) at ({\Ri*sin(0*72)},{\e*\Ri*cos(0*72)});
+\coordinate (PB) at ({\Ri*sin(1*72)},{\e*\Ri*cos(1*72)});
+\coordinate (PC) at ({\Ri*sin(2*72)},{\e*\Ri*cos(2*72)});
+\coordinate (PD) at ({\Ri*sin(3*72)},{\e*\Ri*cos(3*72)});
+\coordinate (PE) at ({\Ri*sin(4*72)},{\e*\Ri*cos(4*72)});
+
+\coordinate (QA) at ({\Ra*sin(0*72)},{\e*\Ra*cos(0*72)});
+\coordinate (QB) at ({\Ra*sin(1*72)},{\e*\Ra*cos(1*72)});
+\coordinate (QC) at ({\Ra*sin(2*72)},{\e*\Ra*cos(2*72)});
+\coordinate (QD) at ({\Ra*sin(3*72)},{\e*\Ra*cos(3*72)});
+\coordinate (QE) at ({\Ra*sin(4*72)},{\e*\Ra*cos(4*72)});
+
+\draw (PA)--(PC)--(PE)--(PB)--(PD)--cycle;
+\draw (QA)--(QB)--(QC)--(QD)--(QE)--cycle;
+\draw (PA)--(QA);
+\draw (PB)--(QB);
+\draw (PC)--(QC);
+\draw (PD)--(QD);
+\draw (PE)--(QE);
+
+\fill[color=rot] (QA) circle[radius={1.5*\r}];
+\fill[color=rot!40] (QB) circle[radius=\r];
+\fill[color=rot!40] (QE) circle[radius=\r];
+\fill[color=rot!40] (PA) circle[radius=\r];
+
+\fill[color=blau] (PB) circle[radius={1.5*\r}];
+\fill[color=blau!40] (PD) circle[radius=\r];
+\fill[color=blau!40] (PE) circle[radius=\r];
+\fill[color=blau!80,opacity=0.5] (QB) circle[radius=\r];
+
+\fill[color=gruen] (PC) circle[radius={1.5*\r}];
+\fill[color=gruen!40] (QC) circle[radius=\r];
+\fill[color=gruen!80,opacity=0.5] (PA) circle[radius=\r];
+\fill[color=gruen!80,opacity=0.5] (PE) circle[radius=\r];
+
+\fill[color=gelb] (QD) circle[radius={1.5*\r}];
+\fill[color=gelb!80,opacity=0.5] (QC) circle[radius=\r];
+\fill[color=gelb!80,opacity=0.5] (QE) circle[radius=\r];
+\fill[color=gelb!80,opacity=0.5] (PD) circle[radius=\r];
+
+\draw (PA) circle[radius=\r];
+\draw (PB) circle[radius={1.5*\r}];
+\draw (PC) circle[radius={1.5*\r}];
+\draw (PD) circle[radius=\r];
+\draw (PE) circle[radius=\r];
+
+\draw (QA) circle[radius={1.5*\r}];
+\draw (QB) circle[radius=\r];
+\draw (QC) circle[radius=\r];
+\draw (QD) circle[radius={1.5*\r}];
+\draw (QE) circle[radius=\r];
+
+\node at (0,{-\Ra}) [below] {$\operatorname{ind}P=4\mathstrut$};
+
+\end{scope}
+
+
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/70-graphen/spektral.tex b/buch/chapters/70-graphen/spektral.tex
index 72e3519..5fb3056 100644
--- a/buch/chapters/70-graphen/spektral.tex
+++ b/buch/chapters/70-graphen/spektral.tex
@@ -1,198 +1,465 @@
-%
-% spektral.tex
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Spektrale Graphentheorie
-\label{buch:section:spektrale-graphentheorie}}
-\rhead{Spektrale Graphentheorie}
-Die Laplace-Matrix codiert alle wesentliche Information eines
-ungerichteten Graphen.
-Sie operiert auf Vektoren, die für jeden Knoten des Graphen eine
-Komponente haben.
-Dies eröffnet die Möglichkeit, den Graphen über die linearalgebraischen
-Eigenschaften der Laplace-Matrix zu studieren.
-
-\subsection{Grapheigenschaften und Spektrum von $L$
-\label{buch:subsection:grapheigenschaften-und-spektrum-von-l}}
-TODO XXX
-
-\subsection{Wärmeleitung auf einem Graphen
-\label{buch:subsection:waermeleitung-auf-einem-graphen}}
-Die Vektoren, auf denen die Laplace-Matrix operiert, können betrachtet
-werden als Funktionen, die jedem Knoten einen Wert zuordnen.
-Eine mögliche physikalische Interpretation davon ist die Temperaturverteilung
-auf dem Graphen.
-Die Kanten zwischen den Knoten erlauben der Wärmeenergie, von einem Knoten
-zu einem anderen zu fliessen.
-Je grösser die Temperaturdifferenz zwischen zwei Knoten ist, desto
-grösser ist der Wärmefluss und desto schneller ändert sich die Temperatur
-der beteiligten Knoten.
-Die zeitliche Änderung der Temperatur $T_i$ im Knoten $i$ ist proportional
-\[
-\frac{dT_i}{dt}
-=
-\sum_{\text{$j$ Nachbar von $i$}} \kappa (T_j-T_i)
-=
--
-\kappa
-\biggl(
-d_iT_i
--
-\sum_{\text{$j$ Nachbar von $i$}} T_j
-\biggr)
-\]
-Der Term auf der rechten Seite ist genau die Wirkung der
-Laplace-Matrix auf dem Vektor $T$ der Temperaturen:
-\begin{equation}
-\frac{dT}{dt}
-=
--\kappa L T.
-\label{buch:graphen:eqn:waermeleitung}
-\end{equation}
-Der Wärmefluss, der durch die
-Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung} beschrieben
-wird, codiert ebenfalls wesentliche Informationen über den Graphen.
-Je mehr Kanten es zwischen verschiedenen Teilen eines Graphen gibt,
-desto schneller findet der Wärmeaustausch zwischen diesen Teilen
-statt.
-Die Lösungen der Wärmeleitungsgleichung liefern also Informationen
-über den Graphen.
-
-\subsection{Eigenwerte und Eigenvektoren
-\label{buch:subsection:ein-zyklischer-graph}}
-Die Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung}
-ist eine lineare Differentialgleichung mit konstanten Koeffizienten,
-die mit der Matrixexponentialfunktion gelöst werden.
-Die Lösung ist
-\[
-f(t) = e^{-\kappa Lt}f(0).
-\]
-
-Die Berechnung der Lösung mit der Matrixexponentialreihe ist ziemlich
-ineffizient, da grosse Matrizenprodukte berechnet werden müssen.
-Da die Matrix $L$ symmetrisch ist, gibt es eine Basis aus
-orthonormierten Eigenvektoren und die Eigenwerte sind reell.
-Wir bezeichnen die Eigenvektoren mit $f_1,\dots,f_n$ und die
-zugehörigen Eigenwerte mit $\lambda_i$.
-Die Funktion $f_i(t)= e^{-\kappa\lambda_it}f_i$ ist dann eine Lösung
-der Wärmeleitungsgleichung, denn die beiden Seiten
-\begin{align*}
-\frac{d}{dt}f_i(t)
-&=
--\kappa\lambda_ie^{-\kappa\lambda_it}f_i
-=
--\kappa\lambda_i f_i(t)
-\\
--\kappa Lf_i(t)
-&=
--\kappa e^{-\kappa\lambda_it} Lf_i
-=
--\kappa e^{-\kappa\lambda_it} \lambda_i f_i
-=
--\kappa \lambda_i f_i(t)
-\end{align*}
-von \eqref{buch:graphen:eqn:waermeleitung} stimmen überein.
-
-Eine Lösung der Wärmeleitungsgleichung zu einer beliebigen
-Anfangstemperaturverteilung $f$ kann durch Linearkombination aus
-den Lösungen $f_i(t)$ zusammengesetzt werden.
-Dazu ist nötig, $f$ aus den Vektoren $f_i$ linear zu kombinieren.
-Da aber die $f_i$ orthonormiert sind, ist dies besonders einfach,
-die Koeffizienten sind die Skalarprodukte mit den Eigenvektoren:
-\[
-f=\sum_{i=1}^n \langle f_i,f\rangle f_i.
-\]
-Daraus kann man die allgmeine Lösungsformel
-\begin{equation}
-f(t)
-=
-\sum_{i=1}^n \langle f_i,f\rangle f_i(t)
-=
-\sum_{i=1}^n \langle f_i,f\rangle e^{-\kappa\lambda_i t}f_i
-\label{buch:graphen:eqn:eigloesung}
-\end{equation}
-ableiten.
-
-\subsection{Beispiel: Ein zyklischer Graph}
-\begin{figure}
-\centering
-\includegraphics{chapters/70-graphen/images/kreis.pdf}
-\caption{Beispiel Graph zur Illustration der verschiedenen Basen auf einem
-Graphen.
-\label{buch:graphen:fig:kreis}}
-\end{figure}
-Wir illustrieren die im folgenden entwickelte Theorie an dem Beispielgraphen
-von Abbildung~\ref{buch:graphen:fig:kreis}.
-Besonders interessant sind die folgenden Funktionen:
-\[
-\left.
-\begin{aligned}
-s_m(k)
-&=
-\sin\frac{2\pi mk}{n}
-\\
-c_m(k)
-&=
-\cos\frac{2\pi mk}{n}
-\end{aligned}
-\;
-\right\}
-\quad
-\Rightarrow
-\quad
-e_m(k)
-=
-e^{2\pi imk/n}
-=
-c_m(k) + is_m(k).
-\]
-Das Skalarprodukt dieser Funktionen ist
-\[
-\langle e_m, e_{m'}\rangle
-=
-\frac1n
-\sum_{k=1}^n
-\overline{e^{2\pi i km/n}}
-e^{2\pi ikm'/n}
-=
-\frac1n
-\sum_{k=1}^n
-e^{\frac{2\pi i}{n}(m'-m)k}
-=
-\delta_{mm'}
-\]
-Die Funktionen bilden daher eine Orthonormalbasis des Raums der
-Funktionen auf $G$.
-Wegen $\overline{e_m} = e_{-m}$ folgt, dass für gerade $n$
-die Funktionen
-\[
-c_0, c_1,s_1,c_2,s_2,\dots c_{\frac{n}2-1},c_{\frac{n}2-1},c_{\frac{n}2}
-\]
-eine orthonormierte Basis.
-
-
-Die Laplace-Matrix kann mit der folgenden Definition zu einer linearen
-Abbildung auf Funktionen auf dem Graphen gemacht werden.
-Sei $f\colon V\to \mathbb{R}$ und $L$ die Laplace-Matrix mit
-Matrixelementen $l_{vv'}$ wobei $v,v'\in V$ ist.
-Dann definieren wir die Funktion $Lf$ durch
-\[
-(Lf)(v)
-=
-\sum_{v'\in V} l_{vv'}f(v').
-\]
-
-\subsection{Standardbasis und Eigenbasis
-\label{buch:subsection:standardbasis-und-eigenbasis}}
-Die einfachste Basis, aus der siche Funktionen auf dem Graphen linear
-kombinieren lassen, ist die Standardbasis.
-Sie hat für jeden Knoten $v$ des Graphen eine Basisfunktion mit den Werten
-\[
-e_v\colon V\to\mathbb R:v'\mapsto \begin{cases}
-1\qquad&v=v'\\
-0\qquad&\text{sonst.}
-\end{cases}
-\]
-
-
+%
+% spektral.tex -- spektrale Graphentheorie
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Spektrale Graphentheorie
+\label{buch:section:spektrale-graphentheorie}}
+\rhead{Spektrale Graphentheorie}
+Die Adjazenz-Matrix, die Grad-Matrix und damit natürlich auch
+die Laplace-Matrix codieren alle wesentliche Information eines
+ungerichteten Graphen.
+Sie operiert auf Vektoren, die für jeden Knoten des Graphen eine
+Komponente haben.
+Dies eröffnet die Möglichkeit, den Graphen über die linearalgebraischen
+Eigenschaften dieser Matrizen zu studieren.
+Dieser Abschnitt soll diese Idee an dem ziemlich übersichtlichen Beispiel
+der chromatischen Zahl eines Graphen illustrieren.
+
+\subsection{Chromatische Zahl und Unabhängigkeitszahl
+\label{buch:subsection:chromatische-zahl}}
+Der Grad eines Knotens ist ein mass dafür, wie stark ein Graph
+``vernetzt'' ist.
+Je höher der Grad, desto mehr direkte Verbindungen zwischen Knoten gibt es.
+Noch etwas präziser können diese Idee die beiden mit Hilfe der
+chromatischen zahl und der Unabhängigkeitszahl erfasst werden.
+
+\begin{definition}
+Die {\em chromatische Zahl} $\operatorname{chr}G$ eines Graphen $G$ ist
+die minimale Anzahl von Farben, die Einfärben der Knoten eines Graphen
+nötig sind, sodass benachbarte Knoten verschiedene Farben haben.
+\index{chromatische Zahl}
+\end{definition}
+
+\begin{definition}
+Eine Menge von Knoten eines Graphen heisst {\em unabhängig}, wenn
+keine zwei Knoten im Graphen verbunden sind.
+Die {\em Unabhängigkeitszahl} $\operatorname{ind}G$ eines Graphen $G$
+ist die maximale Anzahl Knoten einer unabhängigen Menge.
+\index{Unabhängigkeitszahl}
+\end{definition}
+
+Zwischen der chromatischen Zahl und der Unabhängigkeitszahl eines Graphen
+muss es einen Zusammenhang geben.
+Je mehr Verbingungen es im Graphen gibt, desto grösser wird die chromatische
+Zahl.
+Gleichzeitig wird es schwieriger für Mengen von Knoten, unabhängig zu sein.
+
+\begin{satz}
+\label{buch:satz:chrind}
+Ist $G$ ein Graph mit $n$ Knoten, dann gilt
+$\operatorname{chr}G\cdot\operatorname{ind}G\ge n$.
+\end{satz}
+
+\begin{proof}[Beweis]
+Eine minimale Färbung des Graphen mit $\operatorname{chr}G$ Farben
+teilt die Knoten in $\operatorname{chr}G$ Mengen $V_f$ von Knoten mit
+gleicher Farbe $f$ ein.
+Da diese Mengen einfarbig sind, sind sie unabhängig, enthalten also
+höchstens so viele Knoten, wie die Unabhängigkeitszahl erlaubt,
+also $|V_f|\le \operatorname{ind}G$.
+Da die Menge aller Knoten die Vereinigung der Mengen $V_f$ ist,
+ist die Gesamtzahl der Knoten
+\begin{align*}
+V
+&=
+\bigcup_{\text{$f$ eine Farbe}} V_f
+&&\Rightarrow&
+n
+&=
+\sum_{\text{$f$ eine Farbe}} |V_f|
+\\
+&
+&&&
+&\le
+\sum_{\text{$f$ eine Farbe}} \operatorname{ind}G
+=
+(\text{Anzahl Farben})\cdot \operatorname{ind}G
+=
+\operatorname{chr}G \cdot \operatorname{ind}G.
+\end{align*}
+Damit ist $n\le \operatorname{chr}G\cdot\operatorname{ind}G$ gezeigt.
+\qedhere
+\end{proof}
+
+\begin{beispiel}
+In einem vollständigen Graphen ist jeder Knoten mit jedem anderen verbunden.
+Jede Menge mit zwei oder mehr Knoten kann daher nicht unabhängig sein, die
+Unabhängigkeitszahl ist daher $\operatorname{ind}G=1$.
+Andererseits ist für jeden Knoten eine eigene Farbe nötig, daher ist die
+chromatische Zahl $\operatorname{chr}G=n$.
+Die Ungleichung von Satz~\ref{buch:satz:chrind} ist erfüllt, sogar mit
+Gleichheit.
+Das Beispiel zeigt, dass die Ungleichung nicht ohne zusätzliche Annahmen
+verbessert werden kann.
+\end{beispiel}
+
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/petersonchrind.pdf}
+\caption{Chromatische Zahl und Unabhängigkeitszahl des Peterson-Graphen.
+Die chromatische Zahl ist $3$, da der Graph sich mit drei Farben einfärben
+lässt (links).
+Die Unabhängigkeitszahl ist $4$, die vier grösseren Knoten im rechten
+Graphen sind unabhängig.
+Die Farben der kleinen Knoten sind die additive Mischung der Farben
+der grossen Knoten, mit denen sie verbunden sind.
+\label{buch:graphen:fig:chrindpeterson}}
+\end{figure}
+
+\begin{beispiel}
+Der Peterson-Graph $P$ von Abbildung~\ref{buch:graphen:fig:chrindpeterson}
+hat chromatische Zahl $\operatorname{chr}P=3$ und unabhängigkeitszahl
+$\operatorname{ind}P=4$.
+Die Ungleichung von Satz~\ref{buch:satz:chrind} ist erfüllt, sogar als
+Ungleichung: $\operatorname{chr}P\cdot\operatorname{ind}P=3\cdot 4=12>10=n$.
+\end{beispiel}
+
+Nach Definition ist Unabhängigkeitszahl ein Mass für die Grösse einer
+unabhängigen Menge von Punkten.
+Der Beweis von Satz~\ref{buch:satz:chrind} zeigt, dass man sich die
+chromatische Zahl als ein Mass dafür, wieviele solche anabhängige
+Mengen in einem Graphen untergebracht werden können.
+
+%
+% Chromatische Zahl und maximaler Grad
+%
+\subsection{Chromatische Zahl und maximaler Grad
+\label{buch:subsection:chr-und-maximaler-grad}}
+Wenn kein Knoten mehr als $d$ Nachbarn hat, dann reichen
+$d+1$ Farben immer, um diesen Knoten und seine Nachbarn einzufärben.
+Das heisst aber noch nicht, dass dann auch $d+1$ Farben zur
+Einfärbung des ganzen Graphen reichen.
+Genau dies garantiert jedoch der folgende Satz.
+
+\begin{definition}
+Der maximale Grad
+\(
+\max_{v\in V} \deg(v)
+\)
+wird mit $d$ bezeichnet.
+\end{definition}
+
+\begin{satz}
+\label{buch:graphen:satz:chrmaxgrad}
+Ist $G$ ein Graph mit maximalem Grad $d$, dann gilt
+$\operatorname{chr}G \le d+1$.
+\end{satz}
+
+\begin{proof}[Beweis]
+Wir führen den Beweis mit Hilfe von vollständiger Induktion nach der
+Anzahl Knoten eines Graphen.
+Ein Graph mit nur einem Knoten hat keine Kanten, der maximale Grad ist
+daher $0$ und $d+1=1$ Farbe reicht auch tatsächlich zur Einfärbung des
+einen Knotens.
+
+Wir nehmen jetzt an, die Behaupt sei für Graphen mit $n-1$ Knoten bereits
+bewiesen, ein Graph $G'$ mit $n-1$ Knoten und maximalem Grad $d'$ erfüllt
+also die Ungleichung $\operatorname{chr}G'\le d'+1$.
+
+Wir wählen jetzt einen beleibigen Knoten $v$ des Graphen $G$ und bilden
+den Graphen $G'$, der aus $G$ entsteht, indem man den Knoten $v$
+entfernt: $G'=G\setminus\{v\}$.
+Der maximale Grad $d'$ von $G'$ kann dabei nicht grösser werden, es ist
+also $d'\le d$.
+Da $G'$ genau $n-1$ Knoten hat, lässt er sich mit höchstens $d'+1\le d+1$
+Farben einfärben.
+Es muss jetzt also nur noch eine Farbe für den Knoten $v$ gefunden werden.
+Da $d$ der maximale Grad ist, hat $v$ höchstens $d$ Nachbarn, die höchstens
+$d$ verschiedene Farben haben können.
+Von den $d+1$ zur Verfügung stehenden Farben bleibt also mindestens eine
+übrig, mit der man den Knoten $v$ einfärben kann.
+Damit ist der Induktionsschritt gelungen und somit der Satz bewiesen.
+\end{proof}
+
+Das Argument im Beweis von Satz~\ref{buch:graphen:satz:chrmaxgrad}
+ist für alle Begriffe anwendbar, die sich bei der Bildung eines
+Untergraphen auf ``monotone'' Art ändern.
+Die chromatische Zahl eines Untergraphen ist höchstens so gross wie die
+des ganzen Graphen.
+Dann kann man eine Ungleichung für grosse Graphen schrittweise aus
+entsprechenden Ungleichungen für die kleineren Teilgraphen gewinnen.
+Ziel der folgenden Abschnitte ist zu zeigen, dass sich eine Grösse
+mit ähnlichen Eigenschaften aus dem Eigenwertspektrum der Adjazenzmatrix
+ablesen lässt.
+Daraus ergibt sich dann eine bessere Abschätzung der chromatischen Zahl
+eines Graphen.
+
+%
+% maximaler Eigenwert und maximaler Grad
+%
+\subsection{Maximaler Eigenwert von $A(G)$ und maximaler Grad
+\label{buch:subsection:maximaler-eigenwert}}
+Die Adjazenzmatrix $A(G)$ eines Graphen $G$ mit $n$ Knoten enthält unter
+anderem auch die Information über den Grad eines Knotens.
+Die Summe der Elemente einer Zeile oder einer Spalte ergibt einen Vektor,
+der die Grade der Knoten als Komponenten enthält.
+Ist $U$ ein $n$-dimensionaler Vektor aus lauter Einsen, dann ist
+ist $A(G)U$ ein Spaltenvektor bestehend aus den Zeilensummen der Matrix
+$A(G)$ und
+$U^tA(G)$ ein Zeilenvektor bestehend aus den Spaltensummen.
+$A(G)U$ ist also der Vektor der Grade der Knoten.
+
+Das Skalarprodukt von $A(G)U$ mit $U$ ist die Summe der Grade.
+Somit ist
+\begin{equation}
+\frac{\langle A(G)U,U\rangle}{\langle U,U\rangle}
+=
+\frac{1}{\langle U,U\rangle}\sum_{v\in V}\deg(v)
+=
+\frac{1}{n}(d_1+\dots+d_n)
+\label{buch:graphen:eqn:AUdavg}
+\end{equation}
+der mittlere Grad, der mit $\overline{d}$ bezeichnet werden soll.
+
+Da $A(G)$ eine symmetrische Matrix ist, ist $A(G)$ diagonalisierbar,
+die Eigenwerte sind also alle reell.
+Es ist ausserdem bekannt, dass der Eigenvektor $f$ zum grössten Eigenwert
+$\alpha_{\text{max}}$ von $A(G)$
+den Bruch
+\[
+\frac{\langle A(G)f,f\rangle}{\langle f,f\rangle}
+\]
+für Vektoren $f\ne 0$ maximiert.
+Aus~\eqref{buch:graphen:eqn:AUdavg} folgt damit, dass
+\begin{equation}
+\overline{d}
+\le
+\alpha_{\text{max}}
+\label{buch:graphen:eqn:dqueramax}
+\end{equation}
+ist.
+
+In Abschnitt~\ref{buch:section:positive-vektoren-und-matrizen}
+des nächsten Kapitels wird die Perron-Frobenius-Theorie positiver
+Matrizen vorgestellt, welche einer Reihe interessanter Aussagen
+über den betragsgrössten Eigenwert und den zugehörigen Eigenvektor
+macht.
+Die Adjazenz-Matrix ist eine nichtnegative Matrix und $\alpha_{\text{max}}$
+ist der grösste Eigenwert, also genau die Grösse, auf die die
+Sätze~\ref{buch:wahrscheinlichkeit:satz:perron-frobenius}
+und \label{buch:wahrscheinlichkeit:satz:perron-frobenius2}
+anwendbar sind.
+Dazu muss die Matrix allerdings primitiv sein, was gleichbedeutend
+ist damit, dass der Graph zusammenhängend ist.
+Im folgenden soll dies daher jeweils angenommen werden.
+
+\begin{satz}
+Ist $G$ ein zusammenhänger Graph mit $n$ Knoten und maximalem Grad $d$,
+dann gilt
+\[
+\frac1n\sum_{v\in V} \deg(v)
+=
+\overline{d}
+\le \alpha_{\text{max}} \le d.
+\]
+\end{satz}
+
+\begin{proof}[Beweis]
+Wir wissen aus \eqref{buch:graphen:eqn:dqueramax} bereits, dass
+$\overline{d}\le\alpha_{\text{max}}$ gilt, es bleibt also nur noch
+$\alpha_{\text{max}}\le d$ zu beweisen.
+
+Sei $f$ der Eigenvektor zum Eigenwert $\alpha_{\text{max}}$.
+Nach Satz~\label{buch:wahrscheinlichkeit:satz:perron-frobenius2}
+ist $f$ ein positiver Vektor mit der Eigenschaft $A(G)f=\alpha_{\text{max}}f$.
+Der Eigenvektor $f$ ist eine Funktion auf den Knoten des Graphen,
+die $v$-Komponente des Vektors $f$ für einen Vertex $v\in V$ ist $f(v)$.
+Die Eigenvektoreigenschaft bedeutet $(A(G)f)(v)=\alpha_{\text{max}} f(v)$.
+Die Adjazenzmatrix $A(G)$ enthält in Zeile $v$ Einsen genau für diejenigen
+Knoten $u\in V$, die zu $v$ benachbart sind.
+Schreiben wir $u\sim v$ für die Nachbarschaftsrelation, dann ist
+\[
+(A(G)f)(v)
+=
+\sum_{u\sim v} f(u).
+\]
+Die Summe der Komponenten $A(G)f$ kann man erhalten durch Multiplikation
+von $A(G)f$ mit einem Zeilenvektor $U^t$ aus lauter Einsen, also
+\begin{equation}
+\begin{aligned}
+\sum_{v\in V}\sum_{u\sim v}f(v)
+&=
+U^tA(G)f
+=
+(U^tA(G))f
+=
+\begin{pmatrix}d_1&d_2&\dots&d_n\end{pmatrix} f
+\\
+&=
+\sum_{v\in V}\deg (v) f(v)
+\le
+\sum_{v\in V}df(v)
+=
+d
+\sum_{v\in V}f(v).
+\end{aligned}
+\label{buch:graphen:eqn:sumkomp}
+\end{equation}
+Andererseits ist $A(G)f=\alpha_{\text{max}}f$, die linke Seite
+von~\eqref{buch:graphen:eqn:sumkomp} ist daher
+\begin{equation}
+\sum_{v\in V}\sum_{u\sim v}f(v)
+=
+U^tA(G)f
+=
+\alpha_{\text{max}}
+U^tf
+=
+\alpha_{\text{max}} \sum_{v\in V}f(v).
+\label{buch:graphen:eqn:sumkomp2}
+\end{equation}
+Die Ungleichung~\eqref{buch:graphen:eqn:sumkomp}
+und die Gleichung~\eqref{buch:graphen:eqn:sumkomp2} ergeben zusammen
+die Ungleichung
+\[
+\alpha_{\text{max}} \sum_{v\in V}f(v)
+\le d\sum_{v\in V}f(v)
+\qquad\Rightarrow\qquad
+\alpha_{\text{max}} \le d,
+\]
+da die Summe der Komponenten des positiven Vektors $f$ nicht verschwinden
+kann.
+Damit ist die Ungleichung bewiesen.
+\end{proof}
+
+%
+% alpha_max eines Untergraphen
+%
+\subsection{$\alpha_{\text{max}}$ eines Untergraphen
+\label{buch:subsection:alphamax-eines-untergraphen}}
+Der grösste Eigenwert $\alpha_{\text{max}}$ ist ein potentieller
+Anwärter für eine bessere Abschätzung der chromatischen Zahl.
+Bereits früher wurde bemerkt, dass dies auch bedeutet, dass man
+das Verhalten des grössten Eigenwerts bei einem Übergang zu einem
+Untergraphen verstehen muss.
+
+\begin{satz}
+\label{buch:graphen:satz:amaxuntergraph}
+Sei $G'$ ein echter Untergraph von $G$ mit Adjazenzmatrix $A(G')$ und
+grösstem Eigenwert $\alpha_{\text{max}}'=\varrho(A(G'))$, dann ist
+$\alpha_{\text{max}}' \le \alpha_{\text{max}}$.
+\end{satz}
+
+\begin{proof}[Beweis]
+Sei $f'$ der positive Eigenvektor zum Eigenwert $\alpha_{\text{max}}'$
+der Matrix $A(G')$.
+$f'$ ist definiert auf der Menge $V'$ der Knoten von $G'$.
+Aus $f'$ lässt sich ein Vektor $g$ mit den Werten
+\[
+g(v)
+=
+\begin{cases}
+f'(v)&\qquad v\in V'\\
+ 0&\qquad\text{sonst}
+\end{cases}
+\]
+konstruieren, der auf ganz $V$ definiert ist.
+
+Die Vektoren $f'$ und $g$ haben die gleichen Komponenten, also ist auch
+$\langle f',f'\rangle = \langle g,g\rangle$.
+Die Matrixelemente von $A(G')$ und $A(G)$ auf gemeinsamen Knoten $u,v\in V'$
+erfüllen $A(G')_{uv}\le A(G)_{uv}$, da jede Kante von $G'$ auch in $G$ ist.
+Daher gilt
+\[
+\langle A(G')f',f'\rangle
+\le
+\langle A(G)g,g\rangle,
+\]
+woraus sich die Ungleichung
+\[
+\alpha_{\text{max}}'
+=
+\frac{\langle A(G')f',f'\rangle}{\langle f',f'\rangle}
+=
+\frac{\langle A(G)g,g\rangle}{\langle g,g\rangle}
+\le
+\alpha_{\text{max}}
+\]
+ergibt, da $\alpha_{\text{max}}$ das Maximum von
+$\langle A(G)h,h\rangle/\langle h,h\rangle$ für alle Vektoren $h\ne 0$ ist.
+\end{proof}
+
+%
+% Der Satz von Wilf
+%
+\subsection{Chromatische Zahl und $\alpha_{\text{max}}$: Der Satz von Wilf
+\label{buch:subsection:chr-und-alpha-max}}
+Die in Satz~\ref{buch:graphen:satz:amaxuntergraph} beschriebene
+Eigenschaft von $\alpha_{\text{max}}$ beim Übergang zu einem Untergraphen
+ermöglich jetzt, eine besser Abschätzung für die chromatische Zahl
+zu finden.
+
+\begin{satz}[Wilf]
+\label{buch:graphen:satz:wilf}
+Sie $G$ ein zusammenhängder Graph und $\alpha_{\text{max}}$ der grösste
+Eigenwert seiner Adjazenzmatrix. Dann gilt
+\[
+\operatorname{chr}G\le \alpha_{\text{max}}+1.
+\]
+\end{satz}
+
+\begin{proof}[Beweis]
+Wie der Satz~\ref{buch:graphen:satz:chrmaxgrad} kann auch der Satz von Wilf
+mit Hilfe von vollständiger Induktion über die Anzahl $n$ der Knoten
+bewiesen werden.
+
+Ein Graph mit nur einem Knoten hat die $0$-Matrix als Adjazenzmatrix,
+der maximale Eigenwert ist $\alpha_{\text{max}}=0$, und tatsächlich reicht
+$\alpha_{\text{max}}+1=1$ Farbe, um den einen Knoten einzufärben.
+
+Wir nehmen jetzt an, der Satz sei für Graphen mit $n-1$ Knoten bereits
+beweisen.
+Wir müssen dann zeigen, dass der Satz dann auch für Graphen mit $n$ Knoten
+gilt.
+
+Sei $v\in V$ ein Knoten minimalen Grades und $G'=G\setminus{v}$ der
+Untergraph, der entsteht, wenn der Knoten $v$ entfernt wird.
+Da $G'$ genau $n-1$ Knoten hat, gilt der Satz von Wilf für $G'$
+und daher kann $G'$ mit höchstens
+\[
+\operatorname{chr}G' \le 1 + \alpha_{\text{max}}'
+\]
+Farben eingefärbt werden.
+Nach Satz~\ref{buch:graphen:satz:amaxuntergraph} ist
+$\alpha_{\text{max}}'\le \alpha_{\text{max}}$,
+Also kann $G'$ mit höchstens $\alpha_{\text{max}}+1$ Farben eingefärbt werden.
+
+Da $v$ ein Knoten minimalen Grades ist, ist sein Grad
+$d(v)\le \overline{d}\le \alpha_{\text{max}}$.
+Die Nachbarn von $v$ haben also hächstens $\alpha_{\text{max}}$ verschiedene
+Farben, mit einer weiteren Farbe lässt sich also auch $G$ einfärben.
+Daraus folgt $\operatorname{chr}G\le \alpha_{\text{max}}+1$.
+\end{proof}
+
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/nine.pdf}
+\caption{Beispiel für einen Graphen, für den der
+Satz~\ref{buch:graphen:satz:wilf} von Wilf die bessere
+Abschätzung für die chromatische Zahl eines Graphen gibt als der
+maximale Grad.
+\label{buch:graphen:fig:wilfexample}}
+\end{figure}
+
+\begin{beispiel}
+Der Graph in Abbildung~\ref{buch:graphen:fig:wilfexample} 12 Kanten und 9
+Knoten, daher ist $\overline{d}\le \frac{24}{9}$.
+Der maximale Grad ist $4$ und durch explizite Rechnung mit Hilfe zum Beispiel
+von Octave ergibt, dass $\alpha_{\text{max}}\approx 2.9565$.
+Aus dem Satz von Wilf folgt, dass
+$\operatorname{chr}G\le \alpha_{\text{max}}+1$, und daraus ergibt sich
+$\operatorname{chr}G\le 3$.
+Tatsächlich ist die chromatische Zahl $\operatorname{chr}G=3$, da
+der Graph mindestens ein Dreieck enthält.
+Der maximale Grad ist 4, somit gibt der
+Satz~\ref{buch:graphen:satz:chrmaxgrad}
+die Schranke
+$\operatorname{chr}G\le 4+1=5$
+für die chromatische Zahl.
+Der Satz von Wilf ist also eine wesentliche Verbesserung, er liefert in
+diesem Fall den exakten Wert der chromatischen Zahl.
+\end{beispiel}
+
+
+
diff --git a/buch/chapters/70-graphen/waerme.tex b/buch/chapters/70-graphen/waerme.tex
new file mode 100644
index 0000000..e7fc023
--- /dev/null
+++ b/buch/chapters/70-graphen/waerme.tex
@@ -0,0 +1,184 @@
+%
+% waerme.tex
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Wärmeleitung auf einem Graphen
+\label{buch:section:waermeleitung-auf-einem-graphen}}
+Die Vektoren, auf denen die Laplace-Matrix operiert, können betrachtet
+werden als Funktionen, die jedem Knoten einen Wert zuordnen.
+Eine mögliche physikalische Interpretation davon ist die Temperaturverteilung
+auf dem Graphen.
+Die Kanten zwischen den Knoten erlauben der Wärmeenergie, von einem Knoten
+zu einem anderen zu fliessen.
+Je grösser die Temperaturdifferenz zwischen zwei Knoten ist, desto
+grösser ist der Wärmefluss und desto schneller ändert sich die Temperatur
+der beteiligten Knoten.
+Die zeitliche Änderung der Temperatur $T_i$ im Knoten $i$ ist proportional
+\[
+\frac{dT_i}{dt}
+=
+\sum_{\text{$j$ Nachbar von $i$}} \kappa (T_j-T_i)
+=
+-
+\kappa
+\biggl(
+d_iT_i
+-
+\sum_{\text{$j$ Nachbar von $i$}} T_j
+\biggr)
+\]
+Der Term auf der rechten Seite ist genau die Wirkung der
+Laplace-Matrix auf dem Vektor $T$ der Temperaturen:
+\begin{equation}
+\frac{dT}{dt}
+=
+-\kappa L T.
+\label{buch:graphen:eqn:waermeleitung}
+\end{equation}
+Der Wärmefluss, der durch die
+Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung} beschrieben
+wird, codiert ebenfalls wesentliche Informationen über den Graphen.
+Je mehr Kanten es zwischen verschiedenen Teilen eines Graphen gibt,
+desto schneller findet der Wärmeaustausch zwischen diesen Teilen
+statt.
+Die Lösungen der Wärmeleitungsgleichung liefern also Informationen
+über den Graphen.
+
+\subsection{Eigenwerte und Eigenvektoren
+\label{buch:subsection:ein-zyklischer-graph}}
+Die Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung}
+ist eine lineare Differentialgleichung mit konstanten Koeffizienten,
+die mit der Matrixexponentialfunktion gelöst werden.
+Die Lösung ist
+\[
+f(t) = e^{-\kappa Lt}f(0).
+\]
+
+Die Berechnung der Lösung mit der Matrixexponentialreihe ist ziemlich
+ineffizient, da grosse Matrizenprodukte berechnet werden müssen.
+Da die Matrix $L$ symmetrisch ist, gibt es eine Basis aus
+orthonormierten Eigenvektoren und die Eigenwerte sind reell.
+Wir bezeichnen die Eigenvektoren mit $f_1,\dots,f_n$ und die
+zugehörigen Eigenwerte mit $\lambda_i$.
+Die Funktion $f_i(t)= e^{-\kappa\lambda_it}f_i$ ist dann eine Lösung
+der Wärmeleitungsgleichung, denn die beiden Seiten
+\begin{align*}
+\frac{d}{dt}f_i(t)
+&=
+-\kappa\lambda_ie^{-\kappa\lambda_it}f_i
+=
+-\kappa\lambda_i f_i(t)
+\\
+-\kappa Lf_i(t)
+&=
+-\kappa e^{-\kappa\lambda_it} Lf_i
+=
+-\kappa e^{-\kappa\lambda_it} \lambda_i f_i
+=
+-\kappa \lambda_i f_i(t)
+\end{align*}
+von \eqref{buch:graphen:eqn:waermeleitung} stimmen überein.
+
+Eine Lösung der Wärmeleitungsgleichung zu einer beliebigen
+Anfangstemperaturverteilung $f$ kann durch Linearkombination aus
+den Lösungen $f_i(t)$ zusammengesetzt werden.
+Dazu ist nötig, $f$ aus den Vektoren $f_i$ linear zu kombinieren.
+Da aber die $f_i$ orthonormiert sind, ist dies besonders einfach,
+die Koeffizienten sind die Skalarprodukte mit den Eigenvektoren:
+\[
+f=\sum_{i=1}^n \langle f_i,f\rangle f_i.
+\]
+Daraus kann man die allgmeine Lösungsformel
+\begin{equation}
+f(t)
+=
+\sum_{i=1}^n \langle f_i,f\rangle f_i(t)
+=
+\sum_{i=1}^n \langle f_i,f\rangle e^{-\kappa\lambda_i t}f_i
+\label{buch:graphen:eqn:eigloesung}
+\end{equation}
+ableiten.
+
+\subsection{Beispiel: Ein zyklischer Graph}
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/kreis.pdf}
+\caption{Beispiel Graph zur Illustration der verschiedenen Basen auf einem
+Graphen.
+\label{buch:graphen:fig:kreis}}
+\end{figure}
+Wir illustrieren die im folgenden entwickelte Theorie an dem Beispielgraphen
+von Abbildung~\ref{buch:graphen:fig:kreis}.
+Besonders interessant sind die folgenden Funktionen:
+\[
+\left.
+\begin{aligned}
+s_m(k)
+&=
+\sin\frac{2\pi mk}{n}
+\\
+c_m(k)
+&=
+\cos\frac{2\pi mk}{n}
+\end{aligned}
+\;
+\right\}
+\quad
+\Rightarrow
+\quad
+e_m(k)
+=
+e^{2\pi imk/n}
+=
+c_m(k) + is_m(k).
+\]
+Das Skalarprodukt dieser Funktionen ist
+\[
+\langle e_m, e_{m'}\rangle
+=
+\frac1n
+\sum_{k=1}^n
+\overline{e^{2\pi i km/n}}
+e^{2\pi ikm'/n}
+=
+\frac1n
+\sum_{k=1}^n
+e^{\frac{2\pi i}{n}(m'-m)k}
+=
+\delta_{mm'}
+\]
+Die Funktionen bilden daher eine Orthonormalbasis des Raums der
+Funktionen auf $G$.
+Wegen $\overline{e_m} = e_{-m}$ folgt, dass für gerade $n$
+die Funktionen
+\[
+c_0, c_1,s_1,c_2,s_2,\dots c_{\frac{n}2-1},c_{\frac{n}2-1},c_{\frac{n}2}
+\]
+eine orthonormierte Basis.
+
+
+Die Laplace-Matrix kann mit der folgenden Definition zu einer linearen
+Abbildung auf Funktionen auf dem Graphen gemacht werden.
+Sei $f\colon V\to \mathbb{R}$ und $L$ die Laplace-Matrix mit
+Matrixelementen $l_{vv'}$ wobei $v,v'\in V$ ist.
+Dann definieren wir die Funktion $Lf$ durch
+\[
+(Lf)(v)
+=
+\sum_{v'\in V} l_{vv'}f(v').
+\]
+
+\subsection{Standardbasis und Eigenbasis
+\label{buch:subsection:standardbasis-und-eigenbasis}}
+Die einfachste Basis, aus der siche Funktionen auf dem Graphen linear
+kombinieren lassen, ist die Standardbasis.
+Sie hat für jeden Knoten $v$ des Graphen eine Basisfunktion mit den Werten
+\[
+e_v\colon V\to\mathbb R:v'\mapsto \begin{cases}
+1\qquad&v=v'\\
+0\qquad&\text{sonst.}
+\end{cases}
+\]
+
+
diff --git a/buch/chapters/70-graphen/wavelets.tex b/buch/chapters/70-graphen/wavelets.tex
index 26a9e42..ef1520e 100644
--- a/buch/chapters/70-graphen/wavelets.tex
+++ b/buch/chapters/70-graphen/wavelets.tex
@@ -1,125 +1,333 @@
-%
-% wavelets.tex -- Wavelets auf Graphen
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Wavelets auf Graphen
-\label{buch:section:wavelets-auf-graphen}}
-\rhead{Wavelets auf Graphen}
-In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis} wurde
-gezeigt dass die Standardbasis den Zusammenhang zwischen den einzelnen
-Teilen des Graphen völlig ignoriert, während die Eigenbasis Wellen
-beschreibt, die mit vergleichbarer Amplitude sich über den ganzen
-Graphen entsprechen.
-Die Eigenbasis unterdrückt also die ``Individualität'' der einzelnen
-Knoten fast vollständig.
-
-Wenn man einen Standardbasisvektor in einem Knoten $i$
-als Anfangstemperaturverteilung verwendet, erwartet man eine Lösung,
-die für kleine Zeiten $t$ die Energie immer in der Nähe des Knotens $i$
-konzentriert hat.
-Weder die Standardbasis noch die Eigenbasis haben diese Eigenschaft.
-
-\subsection{Vergleich mit der Wärmeleitung auf $\mathbb{R}$}
-Ein ähnliches Phänomen findet man bei der Wärmeausbreitung gemäss
-der partiellen Differentialgleichung
-\[
-\frac{\partial T}{\partial t} = -\kappa \frac{\partial^2 T}{\partial x^2}.
-\]
-Die von Fourier erfundene Methode, die Fourier-Theorie, verwendet die
-Funktionen $e^{ik x}$, die Eigenvektoren der zweiten Ableitung
-$\partial^2/\partial x^2$ sind.
-Diese haben das gleiche Problem, der Betrag von $e^{ikx}$ ist $1$, die
-Entfernung von einem Punkt spielt überhaupt keine Rolle.
-Die Funktion
-\[
-F(x,t)
-=
-\frac{1}{\sqrt{4\pi\kappa t}}e^{-x^2/4\kappa t}
-\]
-ist eine Lösung der Wärmeleitungsgleichung mit einem Maximum an
-der Stelle $0$.
-Sie heisst die Fundamentallösung der Wärmeleitungsgleichung.
-Durch Überlagerung von Translaten in eine Funktion
-\begin{equation}
-f(x,t)
-=
-\int_{-\infty}^\infty f(\xi) F(x-\xi,t)\,d\xi
-\label{buch:graphen:eqn:fundamentalueberlagerung}
-\end{equation}
-kann man die allgemeine Lösung aus Fundamentallösungen zusammensetzen.
-Die Fundamentallösungen $f(x-\xi,t)$ sind für kleine Zeiten immer noch
-deutlich in einer Umgebung von $\xi$ konzentriert.
-
-% XXX Ausbreitung der Fundamentallösung illustrieren
-\begin{figure}
-\centering
-\includegraphics{chapters/70-graphen/images/fundamental.pdf}
-\caption{Vergleich der verschiedenen Funktionenfamilien, mit denen
-Lösungenfunktionen durch Linearkombination erzeugt werden können.
-In der Standarbasis (links) ist es am einfachsten, die Funktionswerte
-abzulesen, in der Eigenbasis (Mitte) kann die zeitliche Entwicklung
-besonders leicht berechnet werden.
-Dazuwischen liegen die Fundamentallösungen (rechts), die eine einigermassen
-übersichtliche Zeitentwicklung haben, die Berechnung der Temperatur an
-einer Stelle $x$ zur Zeit $t$ ist aber erst durch das Integral
-\eqref{buch:graphen:eqn:fundamentalueberlagerung} gegeben.
-\label{buch:graphen:fig:fundamental}}
-\end{figure}
-
-\subsection{Fundamentallösungen auf einem Graphen}
-Die Wärmeleitungsgleichung auf einem Graphen kann für einen
-Standardbasisvektor mit Hilfe der
-Lösungsformel~\eqref{buch:graphen:eqn:eigloesung}
-gefunden werden.
-Aus physikalischen Gründen ist aber offensichtlich, dass die
-Wärmeenergie Fundamentallösungen $F_i(t)$ für kurze Zeiten $t$
-in der Nähe des Knoten $i$ konzentriert ist.
-Dies ist aber aus der expliziten Formel
-\begin{equation}
-F_i(t)
-=
-\sum_{j=1}^n \langle f_j,e_i\rangle e^{-\kappa \lambda_i t} f_j
-=
-\sum_{j=1}^n \overline{f}_{ji} e^{-\kappa \lambda_i t},
-\label{buch:graphen:eqn:fundamentalgraph}
-\end{equation}
-nicht unmittelbar erkennbar.
-
-Man kann aber aus~\eqref{buch:graphen:eqn:fundamentalgraph} ablesen,
-dass für zunehmende Zeit die hohen Frequenzen sehr schnell gedämpft
-werden.
-Die hohen Frequenzen erzeugen also den scharfen Peak für Zeiten nahe
-beim Knoten $i$, die zu kleineren $\lambda_i$ beschreiben die Ausbreitung
-über grössere Distanzen.
-Die Fundamentallösung interpoliert also in einem gewissen Sinne zwischen
-den Extremen der Standardbasis und der Eigenbasis.
-Die ``Interpolation'' geht von der Differentialgleichung aus,
-sie ist nicht einfach nur ein Filter, der die verschiedenen Frequenzen
-auf die gleiche Art bearbeitet.
-
-Gesucht ist eine Methode, eine Familie von Vektoren zu finden,
-aus der sich alle Vektoren linear kombinieren lassen, in der aber
-auch auf die für die Anwendung interessante Längenskala angepasste
-Funktionen gefunden werden können.
-
-\subsection{Wavelets und Frequenzspektrum}
-Eine Wavelet-Basis der Funktionen auf $\mathbb{R}$ zerlegt
-
-
-\subsection{Frequenzspektrum
-\label{buch:subsection:frequenzspektrum}}
-Die Fundamentallösung der Wärmeleitunsgleichung haben ein Spektrum, welches
-wie $e^{-k^2}$ gegen $0$ geht.
-
-Die Fundamentallösung entsteht dadurch, dass die hohen Frequenzen
-schneller dämpft als die tiefen Frequenzen.
-
-
-\subsection{Wavelet-Basen
-\label{buch:subsection:}}
-
-
-
-
-
+%
+% wavelets.tex -- Wavelets auf Graphen
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Wavelets auf Graphen
+\label{buch:section:wavelets-auf-graphen}}
+\rhead{Wavelets auf Graphen}
+In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis} wurde
+gezeigt dass die Standardbasis den Zusammenhang zwischen den einzelnen
+Teilen des Graphen völlig ignoriert, während die Eigenbasis Wellen
+beschreibt, die mit vergleichbarer Amplitude sich über den ganzen
+Graphen entsprechen.
+Die Eigenbasis unterdrückt also die ``Individualität'' der einzelnen
+Knoten fast vollständig.
+
+Wenn man einen Standardbasisvektor in einem Knoten $i$
+als Anfangstemperaturverteilung verwendet, erwartet man eine Lösung,
+die für kleine Zeiten $t$ die Energie immer in der Nähe des Knotens $i$
+konzentriert hat.
+Weder die Standardbasis noch die Eigenbasis haben diese Eigenschaft.
+
+\subsection{Vergleich mit der Wärmeleitung auf $\mathbb{R}$}
+Ein ähnliches Phänomen findet man bei der Wärmeausbreitung gemäss
+der partiellen Differentialgleichung
+\[
+\frac{\partial T}{\partial t} = -\kappa \frac{\partial^2 T}{\partial x^2}.
+\]
+Die von Fourier erfundene Methode, die Fourier-Theorie, verwendet die
+Funktionen $e^{ik x}$, die Eigenvektoren der zweiten Ableitung
+$\partial^2/\partial x^2$ sind.
+Diese haben das gleiche Problem, der Betrag von $e^{ikx}$ ist $1$, die
+Entfernung von einem Punkt spielt überhaupt keine Rolle.
+Die Funktion
+\[
+F(x,t)
+=
+\frac{1}{\sqrt{4\pi\kappa t}}e^{-x^2/4\kappa t}
+\]
+ist eine Lösung der Wärmeleitungsgleichung mit einem Maximum an
+der Stelle $0$.
+Sie heisst die Fundamentallösung der Wärmeleitungsgleichung.
+Durch Überlagerung von Translaten in eine Funktion
+\begin{equation}
+f(x,t)
+=
+\int_{-\infty}^\infty f(\xi) F(x-\xi,t)\,d\xi
+\label{buch:graphen:eqn:fundamentalueberlagerung}
+\end{equation}
+kann man die allgemeine Lösung aus Fundamentallösungen zusammensetzen.
+Die Fundamentallösungen $f(x-\xi,t)$ sind für kleine Zeiten immer noch
+deutlich in einer Umgebung von $\xi$ konzentriert.
+
+% XXX Ausbreitung der Fundamentallösung illustrieren
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/fundamental.pdf}
+\caption{Vergleich der verschiedenen Funktionenfamilien, mit denen
+Lösungenfunktionen durch Linearkombination erzeugt werden können.
+In der Standarbasis (links) ist es am einfachsten, die Funktionswerte
+abzulesen, in der Eigenbasis (Mitte) kann die zeitliche Entwicklung
+besonders leicht berechnet werden.
+Dazuwischen liegen die Fundamentallösungen (rechts), die eine einigermassen
+übersichtliche Zeitentwicklung haben, die Berechnung der Temperatur an
+einer Stelle $x$ zur Zeit $t$ ist aber erst durch das Integral
+\eqref{buch:graphen:eqn:fundamentalueberlagerung} gegeben.
+\label{buch:graphen:fig:fundamental}}
+\end{figure}
+
+\subsection{Fundamentallösungen auf einem Graphen}
+Die Wärmeleitungsgleichung auf einem Graphen kann für einen
+Standardbasisvektor mit Hilfe der
+Lösungsformel~\eqref{buch:graphen:eqn:eigloesung}
+gefunden werden.
+Aus physikalischen Gründen ist aber offensichtlich, dass die
+Wärmeenergie Fundamentallösungen $F_i(t)$ für kurze Zeiten $t$
+in der Nähe des Knoten $i$ konzentriert ist.
+Dies ist aber aus der expliziten Formel
+\begin{equation}
+F_i(t)
+=
+\sum_{j=1}^n \langle f_j,e_i\rangle e^{-\kappa \lambda_i t} f_j
+=
+\sum_{j=1}^n \overline{f}_{ji} e^{-\kappa \lambda_i t},
+\label{buch:graphen:eqn:fundamentalgraph}
+\end{equation}
+nicht unmittelbar erkennbar.
+
+Man kann aber aus~\eqref{buch:graphen:eqn:fundamentalgraph} ablesen,
+dass für zunehmende Zeit die hohen Frequenzen sehr schnell gedämpft
+werden.
+Die hohen Frequenzen erzeugen also den scharfen Peak für Zeiten nahe
+beim Knoten $i$, die zu kleineren $\lambda_i$ beschreiben die Ausbreitung
+über grössere Distanzen.
+Die Fundamentallösung interpoliert also in einem gewissen Sinne zwischen
+den Extremen der Standardbasis und der Eigenbasis.
+Die ``Interpolation'' geht von der Differentialgleichung aus,
+sie ist nicht einfach nur ein Filter, der die verschiedenen Frequenzen
+auf die gleiche Art bearbeitet.
+
+Gesucht ist eine Methode, eine Familie von Vektoren zu finden,
+aus der sich alle Vektoren linear kombinieren lassen, in der aber
+auch auf die für die Anwendung interessante Längenskala angepasste
+Funktionen gefunden werden können.
+
+\subsection{Wavelets auf einem Graphen}
+Die Fourier-Theorie analysiert Funktionen nach Frequenzen, wobei die
+zeitliche Position von interessanten Stellen der Funktion in der Phase
+der einzelnen Komponenten verschwindet.
+Die Lokalisierung geht also für viele praktische Zwecke verloren.
+Umgekehrt haben einzelne Ereignisse wie eine $\delta$-Funktion keine
+charakteristische Frequenz, sie sind daher im Frequenzraum überhaupt
+nicht lokalisierbar.
+Die Darstellung im Frequenzraum und in der Zeit sind also extreme
+Darstellungen, entweder Frequenzlokalisierung oder zeitliche Lokalisierung
+ermöglichen, sich aber gegenseitig ausschliessen.
+
+\subsubsection{Dilatation}
+Eine Wavelet-Basis für die $L^2$-Funktionen auf $\mathbb{R}$ erlaubt
+eine Funktion auf $\mathbb{R}$ auf eine Art zu analysieren, die eine
+ungenaue zeitliche Lokalisierung bei entsprechend ungenauer
+Frequenzbestimmung ermöglicht.
+Ausserdem entstehen die Wavelet-Funktionen aus einer einzigen Funktion
+$\psi(t)$ durch Translation um $b$ und Dilatation mit dem Faktor $a$:
+\[
+\psi_{a,b}(t)
+=
+\frac{1}{\sqrt{|a|}} \psi\biggl(\frac{t-b}a\biggr)
+=
+T_bD_a\psi(t)
+\]
+in der Notation von \cite{buch:mathsem-wavelets}.
+Auf einem Graphen ist so eine Konstruktion grundsätzlich nicht möglich,
+da es darauf weder eine Translations- noch eine Streckungsoperation gibt.
+
+In der Theorie der diskreten Wavelet-Transformation ist es üblich, sich
+auf Zweierpotenzen als Streckungsfaktoren zu beschränken.
+Ein Gitter wird dadurch auf sich selbst abgebildet, aber auf einem
+Graphen gibt es keine Rechtfertigung für diese spezielle Wahl von
+Streckungsfaktoren mehr.
+Es stellt sich daher die Frage, ob man für eine beliebige Menge
+\(
+T= \{ t_1,t_2,\dots\} \}
+\)
+von Streckungsfaktoren eine Familie von Funktionen $\chi_j$ zu finden
+derart, dass man sich die $\chi_j$ in einem gewissen Sinn als aus
+$\chi_0$ durch Dilatation entstanden vorstellen kann.
+
+Die Dilatation kann natürlich nicht von einer echten
+Dilatation im Ortsraum herstammen, aber man kann wenigstens versuchen, die
+Dilatation im Frequenzraum nachzubilden.
+Für Funktionen in $L^2(\mathbb{R})$ entspricht die Dilatation mit dem
+Faktor $a$ im Ortsraum der Dilatation mit dem Faktor $1/a$ im Frequenzraum:
+\[
+\widehat{D_af}(\omega) = D_{1/a}\hat{f}(\omega).
+\]
+\cite[Satz~3.14]{buch:mathsem-wavelets}.
+Es bleibt aber das Problem, dass sich auch die Skalierung im Frequenzraum
+nicht durchführen lässt, da auch das Frequenzspektrum des Graphen nur eine
+Menge von reellen Zahlen ohne innere algebraische Struktur ist.
+
+\subsubsection{Mutterwavelets}
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/gh.pdf}
+\caption{Lokalisierungsfunktion $g(\lambda)$ für die Dilatation (links).
+Die Dilatierten Funktionen $g_i=\tilde{D}_{1/a_i}g$ lokalisieren
+die Frequenzen jeweils um die Frequenzen $a_i$ im Frequenzraum.
+Der Konstante Vektor ist vollständig delokalisiert, die Funktion $h$
+in der rechten Abbildung entfernt die hohen Frequenzen und liefert Funktionen,
+die in der Umgebung eines Knotens wie die Konstante Funktion aussehen.
+\label{buch:graphs:fig:lokalisierung}}
+\end{figure}
+Das Mutter-Wavelet einer Wavelet-Analyse zeichnet definiert, in welchem Mass
+sich Funktionen im Orts- und im Frequenzraum lokalisieren lassen.
+Die Standardbasis der Funktionen auf einem Graphen repräsentieren die
+perfekte örtliche Lokalisierung, Eigenbasis der Laplace-Matrix $L$ repräsentiert
+die perfekte Lokalisierung im Frequenzraum.
+Sei $g(\lambda)\ge 0$ eine Funktion im Frequenzraum, die für $\lambda\to0$ und
+$\lambda\to\infty$ rasch abfällt mit einem Maximum irgendwo dazwischen
+(Abbildung~\ref{buch:graphs:fig:lokalisierung}).
+Sie kann als eine Lokalisierungsfunktion im Frequenzraum betrachtet werden.
+
+Die Matrix $g(L)$ bildet entfernt aus einer Funktion die ganz hohen und
+die ganz tiefen Frequenz, lokalisiert also die Funktionen im Frequenzraum.
+Die Standardbasisvektoren werden dabei zu Funktionen, die nicht mehr nur
+auf einem Knoten von $0$ verschieden sind, aber immer noch einigermassen
+auf dem Graphen lokalisiert sind.
+Natürlich sind vor allem die Werte auf den Eigenwerten
+$\lambda_0 < \lambda_1\le \dots\le \lambda_n$ der Laplace-Matrix
+von Interesse.
+
+Die Matrix $g(L)$ kann mit Hilfe der Spektraltheorie berechnet werden,
+was im vorliegenden Fall naheliegend ist, weil ja die Eigenvektoren von
+der Laplace-Matrix bereits bekannt sind.
+Die Matrix $\chi^t$ bildet die Standardbasisvektoren in die
+Eigenbasis-Vektoren ab, also in eine Zerlegung im Frequenzraum ab,
+$\chi$ vermittelt die Umkehrabbildung.
+Mit der Spektraltheorie findet man für die Abbildung $g(L)$ die Matrix
+\begin{equation}
+g(L)
+=
+\chi
+\begin{pmatrix}
+g(\lambda_0)&0&\dots&0\\
+0&g(\lambda_1)&\dots&0\\
+\vdots&\vdots&\ddots&\vdots\\
+0&0&\dots&g(\lambda_n)
+\end{pmatrix}
+\chi^t.
+\label{buch:graphen:eqn:mutterwavelet}
+\end{equation}
+
+\subsubsection{Dilatation}
+Die Dilatation um $a$ im Ortsraum wird zu einer Dilatation um $1/a$ im
+Frequenzraum.
+Statt also nach einer echten Dilatation der Spaltenvektoren in $g(L)$
+zu suchen, kann man sich darauf verlegen, Funktionen zu finden, deren
+Spektrum von einer Funktionen lokalisiert worden ist, die eine Dilatation
+von $g$ ist.
+Man wählt daher eine ansteigende Folge $A=(a_1,\dots)$ von Streckungsfaktoren
+und betrachtet anstelle von $g$ die dilatierten Funktionen
+$g_i=\tilde{D}_{1/a_i}g$.
+Die zugehörigen Wavelet-Funktionen auf dem Graphen können wieder mit
+der Formel~\eqref{buch:graphen:eqn:mutterwavelet} berechnet werden,
+man erhält
+\begin{equation}
+\tilde{D}_{1/a_i}g(L)
+=
+g_i(L)
+=
+\chi
+\begin{pmatrix}
+g(a_i\lambda_0)&0&\dots&0\\
+0&g(a_i\lambda_1)&\dots&0\\
+\vdots&\vdots&\ddots&\vdots\\
+0&0&\dots&g(a_i\lambda_n)
+\end{pmatrix}
+\chi^t .
+\end{equation}
+Die Spalten von $g_i(L)$ bilden wieder eine Menge von Funktionen, die
+eine gemäss $g_i$ lokalisiertes Spektrum haben.
+
+\subsubsection{Vater-Wavelet}
+Wegen $g(0)=0$ wird die konstante Funktion, die Eigenvektor zum Eigenwert
+$\lambda_0=0$ ist, von den Abbildungen $g_i(L)$ auf $0$ abgebildet.
+Andererseits ist diese Funktion nicht lokalisiert, man möchte Sie also
+für die Analyse nicht unbedingt verwenden.
+Man wählt daher eine Funktion $h(\lambda)$ mit $h(0)=1$ so, dass
+für $\lambda\to \infty$ der Wert $h(\lambda)$ genügend rasch gegen $0$
+geht.
+Die Matrix $h(L)$ bildet daher den konstanten Vektor nicht auf $0$ ab,
+sondern lokalisiert ihn im Ortsraum.
+Wir erhalten daher in den Spalten von $h(L)$ Vektoren, die um die
+einzelnen Knoten lokalisiert sind.
+
+\subsubsection{Rekonstruktion}
+Die Operatoren $h(L)$ und $g_i(L)$ erzeugen analysieren eine Funktion
+nach den verschiedenen Frequenzen mit den Skalierungsfaktoren $a_i$,
+aber die Rekonstruktion ist noch nicht klar.
+Diese wäre einfacher, wenn die Operatoren zusammen die identische
+Abbildung ergäben, wenn also
+\[
+h(L) + \sum_{i}g_i(L)=I
+\]
+gelten würde.
+Nach der Spektraltheorie gilt das nur, wenn für alle Eigenwerte
+$\lambda_k$, $k=1,\dots,n$
+\[
+h(\lambda_k) + \sum_ig(a_i\lambda_k)=1
+\]
+gilt.
+Für beleibige Funktionen $g$ und $h$ kann man nicht davon ausgehen,
+aber man kann erwarten.
+Man muss daher zusätzlich verlangen, dass
+\[
+h(\lambda_k) + \sum_{i} g(a_i\lambda_k) > 0
+\]
+ist für alle Eigenwerte $\lambda_k$.
+
+\subsubsection{Frame}
+Die Menge von Vektoren, die in der vorangegangenen Konstruktion gefunden
+wurden, ist zu gross, um eine Basis zu sein.
+Vektoren lassen sich darin auf verschiedene Art darstellen.
+Wir verlangen aber auch keine eindeutige Darstellung, nur eine
+Darstellung, in der wir die ``dominierenden'' Komponenten in jeder
+Frequenzskala identifizieren können.
+
+\begin{definition}
+\label{buch:graphen:def:frame}
+Ein Frame des Vektorraumes $\mathbb{R}^n$ ist eine Menge
+$F=\{e_k\;|\; k=1,\dots,N\}$ von Vektoren mit der Eigenschaft
+\begin{equation}
+A\|v\|^2
+\le
+\sum_{k=1}^N |\langle v,e_k\rangle|^2
+\le
+B\|v\|^2
+\label{buch:graphen:eqn:frame}
+\end{equation}
+Die Zahlen $A$ und $B$ heissen die {\em Frame-Konstanten} des Frames.
+\end{definition}
+
+Die oben gefundenen Vektoren, die Spalten Vektoren von $h(L)$ und $g_i(L)$
+bilden daher ein Frame.
+Die Frame-Konstanten kann man unmittelbar ausrechnen.
+Der mittlere Term von \eqref{buch:graphen:eqn:frame} ist
+\[
+\|h(L) v\|^2
++
+\sum_{i} \|g_i(L)v\|^2,
+\]
+die durch die Funktion
+\[
+f(\lambda)
+=
+h(\lambda)^2 + \sum_i g_i(\lambda)^2
+\]
+abgeschätzt werden kann.
+Die Frame-Konstanten sind daher
+\begin{align*}
+A&=\min_{k} f(\lambda_k)
+&
+&\text{und}&
+B&=\max_{k} f(\lambda_k).
+\end{align*}
+Die Konstruktion hat also ein Frame für die Funktionen auf dem Graphen
+etabliert, die viele Eigenschaften einer Multiskalenanalyse in diese
+wesentlich weniger symmetrische Situation rettet.
+
+
+
+
diff --git a/buch/chapters/80-wahrscheinlichkeit/parrondo.tex b/buch/chapters/80-wahrscheinlichkeit/parrondo.tex
index a62d813..50e7fda 100644
--- a/buch/chapters/80-wahrscheinlichkeit/parrondo.tex
+++ b/buch/chapters/80-wahrscheinlichkeit/parrondo.tex
@@ -24,15 +24,15 @@ Je nach Ausgang gewinnt oder verliert der Spieler eine Einheit.
Sei $X$ die Zufallsvariable, die den gewonnen Betrag beschreibt.
Für eine faire Münze ist die Gewinnerwartung in diesem Spiel natürlich
$E(X)=0$.
-Wenn die Wahrscheinlichkeit für einen Gewinn $1+e$ ist, dann muss
-die Wahrscheinlichkeit für einen Verlust $1-e$ sein, und die
+Wenn die Wahrscheinlichkeit für einen Gewinn $\frac12+e$ ist, dann muss
+die Wahrscheinlichkeit für einen Verlust $\frac12-e$ sein, und die
Gewinnerwartung ist
\(
E(X)
=
1\cdot P(X=1) + (-1)\cdot P(X=-1)
=
-1+e + (-1)(1-e)
+\frac12+e + (-1)\biggl(\frac12-e\biggr)
=
2e.
\)
@@ -763,7 +763,7 @@ Eigenwert $1$ finden, die Rechnung mit dem Gauss-Algorithmus liefert
p=
\frac{1}{709}
\begin{pmatrix}
-245\\180\\84
+245\\180\\284
\end{pmatrix}.
\]
Damit kann man jetzt die Gewinnwahrscheinlichkeit im iterierten Spiel
diff --git a/buch/chapters/90-crypto/aes.tex b/buch/chapters/90-crypto/aes.tex
index 168ff2c..acdda22 100644
--- a/buch/chapters/90-crypto/aes.tex
+++ b/buch/chapters/90-crypto/aes.tex
@@ -1,433 +1,433 @@
-%
-% aes.tex -- Beschreibung des AES Algorithmus
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Advanced Encryption Standard -- AES
-\label{buch:section:aes}}
-\rhead{Advanced Encryption Standard}
-Eine wichtige Forderung bei der Konzeption des damals neuen
-Advanced Encryption Standard war, dass darin keine ``willkürlich''
-erscheinenden Operationen geben darf, bei denen der Verdacht
-entstehen könnte, dass sich dahinter noch offengelegtes Wissen
-über einen möglichen Angriff auf den Verschlüsselungsalgorithmus
-verbergen könnte.
-Dies war eine Schwäche des vor AES üblichen DES Verschlüsselungsalgorithmus.
-In seiner Definition kommt eine Reihe von Konstanten vor, über deren
-Herkunft nichts bekannt war.
-Die Gerüchteküche wollte wissen, dass die NSA die Konstanten aus dem
-ursprünglichen Vorschlag abgeändert habe, und dass dies geschehen sei,
-um den Algorithmus durch die NSA angreifbar zu machen.
-
-Eine weiter Forderung war, dass die Sicherheit des neuen
-Verschlüsselungsstandards ``skalierbar'' sein soll, dass man also
-die Schlüssellänge mit der Zeit von 128~Bit auf 196 oder sogar 256~Bit
-steigern kann.
-Der Standard wird dadurch langlebiger und gleichzeitig entsteht die
-Möglichkeit, Sicherheit gegen Rechenleistung einzutauschen.
-Weniger leistungsfähige Systeme können den Algorithmus immer noch
-nutzen, entweder mit geringerer Verschlüsselungsrate oder geringerer
-Sicherheit.
-
-In diesem Abschnitt soll gezeigt werde, wie sich die AES
-spezifizierten Operationen als mit der Arithmetik der
-endlichen Körper beschreiben lassen.
-Im Abschnitt~\ref{buch:subsection:byte-operationen} werden
-Bytes als Elemente in einem endlichen Körper $\mathbb{F}_{2^8}$
-interpretiert.
-Damit kann dann die sogenannte $S$-Box konstruiert werden und
-es ist leicht zu verstehen, dass sie invertierbar ist.
-Aus den Byte-Operationen können dann Mischoperationen erzeugt
-werden, die Bytes untereinander verknüpfen, die aber auch wieder
-als Operationen in einem endlichen Körper verstanden werden können.
-
-\subsection{Byte-Operationen
-\label{buch:subsection:byte-operationen}}
-Moderne Prozessoren operieren auf Wörtern, die Vielfache von Bytes sind.
-Byte-Operationen sind besonders effizient in Hardware zu realisieren.
-AES verwendet daher als Grundelemente Operationen auf Bytes, die als
-Elemente eines endlichen Körpers $\mathbb{F}_{2^8}$ interpretiert werden.
-
-\subsubsection{Bytes als Elemente von $\mathbb{F}_{2^8}$}
-Das Polynom $m(X)=X^8+X^4+X^3+X+1\in \mathbb{F}_2[X]$ ist irreduzibel,
-somit ist $\mathbb{F}_{2^8} = \mathbb{F}_2[X]/(m)$ ein Körper.
-Die Elemente können dargestellt werden als Polynome, das Byte
-$\texttt{63}_{16}$ bekommt die Form
-\[
-p(X) = p_7X^7 + p_6X^6 + \dots + p_2X^2+p_1X + p_0,
-\]
-sie bestehen daher aus den $8$ Bits $p_7,\dots,p_0$.
-
-Die Interpretation der Bytes als Elemente eines Körpers bedeutet,
-dass jede Multiplikation mit einem nicht verschwindenden Byte
-invertierbar ist.
-Ausserdem mischen diese Operationen die einzelnen Bits auf einigermassen
-undurchsichtige, aber umkehrbare Art durcheinander, wie dies für ein
-Verschlüsselungsverfahren wünschenswert ist.
-
-\subsubsection{$S$-Box}
-Für die Operation der $S$-Box wird wie folgt zusammengesetzt.
-Zunächst wird ein Byte $x$ durch das zugehörige multiplikative
-inverse Element
-\[
-x\mapsto \bar{x} = \begin{cases}
-x^{-1}&\qquad \text{für $x\in \mathbb{F}_{2^8}^*$}\\
-0 &\qquad \text{für $x=0$}
-\end{cases}
-\]
-ersetzt.
-
-Im zweiten Schritt betrachten wir $\mathbb{F}_{2^8}$ als einen
-$8$-dimensionalen Vektorraum über $\mathbb{F}_2$.
-Einem Polynom $p(X)=p_7X^7 + \dots + p_1X+p_0$ wird der Spaltenvektor
-mit den Komponenten $p_0$ bis $p_7$ zugeordnet.
-
-\begin{figure}
-\centering
-\includegraphics[width=\textwidth]{chapters/90-crypto/images/sbox.pdf}
-\caption{Berechnung der Inversen der Matrix $A$ in der $S$-Box des
-AES-Algorithmus mit dem Gauss-Algorithmus
-\label{buch:crypto:fig:sbox}}
-\end{figure}
-
-Eine lineare Transformation in diesem Vektorraum kann durch eine
-$8\times 8$-Matrix in $M_8(\mathbb{F}_2)$ betrachtet werden.
-In der $S$-Box wird die Matrix
-\[
-A=
-\begin{pmatrix}
-1&0&0&0&1&1&1&1\\
-1&1&0&0&0&1&1&1\\
-1&1&1&0&0&0&1&1\\
-1&1&1&1&0&0&0&1\\
-1&1&1&1&1&0&0&0\\
-0&1&1&1&1&1&0&0\\
-0&0&1&1&1&1&1&0\\
-0&0&0&1&1&1&1&1
-\end{pmatrix},
-\qquad
-A^{-1}
-=
-\begin{pmatrix}
-0&0&1&0&0&1&0&1\\
-1&0&0&1&0&0&1&0\\
-0&1&0&0&1&0&0&1\\
-1&0&1&0&0&1&0&0\\
-0&1&0&1&0&0&1&0\\
-0&0&1&0&1&0&0&1\\
-1&0&0&1&0&1&0&0\\
-0&1&0&0&1&0&1&0
-\end{pmatrix}
-\]
-verwendet.
-Mit dem Gauss-Algorithmus, schematisch dargestellt in
-Abbildung~\ref{buch:crypto:fig:sbox}, kann man die Inverse
-bestimmen, die Multiplikation mit $A$ ist also eine invertierbare
-Abbildung.
-
-Der letzte Schritt ist dann wieder eine Addition von
-$q(X)=X^7+X^6+X+1\in \mathbb{F}_{2^8}$, durch Subtraktion
-von $q(X)$ invertiert werden kann.
-Die $S$-Box-Operation kann also bektoriell geschrieben werden also
-\[
- S(x) = A\overline{x}+q.
-\]
-
-Die Implementation ist möglicherweise mit einer Tabelle am schnellsten,
-es sind ja nur 256 Bytes im Definitionsbereich der $S$-Box-Abbildung
-und ebenso nur 256 möglich Werte.
-
-\subsection{Block-Operationen
-\label{buch:subsection:block-operationen}}
-Die zu verschlüsselnden Daten werden in in Blöcke aufgeteilt, deren
-Länge Vielfache von $32$ bit sind.
-Die kleinste Blockgrösse ist 128\,Bit, die grösste ist 256\,Bit.
-Die Bytes eines Blockes werden dann in einem Rechteck angeordnet
-als
-\begin{equation}
-\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
-\hline
- b_{0} & b_{4} & b_{8} & b_{12} & b_{16} & b_{20} & b_{24} & b_{28} \\
- b_{1} & b_{5} & b_{9} & b_{13} & b_{17} & b_{21} & b_{25} & b_{29} \\
- b_{2} & b_{6} & b_{10} & b_{14} & b_{18} & b_{22} & b_{26} & b_{30} \\
- b_{3} & b_{7} & b_{11} & b_{15} & b_{19} & b_{23} & b_{27} & b_{31} \\
-\hline
-\end{tabular}
-\label{buch:crypto:eqn:block}
-\end{equation}
-für eine Blocklänge von 256\,Bits.
-
-
-
-\subsubsection{Zeilenshift}
-\begin{figure}
-\centering
-\includegraphics[width=\textwidth]{chapters/90-crypto/images/shift.pdf}
-\caption{Zeilenshift in einem Block von 256 bits
-\label{buch:crypto:fig:shift}}
-\end{figure}
-Die Verschlüsselung muss sicherstellen, dass die Bytes des Blockes
-untereinander gut gemischt werden.
-Die bisher beschriebenen Operationen operieren immer nur auf einzelnen
-Bytes während
-die im nächsten Abschnitt beschriebene Spalten-Mischoperation
-nur auf Spalten wird.
-Die Zeilenmischoperation permutiert die Zeilen in den vier Zeilen
-eines Blocks zyklisch, die erste Zeile bleibt an Ort, die zweite
-Zeile wird um ein Byte rotiert, die dritte um zwei und die letzte
-um 3 Bytes, wie in Abbildung~\ref{buch:crypto:fig:zeilenshift}
-dargestellt.
-Diese Operation könnte mit einer Permutationsmatrix beschrieben werden,
-dies wäre jedoch keine effiziente Implementation.
-Der Zeilenschift hat ansonsten keine elegante algebraische Beschreibung.
-
-\subsubsection{Spalten mischen}
-Jede Spalte von \eqref{buch:crypto:eqn:block} kann als Vektor des
-vierdimensionalen Vektorraumes $\mathbb{F}_{2^8}^4$.
-Die Zeilenmischoperation wendet ein lineare Abbildung auf jeden
-Spaltenvektor von~\eqref{buch:crypto:eqn:block}.
-Die Koeffizienten der Matrix sind Elemente von $\mathbb{F}_{2^8}$.
-Die Matrix ist
-\[
-C=\begin{pmatrix}
-\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}\\
-\texttt{01}_{16}&\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}\\
-\texttt{01}_{16}&\texttt{01}_{16}&\texttt{02}_{16}&\texttt{03}_{16}\\
-\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}&\texttt{02}_{16}
-\end{pmatrix}.
-\]
-Um nachzuprüfen, dass die Matrix $C$ invertierbar ist, könnte man den
-Gauss-Algorithmus verwenden und damit die Inverse berechnen.
-Dazu müsste man die multiplikativen Inversen kennen, was etwas mühsam
-ist.
-Man kann aber aber auch die Determinante bestimmen, dazu braucht man
-nur multiplizieren zu können, was in diesem Fall sehr leicht möglich ist,
-weil kein Überlauf entsteht.
-Dabei hilft es zu beachten, dass die Multiplikation mit $\texttt{02}_{16}$
-nur eine Einbit-Shiftoperation nach links ist.
-Nur die Multiplikation $\texttt{03}_{16}\cdot\texttt{03}_{16}=\text{05}_{16}$
-gibt etwas mehr zu überlegen.
-Mit geeigneten Zeilen-Operationen kann man die Berechnung der Determinante
-von $C$ mit dem Entwicklungssatz etwas vereinfachen.
-Man erhält
-\begin{align*}
-\det(C)
-&=
-\left|
-\begin{matrix}
-\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}\\
-\texttt{01}_{16}&\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}\\
-\texttt{00}_{16}&\texttt{03}_{16}&\texttt{01}_{16}&\texttt{02}_{16}\\
-\texttt{00}_{16}&\texttt{00}_{16}&\texttt{03}_{16}&\texttt{02}_{16}
-\end{matrix}
-\right|
-\\
-&=
-\texttt{02}_{16}
-\left|
-\begin{matrix}
-\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}\\
-\texttt{03}_{16}&\texttt{01}_{16}&\texttt{02}_{16}\\
-\texttt{00}_{16}&\texttt{03}_{16}&\texttt{02}_{16}
-\end{matrix}
-\right|
-+
-\texttt{01}_{16}
-\left|
-\begin{matrix}
-\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}\\
-\texttt{03}_{16}&\texttt{01}_{16}&\texttt{02}_{16}\\
-\texttt{00}_{16}&\texttt{03}_{16}&\texttt{02}_{16}
-\end{matrix}
-\right|
-\\
-&=
-\texttt{02}_{16}
-\left|
-\begin{matrix}
-\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}\\
-\texttt{01}_{16}&\texttt{02}_{16}&\texttt{03}_{16}\\
-\texttt{00}_{16}&\texttt{03}_{16}&\texttt{02}_{16}
-\end{matrix}
-\right|
-+
-\texttt{01}_{16}
-\left|
-\begin{matrix}
-\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}\\
-\texttt{00}_{16}&\texttt{00}_{16}&\texttt{01}_{16}\\
-\texttt{00}_{16}&\texttt{03}_{16}&\texttt{02}_{16}
-\end{matrix}
-\right|
-\\
-&=
-\texttt{02}_{16}
-\left(
-\texttt{02}_{16}
-\left|
-\begin{matrix}
-\texttt{02}_{16}&\texttt{03}_{16}\\
-\texttt{03}_{16}&\texttt{02}_{16}
-\end{matrix}
-\right|
-+
-\texttt{01}_{16}
-\left|
-\begin{matrix}
-\texttt{03}_{16}&\texttt{01}_{16}\\
-\texttt{03}_{16}&\texttt{02}_{16}
-\end{matrix}
-\right|
-\right)
-+
-\texttt{01}_{16}
-\left|
-\begin{matrix}
-\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}\\
-\texttt{00}_{16}&\texttt{03}_{16}&\texttt{02}_{16}\\
-\texttt{00}_{16}&\texttt{00}_{16}&\texttt{01}_{16}
-\end{matrix}
-\right|
-\\
-&=
-\texttt{02}_{16}
-(
-\texttt{02}_{16}(\texttt{04}_{16}+\texttt{05}_{16})
-+
-(\texttt{06}_{16}+\texttt{03}_{16})
-)
-+
-\texttt{03}_{16}\texttt{03}_{16}
-\\
-&=
-\texttt{02}_{16}
-(
-\texttt{02}_{16}
-+
-\texttt{05}_{16}
-)
-+
-\texttt{05}_{16}
-=
-\texttt{0e}_{16}+\texttt{05}_{16}
-=
-\texttt{0a}_{16}
-\ne 0.
-\end{align*}
-Damit ist gezeigt, dass die Matrix $C$ invertierbar auf den
-Spaltenvektoren wirkt.
-Die Inverse der Matrix kann einmal berechnet und anschliessend
-für die Entschlüsselung verwendet werden.
-
-Alternativ kann man die Multiplikation mit der Matrix $C$ auch
-interpretieren als eine Polynommultiplikation.
-Dazu interpretiert man die Spalten des Blocks als Polynom vom Grad~3
-mit Koeffizienten in $\mathbb{F}_{2^8}$.
-Durch Reduktion mit dem irreduziblen Polynom
-$n(Z)=Z^4+1\in\mathbb{F}_{2^8}[X]$ entsteht aus dem Polynomring
-wieder ein Körper.
-Die Wirkung der Matrix $C$ ist dann nichts anderes als Multiplikation
-mit dem Polynom
-\[
-c(Z) = \texttt{03}_{16}Z^3 + Z^2+Z^1+\texttt{02}_{16},
-\]
-die natürlich ebenfalls umkehrbar ist.
-
-\subsection{Schlüssel
-\label{buch:subsection:schlüssel}}
-Die von den Byte- und Blockoperationen mischen die einzelnen Bits
-der Daten zwar ganz schön durcheinander, aber es wird noch kein
-Schlüsselmaterial eingearbeitet, welches den Prozess einzigartig
-macht.
-
-\subsubsection{Schlüsseladdition}
-Nach jeder Spaltenmischoperation wird ein Rundenschlüssel
-zum Blockhinzuaddiert.
-Beim ersten Mal wird dazu einfach das Schlüsselmaterial verwendet.
-Für die folgenden Runden muss aus diesem Schlüssel neues
-Material, die sogenannten Rundenschlüssel, gewonnen werden.
-
-\subsubsection{Rundenschlüssel}
-\begin{figure}
-\centering
-\includegraphics{chapters/90-crypto/images/keys.pdf}
-\caption{Erzeugung der erweiterten Schlüsseldaten aus dem Schlüssel
-$K_0,\dots,K_7$ für Schlüssellänge 256\,bit.
-Die mit $S$ beschrifteten Blöcke wenden die $S$-Box auf jedes einzelne
-Byte an.
-$\pi$ ist die zyklische Vertauschung der Bytes eines Wortes.
-Die Operation $r_i$ ist eine Addition einer Konstanten, die in jeder
-Runde anders ist.
-\label{buch:crypto:fig:keys}}
-\end{figure}
-Die Erzeugung der Rundenschlüssel ist in Abbildung
-\ref{buch:crypto:fig:keys}
-schematisch dargestellt.
-Die Blöcke beschreiben wieder Spaltenvektoren im vierdimensionalen
-Raum $\mathbb{F}_{2^8}^4$.
-Die Blöcke $K_0$ bis $K_7$ stellen den ursprünglichen Schlüssel dar.
-Die Erzeugung eines neuen Blocks Schlüsselmatrial beginnt damit,
-dass der letzte Vektor des vorangegangenblocks drei Operationen
-unterworfen werden.
-\begin{itemize}
-\item
-Die Operation $\pi$ vertauscht die Bytes des Vektors zyklisch:
-\begin{center}
-\begin{tikzpicture}[>=latex,thick]
-\def\s{0.6}
-\begin{scope}
-\draw (0,0) rectangle (\s,{4*\s});
-\foreach \y in {1,...,3}{
- \draw (0,{\y*\s}) (\s,{\y*\s});
-}
-\node at ({0.5*\s},{0.5*\s}) {$b_3$};
-\node at ({0.5*\s},{1.5*\s}) {$b_2$};
-\node at ({0.5*\s},{2.5*\s}) {$b_1$};
-\node at ({0.5*\s},{3.5*\s}) {$b_0$};
-\end{scope}
-\draw[->] ({1.1*\s},{2*\s}) -- ({4.9*\s},{2*\s});
-\node at ({3*\s},{2*\s}) [above] {$\pi$};
-\begin{scope}[xshift=3cm]
-\draw (0,0) rectangle (\s,{4*\s});
-\foreach \y in {1,...,3}{
- \draw (0,{\y*\s}) (\s,{\y*\s});
-}
-\node at ({0.5*\s},{0.5*\s}) {$b_0$};
-\node at ({0.5*\s},{1.5*\s}) {$b_3$};
-\node at ({0.5*\s},{2.5*\s}) {$b_2$};
-\node at ({0.5*\s},{3.5*\s}) {$b_1$};
-\end{scope}
-\end{tikzpicture}
-\end{center}
-\item
-Die $S$-Operation wendet die $S$-Box auf alle Bytes eines Vektors an.
-\item
-Die $r_i$ Operation addiert in Runde eine Konstante $r_i$ zur $0$-Komponente.
-\end{itemize}
-Die Konstante $r_i$ ist wieder ein einzelnes Byte und es ist daher
-naheliegend, diese Bytes mit Hilfe der Arithmetik in $\mathbb{F}_{2^8}$
-zu erzeugen.
-Man kann daher $r_i$ definieren als
-$(\texttt{02}_{16})^{i-1}\in\mathbb{F}_{2^8}$.
-
-\subsection{Runden}
-Der AES-Verschlüsselungsalgorithmus besteht jetzt darin, die bisher
-definierten Operationen wiederholt anzuwenden.
-Eine einzelne Runde besteht dabei aus folgenden Schritten:
-\begin{enumerate}
-\item Wende die $S$-Box auf alle Bytes des Blocks an.
-\item Führe den Zeilenshift durch.
-\item Mische die Spalten (wird in der letzten Runde)
-\item Erzeuge den nächsten Rundenschlüssel
-\item Addiere den Rundenschlüssel
-\end{enumerate}
-Der AES-Verschlüsselungsalgorithmus beginnt damit, dass der Schlüssel
-zum Datenblock addiert wird.
-Anschliessend werden je nach Blocklänge verschiedene Anzahlen von
-Runden durchgeführt, 10 Runden für 128\,bit, 12 Runden für 192\,bit und
-14 Runden für 256\,bit.
-
-
-
-
-
+%
+% aes.tex -- Beschreibung des AES Algorithmus
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Advanced Encryption Standard -- AES
+\label{buch:section:aes}}
+\rhead{Advanced Encryption Standard}
+Eine wichtige Forderung bei der Konzeption des damals neuen
+Advanced Encryption Standard war, dass darin keine ``willkürlich''
+erscheinenden Operationen geben darf, bei denen der Verdacht
+entstehen könnte, dass sich dahinter noch offengelegtes Wissen
+über einen möglichen Angriff auf den Verschlüsselungsalgorithmus
+verbergen könnte.
+Dies war eine Schwäche des vor AES üblichen DES Verschlüsselungsalgorithmus.
+In seiner Definition kommt eine Reihe von Konstanten vor, über deren
+Herkunft nichts bekannt war.
+Die Gerüchteküche wollte wissen, dass die NSA die Konstanten aus dem
+ursprünglichen Vorschlag abgeändert habe, und dass dies geschehen sei,
+um den Algorithmus durch die NSA angreifbar zu machen.
+
+Eine weiter Forderung war, dass die Sicherheit des neuen
+Verschlüsselungsstandards ``skalierbar'' sein soll, dass man also
+die Schlüssellänge mit der Zeit von 128~Bit auf 196 oder sogar 256~Bit
+steigern kann.
+Der Standard wird dadurch langlebiger und gleichzeitig entsteht die
+Möglichkeit, Sicherheit gegen Rechenleistung einzutauschen.
+Weniger leistungsfähige Systeme können den Algorithmus immer noch
+nutzen, entweder mit geringerer Verschlüsselungsrate oder geringerer
+Sicherheit.
+
+In diesem Abschnitt soll gezeigt werde, wie sich die AES
+spezifizierten Operationen als mit der Arithmetik der
+endlichen Körper beschreiben lassen.
+Im Abschnitt~\ref{buch:subsection:byte-operationen} werden
+Bytes als Elemente in einem endlichen Körper $\mathbb{F}_{2^8}$
+interpretiert.
+Damit kann dann die sogenannte $S$-Box konstruiert werden und
+es ist leicht zu verstehen, dass sie invertierbar ist.
+Aus den Byte-Operationen können dann Mischoperationen erzeugt
+werden, die Bytes untereinander verknüpfen, die aber auch wieder
+als Operationen in einem endlichen Körper verstanden werden können.
+
+\subsection{Byte-Operationen
+\label{buch:subsection:byte-operationen}}
+Moderne Prozessoren operieren auf Wörtern, die Vielfache von Bytes sind.
+Byte-Operationen sind besonders effizient in Hardware zu realisieren.
+AES verwendet daher als Grundelemente Operationen auf Bytes, die als
+Elemente eines endlichen Körpers $\mathbb{F}_{2^8}$ interpretiert werden.
+
+\subsubsection{Bytes als Elemente von $\mathbb{F}_{2^8}$}
+Das Polynom $m(X)=X^8+X^4+X^3+X+1\in \mathbb{F}_2[X]$ ist irreduzibel,
+somit ist $\mathbb{F}_{2^8} = \mathbb{F}_2[X]/(m)$ ein Körper.
+Die Elemente können dargestellt werden als Polynome, das Byte
+$\texttt{63}_{16}$ bekommt die Form
+\[
+p(X) = p_7X^7 + p_6X^6 + \dots + p_2X^2+p_1X + p_0,
+\]
+sie bestehen daher aus den $8$ Bits $p_7,\dots,p_0$.
+
+Die Interpretation der Bytes als Elemente eines Körpers bedeutet,
+dass jede Multiplikation mit einem nicht verschwindenden Byte
+invertierbar ist.
+Ausserdem mischen diese Operationen die einzelnen Bits auf einigermassen
+undurchsichtige, aber umkehrbare Art durcheinander, wie dies für ein
+Verschlüsselungsverfahren wünschenswert ist.
+
+\subsubsection{$S$-Box}
+Für die Operation der $S$-Box wird wie folgt zusammengesetzt.
+Zunächst wird ein Byte $x$ durch das zugehörige multiplikative
+inverse Element
+\[
+x\mapsto \bar{x} = \begin{cases}
+x^{-1}&\qquad \text{für $x\in \mathbb{F}_{2^8}^*$}\\
+0 &\qquad \text{für $x=0$}
+\end{cases}
+\]
+ersetzt.
+
+Im zweiten Schritt betrachten wir $\mathbb{F}_{2^8}$ als einen
+$8$-dimensionalen Vektorraum über $\mathbb{F}_2$.
+Einem Polynom $p(X)=p_7X^7 + \dots + p_1X+p_0$ wird der Spaltenvektor
+mit den Komponenten $p_0$ bis $p_7$ zugeordnet.
+
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/90-crypto/images/sbox.pdf}
+\caption{Berechnung der Inversen der Matrix $A$ in der $S$-Box des
+AES-Algorithmus mit dem Gauss-Algorithmus
+\label{buch:crypto:fig:sbox}}
+\end{figure}
+
+Eine lineare Transformation in diesem Vektorraum kann durch eine
+$8\times 8$-Matrix in $M_8(\mathbb{F}_2)$ betrachtet werden.
+In der $S$-Box wird die Matrix
+\[
+A=
+\begin{pmatrix}
+1&0&0&0&1&1&1&1\\
+1&1&0&0&0&1&1&1\\
+1&1&1&0&0&0&1&1\\
+1&1&1&1&0&0&0&1\\
+1&1&1&1&1&0&0&0\\
+0&1&1&1&1&1&0&0\\
+0&0&1&1&1&1&1&0\\
+0&0&0&1&1&1&1&1
+\end{pmatrix},
+\qquad
+A^{-1}
+=
+\begin{pmatrix}
+0&0&1&0&0&1&0&1\\
+1&0&0&1&0&0&1&0\\
+0&1&0&0&1&0&0&1\\
+1&0&1&0&0&1&0&0\\
+0&1&0&1&0&0&1&0\\
+0&0&1&0&1&0&0&1\\
+1&0&0&1&0&1&0&0\\
+0&1&0&0&1&0&1&0
+\end{pmatrix}
+\]
+verwendet.
+Mit dem Gauss-Algorithmus, schematisch dargestellt in
+Abbildung~\ref{buch:crypto:fig:sbox}, kann man die Inverse
+bestimmen, die Multiplikation mit $A$ ist also eine invertierbare
+Abbildung.
+
+Der letzte Schritt ist dann wieder eine Addition von
+$q(X)=X^7+X^6+X+1\in \mathbb{F}_{2^8}$, durch Subtraktion
+von $q(X)$ invertiert werden kann.
+Die $S$-Box-Operation kann also bektoriell geschrieben werden also
+\[
+ S(x) = A\overline{x}+q.
+\]
+
+Die Implementation ist möglicherweise mit einer Tabelle am schnellsten,
+es sind ja nur 256 Bytes im Definitionsbereich der $S$-Box-Abbildung
+und ebenso nur 256 möglich Werte.
+
+\subsection{Block-Operationen
+\label{buch:subsection:block-operationen}}
+Die zu verschlüsselnden Daten werden in in Blöcke aufgeteilt, deren
+Länge Vielfache von $32$ bit sind.
+Die kleinste Blockgrösse ist 128\,Bit, die grösste ist 256\,Bit.
+Die Bytes eines Blockes werden dann in einem Rechteck angeordnet
+als
+\begin{equation}
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+ b_{0} & b_{4} & b_{8} & b_{12} & b_{16} & b_{20} & b_{24} & b_{28} \\
+ b_{1} & b_{5} & b_{9} & b_{13} & b_{17} & b_{21} & b_{25} & b_{29} \\
+ b_{2} & b_{6} & b_{10} & b_{14} & b_{18} & b_{22} & b_{26} & b_{30} \\
+ b_{3} & b_{7} & b_{11} & b_{15} & b_{19} & b_{23} & b_{27} & b_{31} \\
+\hline
+\end{tabular}
+\label{buch:crypto:eqn:block}
+\end{equation}
+für eine Blocklänge von 256\,Bits.
+
+
+
+\subsubsection{Zeilenshift}
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/90-crypto/images/shift.pdf}
+\caption{Zeilenshift in einem Block von 256 bits
+\label{buch:crypto:fig:shift}}
+\end{figure}
+Die Verschlüsselung muss sicherstellen, dass die Bytes des Blockes
+untereinander gut gemischt werden.
+Die bisher beschriebenen Operationen operieren immer nur auf einzelnen
+Bytes während
+die im nächsten Abschnitt beschriebene Spalten-Mischoperation
+nur auf Spalten wird.
+Die Zeilenmischoperation permutiert die Zeilen in den vier Zeilen
+eines Blocks zyklisch, die erste Zeile bleibt an Ort, die zweite
+Zeile wird um ein Byte rotiert, die dritte um zwei und die letzte
+um 3 Bytes, wie in Abbildung~\ref{buch:crypto:fig:zeilenshift}
+dargestellt.
+Diese Operation könnte mit einer Permutationsmatrix beschrieben werden,
+dies wäre jedoch keine effiziente Implementation.
+Der Zeilenschift hat ansonsten keine elegante algebraische Beschreibung.
+
+\subsubsection{Spalten mischen}
+Jede Spalte von \eqref{buch:crypto:eqn:block} kann als Vektor des
+vierdimensionalen Vektorraumes $\mathbb{F}_{2^8}^4$.
+Die Zeilenmischoperation wendet ein lineare Abbildung auf jeden
+Spaltenvektor von~\eqref{buch:crypto:eqn:block}.
+Die Koeffizienten der Matrix sind Elemente von $\mathbb{F}_{2^8}$.
+Die Matrix ist
+\[
+C=\begin{pmatrix}
+\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}\\
+\texttt{01}_{16}&\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}\\
+\texttt{01}_{16}&\texttt{01}_{16}&\texttt{02}_{16}&\texttt{03}_{16}\\
+\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}&\texttt{02}_{16}
+\end{pmatrix}.
+\]
+Um nachzuprüfen, dass die Matrix $C$ invertierbar ist, könnte man den
+Gauss-Algorithmus verwenden und damit die Inverse berechnen.
+Dazu müsste man die multiplikativen Inversen kennen, was etwas mühsam
+ist.
+Man kann aber aber auch die Determinante bestimmen, dazu braucht man
+nur multiplizieren zu können, was in diesem Fall sehr leicht möglich ist,
+weil kein Überlauf entsteht.
+Dabei hilft es zu beachten, dass die Multiplikation mit $\texttt{02}_{16}$
+nur eine Einbit-Shiftoperation nach links ist.
+Nur die Multiplikation $\texttt{03}_{16}\cdot\texttt{03}_{16}=\text{05}_{16}$
+gibt etwas mehr zu überlegen.
+Mit geeigneten Zeilen-Operationen kann man die Berechnung der Determinante
+von $C$ mit dem Entwicklungssatz etwas vereinfachen.
+Man erhält
+\begin{align*}
+\det(C)
+&=
+\left|
+\begin{matrix}
+\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}\\
+\texttt{01}_{16}&\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}\\
+\texttt{00}_{16}&\texttt{03}_{16}&\texttt{01}_{16}&\texttt{02}_{16}\\
+\texttt{00}_{16}&\texttt{00}_{16}&\texttt{03}_{16}&\texttt{02}_{16}
+\end{matrix}
+\right|
+\\
+&=
+\texttt{02}_{16}
+\left|
+\begin{matrix}
+\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}\\
+\texttt{03}_{16}&\texttt{01}_{16}&\texttt{02}_{16}\\
+\texttt{00}_{16}&\texttt{03}_{16}&\texttt{02}_{16}
+\end{matrix}
+\right|
++
+\texttt{01}_{16}
+\left|
+\begin{matrix}
+\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}\\
+\texttt{03}_{16}&\texttt{01}_{16}&\texttt{02}_{16}\\
+\texttt{00}_{16}&\texttt{03}_{16}&\texttt{02}_{16}
+\end{matrix}
+\right|
+\\
+&=
+\texttt{02}_{16}
+\left|
+\begin{matrix}
+\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}\\
+\texttt{01}_{16}&\texttt{02}_{16}&\texttt{03}_{16}\\
+\texttt{00}_{16}&\texttt{03}_{16}&\texttt{02}_{16}
+\end{matrix}
+\right|
++
+\texttt{01}_{16}
+\left|
+\begin{matrix}
+\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}\\
+\texttt{00}_{16}&\texttt{00}_{16}&\texttt{01}_{16}\\
+\texttt{00}_{16}&\texttt{03}_{16}&\texttt{02}_{16}
+\end{matrix}
+\right|
+\\
+&=
+\texttt{02}_{16}
+\left(
+\texttt{02}_{16}
+\left|
+\begin{matrix}
+\texttt{02}_{16}&\texttt{03}_{16}\\
+\texttt{03}_{16}&\texttt{02}_{16}
+\end{matrix}
+\right|
++
+\texttt{01}_{16}
+\left|
+\begin{matrix}
+\texttt{03}_{16}&\texttt{01}_{16}\\
+\texttt{03}_{16}&\texttt{02}_{16}
+\end{matrix}
+\right|
+\right)
++
+\texttt{01}_{16}
+\left|
+\begin{matrix}
+\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}\\
+\texttt{00}_{16}&\texttt{03}_{16}&\texttt{02}_{16}\\
+\texttt{00}_{16}&\texttt{00}_{16}&\texttt{01}_{16}
+\end{matrix}
+\right|
+\\
+&=
+\texttt{02}_{16}
+(
+\texttt{02}_{16}(\texttt{04}_{16}+\texttt{05}_{16})
++
+(\texttt{06}_{16}+\texttt{03}_{16})
+)
++
+\texttt{03}_{16}\texttt{03}_{16}
+\\
+&=
+\texttt{02}_{16}
+(
+\texttt{02}_{16}
++
+\texttt{05}_{16}
+)
++
+\texttt{05}_{16}
+=
+\texttt{0e}_{16}+\texttt{05}_{16}
+=
+\texttt{0a}_{16}
+\ne 0.
+\end{align*}
+Damit ist gezeigt, dass die Matrix $C$ invertierbar auf den
+Spaltenvektoren wirkt.
+Die Inverse der Matrix kann einmal berechnet und anschliessend
+für die Entschlüsselung verwendet werden.
+
+Alternativ kann man die Multiplikation mit der Matrix $C$ auch
+interpretieren als eine Polynommultiplikation.
+Dazu interpretiert man die Spalten des Blocks als Polynom vom Grad~3
+mit Koeffizienten in $\mathbb{F}_{2^8}$.
+Durch Reduktion mit dem irreduziblen Polynom
+$n(Z)=Z^4+1\in\mathbb{F}_{2^8}[X]$ entsteht aus dem Polynomring
+wieder ein Körper.
+Die Wirkung der Matrix $C$ ist dann nichts anderes als Multiplikation
+mit dem Polynom
+\[
+c(Z) = \texttt{03}_{16}Z^3 + Z^2+Z^1+\texttt{02}_{16},
+\]
+die natürlich ebenfalls umkehrbar ist.
+
+\subsection{Schlüssel
+\label{buch:subsection:schlüssel}}
+Die von den Byte- und Blockoperationen mischen die einzelnen Bits
+der Daten zwar ganz schön durcheinander, aber es wird noch kein
+Schlüsselmaterial eingearbeitet, welches den Prozess einzigartig
+macht.
+
+\subsubsection{Schlüsseladdition}
+Nach jeder Spaltenmischoperation wird ein Rundenschlüssel
+zum Blockhinzuaddiert.
+Beim ersten Mal wird dazu einfach das Schlüsselmaterial verwendet.
+Für die folgenden Runden muss aus diesem Schlüssel neues
+Material, die sogenannten Rundenschlüssel, gewonnen werden.
+
+\subsubsection{Rundenschlüssel}
+\begin{figure}
+\centering
+\includegraphics{chapters/90-crypto/images/keys.pdf}
+\caption{Erzeugung der erweiterten Schlüsseldaten aus dem Schlüssel
+$K_0,\dots,K_7$ für Schlüssellänge 256\,bit.
+Die mit $S$ beschrifteten Blöcke wenden die $S$-Box auf jedes einzelne
+Byte an.
+$\pi$ ist die zyklische Vertauschung der Bytes eines Wortes.
+Die Operation $r_i$ ist eine Addition einer Konstanten, die in jeder
+Runde anders ist.
+\label{buch:crypto:fig:keys}}
+\end{figure}
+Die Erzeugung der Rundenschlüssel ist in Abbildung
+\ref{buch:crypto:fig:keys}
+schematisch dargestellt.
+Die Blöcke beschreiben wieder Spaltenvektoren im vierdimensionalen
+Raum $\mathbb{F}_{2^8}^4$.
+Die Blöcke $K_0$ bis $K_7$ stellen den ursprünglichen Schlüssel dar.
+Die Erzeugung eines neuen Blocks Schlüsselmatrial beginnt damit,
+dass der letzte Vektor des vorangegangenblocks drei Operationen
+unterworfen werden.
+\begin{itemize}
+\item
+Die Operation $\pi$ vertauscht die Bytes des Vektors zyklisch:
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\s{0.6}
+\begin{scope}
+\draw (0,0) rectangle (\s,{4*\s});
+\foreach \y in {1,...,3}{
+ \draw (0,{\y*\s}) (\s,{\y*\s});
+}
+\node at ({0.5*\s},{0.5*\s}) {$b_3$};
+\node at ({0.5*\s},{1.5*\s}) {$b_2$};
+\node at ({0.5*\s},{2.5*\s}) {$b_1$};
+\node at ({0.5*\s},{3.5*\s}) {$b_0$};
+\end{scope}
+\draw[->] ({1.1*\s},{2*\s}) -- ({4.9*\s},{2*\s});
+\node at ({3*\s},{2*\s}) [above] {$\pi$};
+\begin{scope}[xshift=3cm]
+\draw (0,0) rectangle (\s,{4*\s});
+\foreach \y in {1,...,3}{
+ \draw (0,{\y*\s}) (\s,{\y*\s});
+}
+\node at ({0.5*\s},{0.5*\s}) {$b_0$};
+\node at ({0.5*\s},{1.5*\s}) {$b_3$};
+\node at ({0.5*\s},{2.5*\s}) {$b_2$};
+\node at ({0.5*\s},{3.5*\s}) {$b_1$};
+\end{scope}
+\end{tikzpicture}
+\end{center}
+\item
+Die $S$-Operation wendet die $S$-Box auf alle Bytes eines Vektors an.
+\item
+Die $r_i$ Operation addiert in Runde eine Konstante $r_i$ zur $0$-Komponente.
+\end{itemize}
+Die Konstante $r_i$ ist wieder ein einzelnes Byte und es ist daher
+naheliegend, diese Bytes mit Hilfe der Arithmetik in $\mathbb{F}_{2^8}$
+zu erzeugen.
+Man kann daher $r_i$ definieren als
+$(\texttt{02}_{16})^{i-1}\in\mathbb{F}_{2^8}$.
+
+\subsection{Runden}
+Der AES-Verschlüsselungsalgorithmus besteht jetzt darin, die bisher
+definierten Operationen wiederholt anzuwenden.
+Eine einzelne Runde besteht dabei aus folgenden Schritten:
+\begin{enumerate}
+\item Wende die $S$-Box auf alle Bytes des Blocks an.
+\item Führe den Zeilenshift durch.
+\item Mische die Spalten (wird in der letzten Runde)
+\item Erzeuge den nächsten Rundenschlüssel
+\item Addiere den Rundenschlüssel
+\end{enumerate}
+Der AES-Verschlüsselungsalgorithmus beginnt damit, dass der Schlüssel
+zum Datenblock addiert wird.
+Anschliessend werden je nach Blocklänge verschiedene Anzahlen von
+Runden durchgeführt, 10 Runden für 128\,bit, 12 Runden für 192\,bit und
+14 Runden für 256\,bit.
+
+
+
+
+
diff --git a/buch/chapters/90-crypto/arith.tex b/buch/chapters/90-crypto/arith.tex
index 2520a69..dcc31b8 100644
--- a/buch/chapters/90-crypto/arith.tex
+++ b/buch/chapters/90-crypto/arith.tex
@@ -1,295 +1,295 @@
-%
-% arith.tex
-%
-% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Arithmetik für die Kryptographie
-\label{buch:section:arithmetik-fuer-kryptographie}}
-\rhead{Arithmetik für die Kryptographie}
-Die Algorithmen der mathematischen Kryptographie basieren
-auf den Rechenoperationen in grossen, aber endlichen Körpern.
-Für die Division liefert der euklidische Algorithmus eine
-Methode, der in so vielen Schritten die Inverse findet,
-wie Dividend und Divisor Binärstellen haben.
-Dies ist weitgehend optimal.
-
-Die Division ist umkehrbar, in der Kryptographie strebt man aber an,
-Funktionen zu konstruieren, die nur mit grossem Aufwand umkehrbar sind.
-Eine solche Funktion ist das Potenzieren in einem endlichen Körper.
-Die Berechnung von Potenzen durch wiederholte Multiplikation ist jedoch
-prohibitiv aufwendig, daher ist ein schneller Potenzierungsalgorithmus
-nötig, der in Abschnitt~\ref{buch:subsection:potenzieren} beschrieben
-wird.
-Bei der Verschlüsselung grosser Datenmengen wie zum Beispiel bei
-der Verschlüsselung ganzer Harddisks mit Hilfe des AES-Algorithmus
-kommt es auf die Geschwindigkeit auch der elementarsten Operationen
-in den endlichen Körpern an.
-Solche Methoden werden in den Abschnitten
-\ref{buch:subsection:rechenoperationen-in-fp}
-und
-\ref{buch:subsection:rechenoperatione-in-f2l}
-besprochen.
-
-\subsection{Potenzieren
-\label{buch:subsection:potenzieren}}
-Wir gehen davon aus, dass wir einen schnellen Algorithmus zur
-Berechnung des Produktes zweier Elemente $a,b$ in einer
-beliebigen Gruppe $G$ haben.
-Die Gruppe $G$ kann die Multiplikation der ganzen oder reellen Zahlen
-sein, dies wird zum Beispiel in Implementation der Potenzfunktion
-verwendet.
-Für kryptographische Anwendungen ist $G$ die multiplikative Gruppe
-eines endlichen Körpers oder eine elliptische Kurve.
-
-Zur Berechnung von $a^k$ sind bei einer naiven Durchführung des
-Algorithmus $k-1$ Multiplikationen nötig, immer sofort gefolgt
-von einer Reduktion $\mod p$ um sicherzustellen, dass die Resultate
-nicht zu gross werden.
-Ist $l$ die Anzahl der Binärstellen von $k$, dann benötigt dieser
-naive Algorithmus $O(2^l)$ Multiplikationen, die Laufzeit wächst
-also exponentiell mit der Bitlänge von $k$ an.
-Der nachfolgend beschriebene Algorithmus reduziert die Laufzeit auf
-die $O(l)$.
-
-Zunächst schreiben wir den Exponenten $k$ in binärer Form als
-\[
-k = k_l2^l + k_{l-1}2^{l-1} + \dots k_22^2+k_12^1 k_02^0.
-\]
-Die Potenz $a^k$ kann dann geschrieben werden als
-\[
-a^k
-=
-a^{k_l2^l} \cdot a^{k_{l-1}2^{l-1}} \cdot \dots \cdot
-a^{k_22^2} \cdot a^{k_12^1} \cdot a^{k_02^0}
-\]
-Nur diejenigen Faktoren tragen etwas bei, für die $k_i\ne 0$ ist.
-Die Potenz kann man daher auch schreiben als
-\[
-a^k
-=
-\prod_{k_i\ne 0} a^{2^i}.
-\]
-Es sind also nur so viele Faktoren zu berücksichtigen, wie $k$
-Binärstellen $1$ hat.
-
-Die einzelnen Faktoren $a^{2^i}$ können durch wiederholtes Quadrieren
-erhalten werden:
-\[
-a^{2^i} = a^{2\cdot 2^{i-1}} = (a^{2^{i-1}})^2,
-\]
-also durch maximal $l-1$ Multiplikationen.
-Wenn $k$ keine Ganzzahl ist sondern binäre Nachkommastellen hat, also
-\[
-k=k_l2^l + \dots + k_12^1 + k_02^0 + k_{-1}2^{-1} + k_{-2}2^{-2}+\dots,
-\]
-dann können die Potenzen $a^{2^{-i}}$ durch wiederholtes Wurzelziehen
-\[
-a^{2^{-i}} = a^{\frac12\cdot 2^{-i+1}} = \sqrt{a^{2^{-i+1}}}
-\]
-gefunden werden.
-Die Berechnung der Quadratwurzel lässt sich in Hardware effizient
-implementieren.
-
-\begin{algorithmus}
-Der folgende Algorithmus berechnet $a^k$ in $O(\log_2(k))$
-Multiplikationen
-\begin{enumerate}
-\item Initialisiere $p=1$ und $q=a$
-\item Falls $k$ ungerade ist, setze $p:=p\cdot q$
-\item Setze $q:=q^2$ und $k := k/2$, wobei die ganzzahlige Division durch $2$
-am effizientesten als Rechtsshift implementiert werden kann.
-\item Falls $k>0$, fahre weiter bei 2.
-\end{enumerate}
-\end{algorithmus}
-
-\begin{beispiel}
-Die Berechnung von $1.1^{17}$ mit diesem Algorithmus ergibt
-\begin{enumerate}
-\item $p=1$, $q=1.1$
-\item $k$ ist ungerade: $p:=1.1$
-\item $q:=q^2=1.21$, $k := 8$
-\item $k$ ist gerade
-\item $q:=q^2=1.4641$, $k := 4$
-\item $k$ ist gerade
-\item $q:=q^2=2.14358881$, $k := 2$
-\item $k$ ist gerade
-\item $q:=q^2=4.5949729863572161$, $k := 1$
-\item $k$ ist ungerade: $p:=1.1\cdot p = 5.05447028499293771$
-\item $k:=0$
-\end{enumerate}
-Multiplikationen sind nur nötig in den Schritten 3, 5, 7, 9, 10, es
-werden also genau $5$ Multiplikationen ausgeführt.
-\end{beispiel}
-
-\subsection{Rechenoperationen in $\mathbb{F}_p$
-\label{buch:subsection:rechenoperationen-in-fp}}
-Die Multiplikation macht aus zwei Faktoren $a$ und $b$ ein
-Resultat mit Bitlänge $\log_2 a+\log_2 b$, die Bitlänge wird
-also typischerweise verdoppelt.
-In $\mathbb{F}_p$ muss anschliessend das Resultat $\mod p$
-reduziert werden, so dass die Bitlänge wieder höchstens
-$\log_2p$ ist.
-In folgenden soll gezeigt werden, dass dieser Speicheraufwand
-für eine Binärimplementation deutlich reduziert werden kann,
-wenn die Reihenfolge der Operationen modifiziert wird.
-
-Für die Multiplikation von $41\cdot 47$ rechnet man im Binärsystem
-\begin{center}
-\begin{tabular}{>{$}r<{$}}
-\texttt{{\color{darkgreen}1}0{\color{red}1}001}\cdot\texttt{101111}\\
-\hline
-\texttt{101111}\\
-\texttt{{\color{red}101111}\phantom{000}}\\
-\texttt{{\color{darkgreen}101111}\phantom{00000}}\\
-\hline
-\texttt{11110000111}\\
-\hline
-\end{tabular}
-\end{center}
-In $\mathbb{F}_{53}$ muss im Anschluss Modulo $p=53$ reduziert werden.
-
-Der Speicheraufwand entsteht zunächst dadurch, dass durch die Multiplikation
-mit $2$ die Summanden immer länger werden.
-Man kann den die Sumanden kurz halten, indem man jedesmal, wenn
-der Summand nach der Multiplikation mit $2$ grösser als $p$ geworden ist,
-$p$ subtrahiert (Abbildung~\ref{buch:crypto:fig:reduktion}).
-Ebenso kann bei nach jeder Addition das bereits reduzierten zweiten
-Faktors wieder reduziert werden.
-Die Anzahl der nötigen Reduktionsoperationen wird durch diese
-frühzeitig durchgeführten Reduktionen nicht teurer als bei der Durchführung
-des Divisionsalgorithmus.
-
-\begin{figure}
-\begin{center}
-\begin{tabular}{>{$}r<{$}>{$}r<{$}>{$}r<{$}|>{$}r<{$}>{$}r<{$}>{$}r<{$}}
-\text{Multiplikation mit $2$}&\text{Reduktion?}&\text{reduziert}
- &\text{Summanden}&\text{Summe}&\text{reduziert}
-\\
-\hline
-\texttt{101111} & &\texttt{101111}
- &\texttt{101111}&\texttt{101111}&\texttt{101111}
-\\
-\texttt{101111\phantom{0}} &\texttt{{\color{red}1011110}}&\texttt{101001}
- & & &
-\\
-\texttt{101111\phantom{00}} &\texttt{0{\color{red}111010}}&\texttt{011101}
- & & &
-\\
-\texttt{101111\phantom{000}} &\texttt{0001010}&\texttt{000101}
- &\texttt{000101}&\texttt{110100}&\texttt{110100}
-\\
-\texttt{101111\phantom{0000}} &\texttt{0010100}&\texttt{001010}
- & & &
-\\
-\texttt{101111\phantom{00000}}&\texttt{0101000}&\texttt{010100}
- &\texttt{010100}&\texttt{{\color{red}1001000}}&\texttt{10011}\rlap{$\mathstrut=19$}
-\end{tabular}
-\end{center}
-\caption{Multiplikation von $41=\texttt{101001}_2$ mit $47=\texttt{101111}_2$,
-Reduktion nach jeder Multiplikation mit $2$: falls das Resultat
-$>p$ ist, wie in den rot markierten Zeilen $p=53=\texttt{110101}_2$
-durchgeführt.
-Bei der Bildung der Summe wird ebenfalls in jedem Schritt falls nötig
-reduziert, angezeigt durch die roten Zahlen in der zweitletzten
-Spalte.
-Die Anzahl der Subtraktionen, die für die Reduktionen nötig sind, ist
-von der selben Grössenordnung wie bei der Durchführung des
-Divisionsalgorithmus.
-\label{buch:crypto:fig:reduktion}}
-\end{figure}
-
-Es ist also möglich, mit gleichem Aufwand an Operationen
-aber mit halbe Speicherplatzbedarf die Multiplikationen in $\mathbb{F}_p$
-durchzuführen.
-Die Platzeinsparung ist besonders bei Implementationen in Hardware
-hilfreich, wo on-die Speicherplatz teuer sein kann.
-
-\subsection{Rechenoperationen in $\mathbb{F}_{2^l}$
-\label{buch:subsection:rechenoperatione-in-f2l}}
-Von besonderem praktischem Interesse sind die endlichen Körper
-$\mathbb{F}_{2^l}$.
-Die arithmetischen Operationen in diesen Körpern lassen sich besonders
-effizient in Hardware realisieren.
-
-\subsubsection{Zahldarstellung}
-Ein endlicher Körper $\mathbb{F}_{2^l}$ ist definiert durch ein
-irreduzibles Polynom in $\mathbb{F}_2[X]$ vom Grad $2^l$
-\[
-m(X)
-=
-X^l + m_{l-1}X^{l-1} + m_{l-2}X^{l-2} + \dots + m_2X^2 + m_1X + m_0
-\]
-gegeben.
-Ein Element in $\mathbb{F}_2[X]/(m)$ kann dargestellt werden durch ein
-Polynom vom Grad $l-1$, also durch
-\[
-a = a_{l-1}X^{l-1} + a_{l-2}X^{l-2} +\dots + a_2X^2 + a_1X + a_0.
-\]
-In einer Maschine kann eine Zahl also als eine Bitfolge der Länge $l$
-dargestellt werden.
-
-\subsubsection{Addition}
-Die Addition in $\mathbb{F}_2$ ist in Hardware besonders leicht zu
-realisieren.
-Die Addition ist die XOR-Operation, die Multiplikation ist die UND-Verknüfung.
-Ausserdem stimmen in $\mathbb{F}_2$ Addition und Subtraktion überein.
-
-Die Addition zweier Polynome erfolgt komponentenweise.
-Die Addition von zwei Elemente von $\mathbb{F}_{2^l}$ kann also
-durch die bitweise XOR-Verknüpfung der Darstellungen der Summanden
-erfolgen.
-Diese Operation ist in einem einzigen Maschinenzyklus realisierbar.
-Die Subtraktion, die für die Reduktionsoperation module $m(X)$ nötig
-ist, ist mit der Addition identisch.
-
-\subsubsection{Multiplikation}
-Die Multiplikation zweier Polynome benötigt zunächst die Multiplikation
-mit $X$, wodurch der Grad des Polynoms ansteigt und möglicherweise so
-gross wird, dass eine Reduktionsoperation modulo $m(X)$ nötig wird.
-Die Reduktion wird immer dann nötig, wenn der Koeffizient von $X^l$
-nicht $0$ ist.
-Der Koeffizient kann dann zum Verschwinden gebracht werden, indem
-$m(X)$ addiert wird.
-
-\begin{figure}
-\centering
-\includegraphics{chapters/90-crypto/images/schieberegister.pdf}
-\caption{Implementation der Multiplikation mit $X$ in einem
-endlichen Körper $\mathbb{F}_{2^l}$ mit dem Minimalpolynom
-$m(X) = X^8+X^4+X^3+X^+1$ als Feedback-Schieberegister.
-\label{buch:crypto:fig:schieberegister}}
-\end{figure}
-
-In Abbildung~\ref{buch:crypto:fig:schieberegister} wird gezeigt,
-wie die Reduktion erfolgt, wenn die Multiplikation mit $X$, also der
-Shift nach links, einen Überlauf ergibt.
-Das Minimalpolynom $m(X)=X^8+X^4+X^3+X+1$ bedeutet, dass in $\mathbb{F}_{2^l}$
-$X^8=X^4+X^3+X+1$ gilt, so dass man das Überlaufbit durch
-$X^4+X^3+X+1$ ersetzen und addieren kann.
-
-Ein Produktes $p(X)\cdot q(X)$, wobei $p(X)$ und
-$q(X)$ Repräsentaten von Elementen $\mathbb{F}_{2^l}$ sind, kann jetzt
-wie folgt berechnet werden.
-Mit dem Schieberegister werden die Vielfachen $X^k\cdot p(X)$
-für $k=0,\dots,l-1$ berechnet.
-Diejenigen Vielfachen, für die der Koeffizient von $X^k$ in $q(X)$
-von $0$ verschieden ist werden aufsummiert und ergeben das Produkt.
-Der Prozess in Abbildung~\ref{buch:crypto:fig:multiplikation}
-dargestellt.
-
-\begin{figure}
-\centering
-\includegraphics[width=\textwidth]{chapters/90-crypto/images/multiplikation.pdf}
-\caption{Multiplikation zweier Elemente von $\mathbb{F}_{2^l}$.
-Mit Hilfe des Schieberegisters am linken Rand werden die Produkte
-$X\cdot p(X)$, $X^2\cdot p(X),\dots,X^7\cdot p(X)$ nach der in
-Abbildung~\ref{buch:crypto:fig:schieberegister} dargestellten
-Methode berechnet.
-Am rechten Rand werden diejenigen $X^k\cdot p(X)$ aufaddiert,
-für die der $X^k$-Koeffizient von $q(X)$ von $0$ verschieden ist.
-\label{buch:crypto:fig:multiplikation}}
-\end{figure}
-
-
-% XXX Beispiel F einer Oakley-Gruppe
-
+%
+% arith.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Arithmetik für die Kryptographie
+\label{buch:section:arithmetik-fuer-kryptographie}}
+\rhead{Arithmetik für die Kryptographie}
+Die Algorithmen der mathematischen Kryptographie basieren
+auf den Rechenoperationen in grossen, aber endlichen Körpern.
+Für die Division liefert der euklidische Algorithmus eine
+Methode, der in so vielen Schritten die Inverse findet,
+wie Dividend und Divisor Binärstellen haben.
+Dies ist weitgehend optimal.
+
+Die Division ist umkehrbar, in der Kryptographie strebt man aber an,
+Funktionen zu konstruieren, die nur mit grossem Aufwand umkehrbar sind.
+Eine solche Funktion ist das Potenzieren in einem endlichen Körper.
+Die Berechnung von Potenzen durch wiederholte Multiplikation ist jedoch
+prohibitiv aufwendig, daher ist ein schneller Potenzierungsalgorithmus
+nötig, der in Abschnitt~\ref{buch:subsection:potenzieren} beschrieben
+wird.
+Bei der Verschlüsselung grosser Datenmengen wie zum Beispiel bei
+der Verschlüsselung ganzer Harddisks mit Hilfe des AES-Algorithmus
+kommt es auf die Geschwindigkeit auch der elementarsten Operationen
+in den endlichen Körpern an.
+Solche Methoden werden in den Abschnitten
+\ref{buch:subsection:rechenoperationen-in-fp}
+und
+\ref{buch:subsection:rechenoperatione-in-f2l}
+besprochen.
+
+\subsection{Potenzieren
+\label{buch:subsection:potenzieren}}
+Wir gehen davon aus, dass wir einen schnellen Algorithmus zur
+Berechnung des Produktes zweier Elemente $a,b$ in einer
+beliebigen Gruppe $G$ haben.
+Die Gruppe $G$ kann die Multiplikation der ganzen oder reellen Zahlen
+sein, dies wird zum Beispiel in Implementation der Potenzfunktion
+verwendet.
+Für kryptographische Anwendungen ist $G$ die multiplikative Gruppe
+eines endlichen Körpers oder eine elliptische Kurve.
+
+Zur Berechnung von $a^k$ sind bei einer naiven Durchführung des
+Algorithmus $k-1$ Multiplikationen nötig, immer sofort gefolgt
+von einer Reduktion $\mod p$ um sicherzustellen, dass die Resultate
+nicht zu gross werden.
+Ist $l$ die Anzahl der Binärstellen von $k$, dann benötigt dieser
+naive Algorithmus $O(2^l)$ Multiplikationen, die Laufzeit wächst
+also exponentiell mit der Bitlänge von $k$ an.
+Der nachfolgend beschriebene Algorithmus reduziert die Laufzeit auf
+die $O(l)$.
+
+Zunächst schreiben wir den Exponenten $k$ in binärer Form als
+\[
+k = k_l2^l + k_{l-1}2^{l-1} + \dots k_22^2+k_12^1 k_02^0.
+\]
+Die Potenz $a^k$ kann dann geschrieben werden als
+\[
+a^k
+=
+a^{k_l2^l} \cdot a^{k_{l-1}2^{l-1}} \cdot \dots \cdot
+a^{k_22^2} \cdot a^{k_12^1} \cdot a^{k_02^0}
+\]
+Nur diejenigen Faktoren tragen etwas bei, für die $k_i\ne 0$ ist.
+Die Potenz kann man daher auch schreiben als
+\[
+a^k
+=
+\prod_{k_i\ne 0} a^{2^i}.
+\]
+Es sind also nur so viele Faktoren zu berücksichtigen, wie $k$
+Binärstellen $1$ hat.
+
+Die einzelnen Faktoren $a^{2^i}$ können durch wiederholtes Quadrieren
+erhalten werden:
+\[
+a^{2^i} = a^{2\cdot 2^{i-1}} = (a^{2^{i-1}})^2,
+\]
+also durch maximal $l-1$ Multiplikationen.
+Wenn $k$ keine Ganzzahl ist sondern binäre Nachkommastellen hat, also
+\[
+k=k_l2^l + \dots + k_12^1 + k_02^0 + k_{-1}2^{-1} + k_{-2}2^{-2}+\dots,
+\]
+dann können die Potenzen $a^{2^{-i}}$ durch wiederholtes Wurzelziehen
+\[
+a^{2^{-i}} = a^{\frac12\cdot 2^{-i+1}} = \sqrt{a^{2^{-i+1}}}
+\]
+gefunden werden.
+Die Berechnung der Quadratwurzel lässt sich in Hardware effizient
+implementieren.
+
+\begin{algorithmus}
+Der folgende Algorithmus berechnet $a^k$ in $O(\log_2(k))$
+Multiplikationen
+\begin{enumerate}
+\item Initialisiere $p=1$ und $q=a$
+\item Falls $k$ ungerade ist, setze $p:=p\cdot q$
+\item Setze $q:=q^2$ und $k := k/2$, wobei die ganzzahlige Division durch $2$
+am effizientesten als Rechtsshift implementiert werden kann.
+\item Falls $k>0$, fahre weiter bei 2.
+\end{enumerate}
+\end{algorithmus}
+
+\begin{beispiel}
+Die Berechnung von $1.1^{17}$ mit diesem Algorithmus ergibt
+\begin{enumerate}
+\item $p=1$, $q=1.1$
+\item $k$ ist ungerade: $p:=1.1$
+\item $q:=q^2=1.21$, $k := 8$
+\item $k$ ist gerade
+\item $q:=q^2=1.4641$, $k := 4$
+\item $k$ ist gerade
+\item $q:=q^2=2.14358881$, $k := 2$
+\item $k$ ist gerade
+\item $q:=q^2=4.5949729863572161$, $k := 1$
+\item $k$ ist ungerade: $p:=1.1\cdot p = 5.05447028499293771$
+\item $k:=0$
+\end{enumerate}
+Multiplikationen sind nur nötig in den Schritten 3, 5, 7, 9, 10, es
+werden also genau $5$ Multiplikationen ausgeführt.
+\end{beispiel}
+
+\subsection{Rechenoperationen in $\mathbb{F}_p$
+\label{buch:subsection:rechenoperationen-in-fp}}
+Die Multiplikation macht aus zwei Faktoren $a$ und $b$ ein
+Resultat mit Bitlänge $\log_2 a+\log_2 b$, die Bitlänge wird
+also typischerweise verdoppelt.
+In $\mathbb{F}_p$ muss anschliessend das Resultat $\mod p$
+reduziert werden, so dass die Bitlänge wieder höchstens
+$\log_2p$ ist.
+In folgenden soll gezeigt werden, dass dieser Speicheraufwand
+für eine Binärimplementation deutlich reduziert werden kann,
+wenn die Reihenfolge der Operationen modifiziert wird.
+
+Für die Multiplikation von $41\cdot 47$ rechnet man im Binärsystem
+\begin{center}
+\begin{tabular}{>{$}r<{$}}
+\texttt{{\color{darkgreen}1}0{\color{red}1}001}\cdot\texttt{101111}\\
+\hline
+\texttt{101111}\\
+\texttt{{\color{red}101111}\phantom{000}}\\
+\texttt{{\color{darkgreen}101111}\phantom{00000}}\\
+\hline
+\texttt{11110000111}\\
+\hline
+\end{tabular}
+\end{center}
+In $\mathbb{F}_{53}$ muss im Anschluss Modulo $p=53$ reduziert werden.
+
+Der Speicheraufwand entsteht zunächst dadurch, dass durch die Multiplikation
+mit $2$ die Summanden immer länger werden.
+Man kann den die Sumanden kurz halten, indem man jedesmal, wenn
+der Summand nach der Multiplikation mit $2$ grösser als $p$ geworden ist,
+$p$ subtrahiert (Abbildung~\ref{buch:crypto:fig:reduktion}).
+Ebenso kann bei nach jeder Addition das bereits reduzierten zweiten
+Faktors wieder reduziert werden.
+Die Anzahl der nötigen Reduktionsoperationen wird durch diese
+frühzeitig durchgeführten Reduktionen nicht teurer als bei der Durchführung
+des Divisionsalgorithmus.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{>{$}r<{$}>{$}r<{$}>{$}r<{$}|>{$}r<{$}>{$}r<{$}>{$}r<{$}}
+\text{Multiplikation mit $2$}&\text{Reduktion?}&\text{reduziert}
+ &\text{Summanden}&\text{Summe}&\text{reduziert}
+\\
+\hline
+\texttt{101111} & &\texttt{101111}
+ &\texttt{101111}&\texttt{101111}&\texttt{101111}
+\\
+\texttt{101111\phantom{0}} &\texttt{{\color{red}1011110}}&\texttt{101001}
+ & & &
+\\
+\texttt{101111\phantom{00}} &\texttt{0{\color{red}111010}}&\texttt{011101}
+ & & &
+\\
+\texttt{101111\phantom{000}} &\texttt{0001010}&\texttt{000101}
+ &\texttt{000101}&\texttt{110100}&\texttt{110100}
+\\
+\texttt{101111\phantom{0000}} &\texttt{0010100}&\texttt{001010}
+ & & &
+\\
+\texttt{101111\phantom{00000}}&\texttt{0101000}&\texttt{010100}
+ &\texttt{010100}&\texttt{{\color{red}1001000}}&\texttt{10011}\rlap{$\mathstrut=19$}
+\end{tabular}
+\end{center}
+\caption{Multiplikation von $41=\texttt{101001}_2$ mit $47=\texttt{101111}_2$,
+Reduktion nach jeder Multiplikation mit $2$: falls das Resultat
+$>p$ ist, wie in den rot markierten Zeilen $p=53=\texttt{110101}_2$
+durchgeführt.
+Bei der Bildung der Summe wird ebenfalls in jedem Schritt falls nötig
+reduziert, angezeigt durch die roten Zahlen in der zweitletzten
+Spalte.
+Die Anzahl der Subtraktionen, die für die Reduktionen nötig sind, ist
+von der selben Grössenordnung wie bei der Durchführung des
+Divisionsalgorithmus.
+\label{buch:crypto:fig:reduktion}}
+\end{figure}
+
+Es ist also möglich, mit gleichem Aufwand an Operationen
+aber mit halbe Speicherplatzbedarf die Multiplikationen in $\mathbb{F}_p$
+durchzuführen.
+Die Platzeinsparung ist besonders bei Implementationen in Hardware
+hilfreich, wo on-die Speicherplatz teuer sein kann.
+
+\subsection{Rechenoperationen in $\mathbb{F}_{2^l}$
+\label{buch:subsection:rechenoperatione-in-f2l}}
+Von besonderem praktischem Interesse sind die endlichen Körper
+$\mathbb{F}_{2^l}$.
+Die arithmetischen Operationen in diesen Körpern lassen sich besonders
+effizient in Hardware realisieren.
+
+\subsubsection{Zahldarstellung}
+Ein endlicher Körper $\mathbb{F}_{2^l}$ ist definiert durch ein
+irreduzibles Polynom in $\mathbb{F}_2[X]$ vom Grad $2^l$
+\[
+m(X)
+=
+X^l + m_{l-1}X^{l-1} + m_{l-2}X^{l-2} + \dots + m_2X^2 + m_1X + m_0
+\]
+gegeben.
+Ein Element in $\mathbb{F}_2[X]/(m)$ kann dargestellt werden durch ein
+Polynom vom Grad $l-1$, also durch
+\[
+a = a_{l-1}X^{l-1} + a_{l-2}X^{l-2} +\dots + a_2X^2 + a_1X + a_0.
+\]
+In einer Maschine kann eine Zahl also als eine Bitfolge der Länge $l$
+dargestellt werden.
+
+\subsubsection{Addition}
+Die Addition in $\mathbb{F}_2$ ist in Hardware besonders leicht zu
+realisieren.
+Die Addition ist die XOR-Operation, die Multiplikation ist die UND-Verknüfung.
+Ausserdem stimmen in $\mathbb{F}_2$ Addition und Subtraktion überein.
+
+Die Addition zweier Polynome erfolgt komponentenweise.
+Die Addition von zwei Elemente von $\mathbb{F}_{2^l}$ kann also
+durch die bitweise XOR-Verknüpfung der Darstellungen der Summanden
+erfolgen.
+Diese Operation ist in einem einzigen Maschinenzyklus realisierbar.
+Die Subtraktion, die für die Reduktionsoperation module $m(X)$ nötig
+ist, ist mit der Addition identisch.
+
+\subsubsection{Multiplikation}
+Die Multiplikation zweier Polynome benötigt zunächst die Multiplikation
+mit $X$, wodurch der Grad des Polynoms ansteigt und möglicherweise so
+gross wird, dass eine Reduktionsoperation modulo $m(X)$ nötig wird.
+Die Reduktion wird immer dann nötig, wenn der Koeffizient von $X^l$
+nicht $0$ ist.
+Der Koeffizient kann dann zum Verschwinden gebracht werden, indem
+$m(X)$ addiert wird.
+
+\begin{figure}
+\centering
+\includegraphics{chapters/90-crypto/images/schieberegister.pdf}
+\caption{Implementation der Multiplikation mit $X$ in einem
+endlichen Körper $\mathbb{F}_{2^l}$ mit dem Minimalpolynom
+$m(X) = X^8+X^4+X^3+X^+1$ als Feedback-Schieberegister.
+\label{buch:crypto:fig:schieberegister}}
+\end{figure}
+
+In Abbildung~\ref{buch:crypto:fig:schieberegister} wird gezeigt,
+wie die Reduktion erfolgt, wenn die Multiplikation mit $X$, also der
+Shift nach links, einen Überlauf ergibt.
+Das Minimalpolynom $m(X)=X^8+X^4+X^3+X+1$ bedeutet, dass in $\mathbb{F}_{2^l}$
+$X^8=X^4+X^3+X+1$ gilt, so dass man das Überlaufbit durch
+$X^4+X^3+X+1$ ersetzen und addieren kann.
+
+Ein Produktes $p(X)\cdot q(X)$, wobei $p(X)$ und
+$q(X)$ Repräsentaten von Elementen $\mathbb{F}_{2^l}$ sind, kann jetzt
+wie folgt berechnet werden.
+Mit dem Schieberegister werden die Vielfachen $X^k\cdot p(X)$
+für $k=0,\dots,l-1$ berechnet.
+Diejenigen Vielfachen, für die der Koeffizient von $X^k$ in $q(X)$
+von $0$ verschieden ist werden aufsummiert und ergeben das Produkt.
+Der Prozess in Abbildung~\ref{buch:crypto:fig:multiplikation}
+dargestellt.
+
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/90-crypto/images/multiplikation.pdf}
+\caption{Multiplikation zweier Elemente von $\mathbb{F}_{2^l}$.
+Mit Hilfe des Schieberegisters am linken Rand werden die Produkte
+$X\cdot p(X)$, $X^2\cdot p(X),\dots,X^7\cdot p(X)$ nach der in
+Abbildung~\ref{buch:crypto:fig:schieberegister} dargestellten
+Methode berechnet.
+Am rechten Rand werden diejenigen $X^k\cdot p(X)$ aufaddiert,
+für die der $X^k$-Koeffizient von $q(X)$ von $0$ verschieden ist.
+\label{buch:crypto:fig:multiplikation}}
+\end{figure}
+
+
+% XXX Beispiel F einer Oakley-Gruppe
+
diff --git a/buch/chapters/90-crypto/chapter.tex b/buch/chapters/90-crypto/chapter.tex
index 920941d..d2fcbbf 100644
--- a/buch/chapters/90-crypto/chapter.tex
+++ b/buch/chapters/90-crypto/chapter.tex
@@ -1,31 +1,31 @@
-%
-% chapter.tex -- Anwendungen von Matrizen in der Codierungstheorie und
-% Kryptographie
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-% !TeX spellcheck = de_CH
-\chapter{Anwendungen in Kryptographie und Codierungstheorie
-\label{buch:chapter:kryptographie}}
-\lhead{Kryptographie und Codierungstheorie}
-\rhead{}
-Die algebraische Theorie der endlichen Körper hat sich als besonders
-nützliche herausgestellt in der Krypographie.
-Die Eigenschaften dieser Körper sind reichhaltig genug, um
-kryptographsch widerstandsfähige Algorithmen zu liefern, die
-auch in ihrer Stärke beliebig skaliert werden können.
-Gleichzeitig liefert die Algebra auch eine effiziente Implementierung.
-In diesem Abschnitt soll dies an einigen Beispielen gezeigt werden.
-
-\input{chapters/90-crypto/arith.tex}
-\input{chapters/90-crypto/ff.tex}
-\input{chapters/90-crypto/aes.tex}
-%\input{chapters/90-crypto/rs.tex}
-
-\section*{Übungsaufgaben}
-\rhead{Übungsaufgaben}
-\aufgabetoplevel{chapters/90-crypto/uebungsaufgaben}
-\begin{uebungsaufgaben}
-\uebungsaufgabe{9001}
-\end{uebungsaufgaben}
-
+%
+% chapter.tex -- Anwendungen von Matrizen in der Codierungstheorie und
+% Kryptographie
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+% !TeX spellcheck = de_CH
+\chapter{Anwendungen in Kryptographie und Codierungstheorie
+\label{buch:chapter:kryptographie}}
+\lhead{Kryptographie und Codierungstheorie}
+\rhead{}
+Die algebraische Theorie der endlichen Körper hat sich als besonders
+nützliche herausgestellt in der Krypographie.
+Die Eigenschaften dieser Körper sind reichhaltig genug, um
+kryptographsch widerstandsfähige Algorithmen zu liefern, die
+auch in ihrer Stärke beliebig skaliert werden können.
+Gleichzeitig liefert die Algebra auch eine effiziente Implementierung.
+In diesem Abschnitt soll dies an einigen Beispielen gezeigt werden.
+
+\input{chapters/90-crypto/arith.tex}
+\input{chapters/90-crypto/ff.tex}
+\input{chapters/90-crypto/aes.tex}
+%\input{chapters/90-crypto/rs.tex}
+
+\section*{Übungsaufgaben}
+\rhead{Übungsaufgaben}
+\aufgabetoplevel{chapters/90-crypto/uebungsaufgaben}
+\begin{uebungsaufgaben}
+\uebungsaufgabe{9001}
+\end{uebungsaufgaben}
+
diff --git a/buch/chapters/90-crypto/ff.tex b/buch/chapters/90-crypto/ff.tex
index 8a38f93..535b359 100644
--- a/buch/chapters/90-crypto/ff.tex
+++ b/buch/chapters/90-crypto/ff.tex
@@ -1,664 +1,664 @@
-%
-% ff.tex -- Kryptographie und endliche Körper
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-
-\section{Kryptographie und endliche Körper
-\label{buch:section:kryptographie-und-endliche-koerper}}
-\rhead{Kryptographie und endliche Körper}
-
-\subsection{Potenzen in $\mathbb{F}_p$ und diskreter Logarithmus
-\label{buch:subsection:potenzen-diskreter-logarithmus}}
-Für kryptographische Anwendungen wird eine einfach zu berechnende
-Funktion benötigt,
-die ohne zusätzliches Wissen, üblicherweise der Schlüssel genannt,
-nicht ohne weiteres umkehrbar ist.
-Die arithmetischen Operationen in einem endlichen Körper sind
-mit geringem Aufwand durchführbar.
-Für die ``schwierigste'' Operation, die Division, steht der
-euklidische Algorithmus zur Verfügung.
-
-Die nächstschwierigere Operation ist die Potenzfunktion.
-Für $g\in \Bbbk$ und $a\in\mathbb{N}$ ist die Potenz $g^a\in\Bbbk$
-natürlich durch die wiederholte Multiplikation definiert.
-In der Praxis werden aber $g$ und $a$ Zahlen mit vielen Binärstellen
-sein, die die wiederholte Multiplikation ist daher sicher nicht
-effizient, das Kriterium der einfachen Berechenbarkeit scheint
-also nicht erfüllt.
-Der folgende Algorithmus berechnet die Potenz in $O(\log_2 a)$
-Multiplikationen.
-
-\begin{algorithmus}[Divide-and-conquer]
-\label{buch:crypto:algo:divide-and-conquer}
-Sei $a=a_0 + a_12^1 + a_22^2 + \dots + a_k2^k$ die Binärdarstellung
-der Zahl $a$.
-\begin{enumerate}
-\item setze $f=g$, $x=1$, $i=0$
-\label{divide-and-conquer-1}
-\item solange $i\ge k$ ist, führe aus
-\label{divide-and-conquer-2}
-\begin{enumerate}
-\item
-\label{divide-and-conquer-3}
-falls $a_i=1$ setze $x \coloneqq x \cdot f$
-\item
-\label{divide-and-conquer-4}
-$i \coloneqq i+1$ und $f\coloneqq f\cdot f$
-\end{enumerate}
-\end{enumerate}
-Die Potenz $x=g^a$ kann so in $O(\log_2a)$ Multiplikationen
-berechnet werden.
-\end{algorithmus}
-
-\begin{proof}[Beweis]
-Die Initalisierung in Schritt~\ref{divide-and-conquer-1} stellt sicher,
-dass $x$ den Wert $g^0$ hat.
-Schritt~\ref{divide-and-conquer-4} stellt sicher,
-dass die Variable $f$ immer den Wert $g^{2^i}$ hat.
-Im Schritt~\ref{divide-and-conquer-3} wird zu $x$ die Potenz
-$g^{a_i2^i}$ hinzumultipliziert.
-Am Ende des Algorithmus hat daher $x$ den Wert
-\[
-x = g^{a_02^0} \cdot g^{a_12^1} \cdot g^{a_22^2} \cdot\ldots\cdot 2^{a_k2^k}
-=
-g^{a_0+a_12+a_22^2+\dots+a_k2^k}
-=
-g^a.
-\]
-Die Schleife wird $\lfloor1+\log_2ab\rfloor$ mal durchlaufen.
-In jedem Fall wird auf jeden Fall die Multiplikation in
-Schritt~\ref{divide-and-conquer-4} durchgeführt
-und im schlimmsten Fall auch noch die Multiplikation in
-Schritt~\ref{divide-and-conquer-3}.
-Es werden also nicht mehr als $2\lfloor 1+\log_2a\rfloor=O(\log_2a)$
-Multiplikationen durchgeführt.
-\end{proof}
-
-\begin{beispiel}
-Man berechne die Potenz $7^{2021}$ in $\mathbb{F}_p$.
-Die Binärdarstellung von 2021 ist $2021_{10}=\texttt{11111100101}_2$.
-Wir stellen die nötigen Operationen des
-Algorithmus~\ref{buch:crypto:algo:divide-and-conquer} in der folgenden
-Tabelle
-\begin{center}
-\begin{tabular}{|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|}
-\hline
- i& f& a_i& x\\
-\hline
- 0& 7& 1& 7\\
- 1& 49& 0& 7\\
- 2&1110& 1& 24\\
- 3& 486& 0& 24\\
- 4&1234& 0& 24\\
- 5& 667& 1& 516\\
- 6& 785& 1& 977\\
- 7& 418& 1& 430\\
- 8& 439& 1& 284\\
- 9& 362& 1& 819\\
-10& 653& 1& 333\\
-\hline
-\end{tabular}
-\end{center}
-Daraus liest man ab, dass $7^{2021}=333\in\mathbb{F}_{1291}$.
-\end{beispiel}
-
-Die Tabelle suggeriert, dass die Potenzen von $g$ ``wild'', also
-scheinbar ohne System in $\mathbb{F}_p$ herumspringen.
-Dies deutet an, dass die Umkehrung der Exponentialfunktion in $\mathbb{F}_p$
-schwierig ist.
-Die Umkehrfunktion der Exponentialfunktion, die Umkehrfunktion von
-$x\mapsto g^x$ in $\mathbb{F}_p$ heisst der {\em diskrete Logarithmus}.
-\index{diskreter Logarithmus}%
-Tatsächlich ist der diskrete Logarithmus ähnlich schwierig zu bestimmen
-wie das Faktorisieren von Zahlen, die das Produkt grosser
-Primafaktoren ähnlicher Grössenordnung wie $p$ sind.
-Die Funktion $x\mapsto g^x$ ist die gesuchte, schwierig zu invertierende
-Funktion.
-
-Auf dern ersten Blick scheint der
-Algorithmus~\ref{buch:crypto:algo:divide-and-conquer}
-den Nachteil zu haben, dass erst die Binärdarstellung der Zahl $a$
-ermittelt werden muss.
-In einem Computer ist dies aber normalerweise kein Problem, da $a$
-im Computer ohnehin binär dargestellt ist.
-Die Binärziffern werden in der Reihenfolge vom niederwertigsten zum
-höchstwertigen Bit benötigt.
-Die folgende Modifikation des Algorithmus ermittelt laufend
-auch die Binärstellen von $a$.
-Die dazu notwendigen Operationen sind im Binärsystem besonders
-effizient implementierbar, die Division durch 2 ist ein Bitshift, der
-Rest ist einfach das niederwertigste Bit der Zahl.
-
-\begin{algorithmus}
-\label{buch:crypto:algo:divide-and-conquer2}
-\begin{enumerate}
-\item
-Setze $f=g$, $x=1$, $i=0$
-\item
-Solange $a>0$ ist, führe aus
-\begin{enumerate}
-\item
-Verwende den euklidischen Algorithmus um $r$ und $b$ zu bestimmen mit $a=2b+r$
-\item
-Falls $r=1$ setze $x \coloneqq x \cdot f$
-\item
-$i \coloneqq i+1$, $a = b$ und $f\coloneqq f\cdot f$
-\end{enumerate}
-\end{enumerate}
-Die Potenz $x=g^a$ kann so in $O(\log_2a)$ Multiplikationen
-berechnet werden.
-\end{algorithmus}
-
-
-%
-% Diffie-Hellman Schlüsseltausch
-%
-\subsection{Diffie-Hellman-Schlüsseltausch
-\label{buch:subsection:diffie-hellman}}
-Eine Grundaufgabe der Verschlüsselung im Internet ist, dass zwei
-Kommunikationspartner einen gemeinsamen Schlüssel für die Verschlüsselung
-der Daten aushandeln können müssen.
-Es muss davon ausgegangen werden, dass die Kommunikation abgehört wird.
-Trotzdem soll es für einen Lauscher nicht möglich sein, den
-ausgehandelten Schlüssel zu ermitteln.
-
-% XXX Historisches zu Diffie und Hellman
-
-Die beiden Partner $A$ und $B$ einigen sich zunächst auf eine Zahl $g$,
-die öffentlich bekannt sein darf.
-Weiter erzeugen sie eine zufällige Zahl $a$ und $b$, die sie geheim
-halten.
-Das Verfahren soll aus diesen beiden Zahlen einen Schlüssel erzeugen,
-den beide Partner berechnen können, ohne dass sie $a$ oder $b$
-übermitteln müssen.
-Die beiden Zahlen werden daher auch die privaten Schlüssel genannt.
-
-Die Idee von Diffie und Hellman ist jetzt, die Werte $x=g^a$ und $y=g^b$
-zu übertragen.
-In $\mathbb{R}$ würden dadurch natürlich dem Lauscher auch $a$ offenbart,
-er könnte einfach $a=\log_g x$ berechnen.
-Ebenso kann auch $b$ als $b=\log_g y$ erhalten werden, die beiden
-privaten Schlüssel wären also nicht mehr privat.
-Statt der Potenzfunktion in $\mathbb{R}$ muss also eine Funktion
-verwendet werden, die nicht so leicht umgekehrt werden kann.
-Die Potenzfunktion in $\mathbb{F}_p$ erfüllt genau diese Eigenschaft.
-Die Kommunikationspartner einigen sich also auch noch auf die (grosse)
-Primzahl $p$ und übermitteln $x=g^a\in\mathbb{F}_p$ und
-$y=g^b\in\mathbb{F}_p$.
-
-\begin{figure}
-\centering
-\includegraphics{chapters/90-crypto/images/dh.pdf}
-\caption{Schlüsselaustausch nach Diffie-Hellman.
-Die Kommunikationspartner $A$ und $B$ einigen sich öffentlich auf
-$p\in\mathbb{N}$ und $g\in\mathbb{F}_p$.
-$A$ wählt dann einen privaten Schlüssel $a\in\mathbb{N}$ und
-$B$ wählt $b\in\mathbb{N}$, sie tauschen dann $x=g^a$ und $y=g^b$
-aus.
-$A$ erhält den gemeinsamen Schlüssel aus $y^a$, $B$ erhält ihn
-aus $x^b$.
-\label{buch:crypto:fig:dh}}
-\end{figure}
-
-Aus $x$ und $y$ muss jetzt der gemeinsame Schlüssel abgeleitet werden.
-$A$ kennt $y=g^b$ und $a$, $B$ kennt $x=g^a$ und $b$.
-Beide können die Zahl $s=g^{ab}\in\mathbb{F}_p$ berechnen.
-$A$ macht das, indem er $y^a=(g^b)^a = g^{ab}$ rechnet,
-$B$ rechnet $x^b = (g^a)^b = g^{ab}$, beide natürlich in $\mathbb{F}_p$.
-Der Lauscher kann aber $g^{ab}$ nicht ermitteln, dazu müsste er
-$a$ oder $b$ ermitteln können.
-Die Zahl $s=g^{ab}$ kann also als gemeinsamer Schlüssel verwendet
-werden.
-
-
-
-\subsection{Elliptische Kurven
-\label{buch:subsection:elliptische-kurven}}
-Das Diffie-Hellman-Verfahren basiert auf der Schwierigkeit, in einem
-Körper $\mathbb{F}_p$ die Gleichung $a^x=b$ nach $x$ aufzulösen.
-Die Addition in $\mathbb{F}_p$ wird dazu nicht benötigt.
-Es reicht, eine Menge mit einer Multiplikation zu haben, in der das
-die Gleichung $a^x=b$ schwierig zu lösen ist.
-Ein Gruppe wäre also durchaus ausreichend.
-
-Ein Kandidat für eine solche Gruppe könnte der Einheitskreis
-$S^1=\{z\in\mathbb{C}\;|\; |z|=1\}$ in der komplexen Ebene sein.
-Wählt man eine Zahl $g=e^{i\alpha}$, wobei $\alpha$ ein irrationales
-Vielfaches von $\pi$ ist, dann sind alle Potenzen $g^n$ für natürliche
-Exponenten voneinander verschieden.
-Wäre nämlich $g^{n_1}=g^{n_2}$, dann wäre $e^{i\alpha(n_1-n_2)}=1$ und
-somit müsste $\alpha=2k\pi/(n_1-n_2)$ sein.
-Damit wäre aber $\alpha$ ein rationales Vielfaches von $\pi$, im Widerspruch
-zur Voraussetzung.
-Die Abbildung $n\mapsto g^n\in S^1$ ist auf den ersten Blick etwa ähnlich
-undurchschaubar wie die Abbildung $n\mapsto g^n\in\mathbb{F}_p$.
-Es gibt zwar die komplexe Logarithmusfunktion, mit der man $n$ bestimmen
-kann, dazu muss man aber den Wert von $g^n$ mit beliebiger Genauigkeit
-kennen, denn die Werte von $g^n$ können beliebig nahe beieinander liegen.
-
-Der Einheitskreis ist die Lösungsmenge der Gleichung $x^2+y^2=1$ für
-reelle Koordinaten $x$ und $y$,
-doch Rundungsunsicherheiten verunmöglichen den Einsatz in einem
-Verfahren ähnlich dem Diffie-Hellman-Verfahren.
-Dieses Problem kann gelöst werden, indem für die Variablen Werte
-aus einem endlichen Körper verwendet werden.
-Gesucht ist also eine Gleichung in zwei Variablen, deren Lösungsmenge
-in einem endlichen Körper eine Gruppenstruktur trägt.
-Die Lösungsmenge ist eine ``Kurve'' von Punkten mit
-Koordinaten in einem endlichen Körper.
-
-In diesem Abschnitt wird gezeigt, dass sogenannte elliptische Kurven
-über endlichen Körpern genau die verlangen Eigenschaften haben.
-
-\subsubsection{Elliptische Kurven}
-Elliptische Kurven sind Lösungen einer Gleichung der Form
-\begin{equation}
-Y^2+XY=X^3+aX+b
-\label{buch:crypto:eqn:ellipticcurve}
-\end{equation}
-mit Werten von $X$ und $Y$ in einem geeigneten Körper.
-Die Koeffizienten $a$ und $b$ müssen so gewählt werden, dass die
-Gleichung~\eqref{buch:crypto:eqn:ellipticcurve} genügend viele
-Lösungen hat.
-Über den komplexen Zahlen hat die Gleichung natürlich für jede Wahl von
-$X$ drei Lösungen.
-Für einen endlichen Körper können wir dies im allgemeinen nicht erwarten,
-aber wenn wir genügend viele Wurzeln zu $\mathbb{F}$ hinzufügen können wir
-mindestens erreichen, dass die Lösungsmenge so viele Elemente hat,
-dass ein Versuch, die Gleichung $g^x=b$ mittels Durchprobierens zu
-lösen, zum Scheitern verurteil ist.
-
-\begin{definition}
-\label{buch:crypto:def:ellipticcurve}
-Die {\em elliptische Kurve} $E_{a,b}(\Bbbk)$ über dem Körper $\Bbbk$ ist
-die Menge
-\[
-E_{a,b}(\Bbbk)
-=
-\{(X,Y)\in\Bbbk^2\;|\;Y^2+XY=X^3+aX+b\},
-\]
-für $a,b\in\Bbbk$.
-\end{definition}
-
-Um die Anschauung zu vereinfachen, werden wir elliptische Kurven über
-dem Körper $\mathbb{R}$ visualisieren.
-Die daraus gewonnenen geometrischen Einsichten werden wir anschliessend
-algebraisch umsetzen.
-In den reellen Zahlen kann man die
-Gleichung~\eqref{buch:crypto:eqn:ellipticcurve}
-noch etwas vereinfachen.
-Indem man in \eqref{buch:crypto:eqn:ellipticcurve}
-quadratisch ergänzt, bekommt man
-\begin{align}
-Y^2 + XY + \frac14X^2 &= X^3+\frac14 X^2 +aX+b
-\notag
-\\
-\Rightarrow\qquad
-v^2&=X^3+\frac14X^2+aX+b,
-\label{buch:crypto:eqn:ell2}
-\end{align}
-indem man $v=Y+\frac12X$ setzt.
-Man beachte, dass man diese Substition nur machen kann, wenn $\frac12$
-definiert ist.
-In $\mathbb{R}$ ist dies kein Problem, aber genau über den Körpern
-mit Charakteristik $2$, die wir für die Computer-Implementation
-bevorzugen, ist dies nicht möglich.
-Es geht hier aber nur um die Visualisierung.
-
-Auch die Form \eqref{buch:crypto:eqn:ell2} lässt sich noch etwas
-vereinfachen.
-Setzt man $X=u-\frac1{12}$, dann verschwindet nach einiger Rechnung,
-die wir hier nicht durchführen wollen, der quadratische Term
-auf der rechten Seite.
-Die interessierenden Punkte sind Lösungen der einfacheren Gleichung
-\begin{equation}
-v^2
-=
-u^3+\biggl(a-\frac{1}{48}\biggr)u + b-\frac{a}{12}+\frac{1}{864}
-=
-u^3+Au+B.
-\label{buch:crypto:ellvereinfacht}
-\end{equation}
-In dieser Form ist mit $(u,v)$ immer auch $(u,-v)$ eine Lösung,
-die Kurve ist symmetrisch bezüglich der $u$-Achse.
-Ebenso kann man ablesen, dass nur diejenigen $u$-Werte möglich sind,
-für die das kubische Polynom $u^3+Au+B$ auf der rechten Seite von
-\eqref{buch:crypto:ellvereinfacht}
-nicht negativ ist.
-
-Sind $u_1$, $u_2$ und $u_3$ die Nullstellen des kubischen Polynoms
-auf der rechten Seite von~\eqref{buch:crypto:ellvereinfacht}, folgt
-\[
-v^2
-=
-(u-u_1)(u-u_2)(u-u_3)
-=
-u^3
--(u_1+u_2+u_3)u^2
-+(u_1u_2+u_1u_3+u_2u_3)u
--
-u_1u_2u_3.
-\]
-Durch Koeffizientenvergleich sieht man, dass $u_1+u_2+u_3=0$ sein muss.
-\begin{figure}
-\centering
-\includegraphics{chapters/90-crypto/images/elliptic.pdf}
-\caption{Elliptische Kurve in $\mathbb{R}$ in der Form
-$v^2=u^3+Au+B$ mit Nullstellen $u_1$, $u_2$ und $u_3$ des
-kubischen Polynoms auf der rechten Seite.
-Die blauen Punkte und Geraden illustrieren die Definition der
-Gruppenoperation in der elliptischen Kurve.
-\label{buch:crypto:fig:elliptischekurve}}
-\end{figure}
-Abbildung~\ref{buch:crypto:fig:elliptischekurve}
-zeigt eine elliptische Kurve in der Ebene.
-
-\subsubsection{Geometrische Definition der Gruppenoperation}
-In der speziellen Form \ref{buch:crypto:ellvereinfacht} ist die
-elliptische Kurve symmetrisch unter Spiegelung an der $u$-Achse.
-Die Spiegelung ist eine Involution, zweimalige Ausführung führt auf
-den ursprünglichen Punkt zurück.
-Die Inverse in einer Gruppe hat diese Eigenschaft auch, es ist
-daher naheliegend, den gespiegelten Punkt als die Inverse eines
-Elementes zu nehmen.
-
-Eine Gerade durch zwei Punkte der
-in Abbildung~\ref{buch:crypto:fig:elliptischekurve}
-dargestellten Kurve schneidet die Kurve ein drittes Mal.
-Die Gruppenoperation wird so definiert, dass drei Punkte der Kurve
-auf einer Geraden das Gruppenprodukt $e$ haben.
-Da aus $g_1g_2g_3=e$ folgt $g_3=(g_1g_2)^{-1}$ oder
-$g_1g_2=g_3^{-1}$, erhält man das Gruppenprodukt zweier Elemente
-auf der elliptischen Kurve indem erst den dritten Schnittpunkt
-ermittelt und diesen dann an der $u$-Achse spiegelt.
-
-Die geometrische Konstruktion schlägt fehl, wenn $g_1=g_2$ ist.
-In diesem Fall kann man die Tangente im Punkt $g_1$ an die Kurve
-verwenden.
-Dieser Fall tritt zum Beispiel auch in den drei Punkten
-$(u_1,0)$, $(u_2,0)$ und $(u_3,0)$ ein.
-
-Um das neutrale Element der Gruppe zu finden, können wir
-zwei Punkte $g$ und $g^{-1}$ miteinander verknüpfen.
-Die Gerade durch $g$ und $g^{-1}$ schneidet aber die Kurve
-kein drittes Mal.
-Ausserdem sind alle Geraden durch $g$ und $g^{-1}$ für verschiedene
-$g$ parallel.
-Das neutrale Element entspricht also einem unendlich weit entfernten Punkt.
-Das neutrale Element entsteht immer dann als Produkt, wenn zwei
-Punkte die gleiche $u$-Koordinaten haben.
-
-\subsubsection{Gruppenoperation, algebraische Konstruktion}
-Nach den geometrischen Vorarbeiten zur Definition der Gruppenoperation
-kann können wir die Konstruktion jetzt algebraisch umsetzen.
-
-Zunächst überlegen wir uns wieder eine Involution, welche als Inverse
-dienen kann.
-Dazu beachten wir, dass die linke Seite der definierenden Gleichung
-\begin{equation}
-Y^2+XY=X^3-aX+b.
-\label{buch:crypto:eqn:grupopgl}
-\end{equation}
-auch als $Y(Y+X)$ geschrieben werden kann.
-Die Abbildung $Y\mapsto -X-Y$ macht daraus
-\[
-(-X-Y)(-X-Y+X)=(X+Y)Y,
-\]
-dies ist also die gesuchte Involution.
-
-Seien also $g_1=(x_1,y_1)$ und $g_2=(x_2,y_2)$ zwei verschiedene Lösungen
-der Gleichung \eqref{buch:crypto:eqn:grupopgl}
-Als erstes brauchen wir eine Gleichung für die Gerade durch die beiden
-Punkte.
-Sei also $l(X,Y)$ eine Linearform derart, dass $l(g_1)=d$ und $l(g_2)=d$
-für ein geeignetes $d\in\Bbbk$.
-Dann gilt auch für die Punkte
-\[
-g(t) = tg_1 + (1-t)g_2
-\qquad\Rightarrow\qquad
-l(g(t))
-=
-tl(g_1) + (1-t)l(g_2)
-=
-tc+(1-t)c
-=
-(t+1-t)c
-=c,
-\]
-jeder Punkt der Geraden durch $g_1$ und $g_2$ lässt sich in dieser Form
-schreiben.
-
-Setzt man jetzt $g(t)$ in die Gleichung ein, erhält man eine kubische
-Gleichung in $t$, von der wir bereits zwei Nullstellen kennen, nämlich
-$0$ und $1$.
-Die kubische Gleichung muss also durch $t$ und $(t-1)$ teilbar sein.
-Diese Berechnung kann man einfach in einem Computeralgebrasystem
-durchführen.
-Das Polynom ist
-\[
-p(t)
-=
-\]
-Nach Division durch $t(t-1)$ erhält man als den Quotienten
-\begin{align*}
-q(t)
-&=
-(y_2-y_1)^2
-+
-(y_2-y_1) (x_2-x_1)
-+
-t(x_2-x_1)^3
--
-2x_2^3+3x_1x_2^2-x_1^3
-\end{align*}
-und den Rest
-\[
-r(t)
-=
-t(y_1^2+x_1y_1-x_1^3-ax_1-b)
-+
-(1-t)(y_2^2+x_2y_2-x_2^3-ax_2-b).
-\]
-Die Klammerausdrücke verschwinden, da die sie gleichbedeutend damit sind,
-dass die Punkte Lösungen von \eqref{buch:crypto:eqn:grupopgl} sind.
-
-Für den dritten Punkt auf der Geraden muss $t$ so gewählt werden, dass
-$q(t)=0$ ist.
-Dies ist aber eine lineare Gleichung mit der Lösung
-\begin{align*}
-t
-&=
--\frac{
-(y_1-y_2)^2
-+
-(y_2-y_1)(x_2-x_1)
--2x_2^3+3x_1x_2^2-x_1^3
-}{(x_2-x_1)^3}
-.
-\end{align*}
-Setzt man dies $g(t)$ ein, erhält man für die Koordinaten des dritten
-Punktes $g_3$ die Werte
-\begin{align}
-x_3
-&=
-\frac{
-(y_2-y_1)^2(x_2-x_1) + (y_2-y_1)(x_2-x_1)^2
--(x_2^4+x_1^4)
-}{
-(x_2-x_1)^3
-}
-\label{buch:crypto:eqn:x3}
-\\
-y_3
-&=
-\frac{
-(y_2-y_1)^3
-+(x_2-x_1)(y_2-y_1)^2
--(x_{2}-x_{1})^3 ( y_{2} - y_{1})
--(x_{2}-x_{1})^2 ( x_{1} y_{2}- x_{2} y_{1})
-}{
-(x_2-x_1)^3
-}
-\label{buch:crypto:eqn:y3}
-\end{align}
-Die Gleichungen
-\eqref{buch:crypto:eqn:x3}
-und
-\eqref{buch:crypto:eqn:y3}
-ermöglichen also, das Element $g_1g_2^{-1}$ zu berechnen.
-Interessant daran ist, dass in den Formeln die Konstanten $a$ und $b$
-gar nicht vorkommen.
-
-Es bleibt noch der wichtige Fall des Quadrierens in der Gruppe zu
-behandeln, also den Fall $g_1=g_2$.
-In diese Fall sind die Formeln
-\eqref{buch:crypto:eqn:x3}
-und
-\eqref{buch:crypto:eqn:y3}
-ganz offensichtlich nicht anwendbar.
-Die geometrische Anschauung hat nahegelegt, die Tangent an die Kurve
-im Punkt $g_1$ zu nehmen.
-In $\mathbb{R}$ würde man dafür einen Grenzübergang $g_2\to g_1$ machen,
-aber in einem endlichen Körper ist dies natürlich nicht möglich.
-
-Wir schreiben die Gerade als Parameterdarstellung in der Form
-\(
-t\mapsto g(t)= (x_1+ut, y_1+vt)
-\)
-für beliebige Parameter in $\Bbbk$.
-Die Werte $u_1$ und $u_2$ müssen so gewählt werden, dass $g(t)$ eine
-Tangente wird.
-Setzt man $g(t)$ in die Gleichung~\eqref{buch:crypto:eqn:grupopgl} ein,
-entsteht ein kubische Gleichung, die genau dann eine doppelte Nullstelle
-bei $0$ hat, wenn $u,v$ die Tangentenrichtung beschreiben.
-Einsetzen von $g(t)$ in \eqref{buch:crypto:eqn:grupopgl}
-ergibt die Gleichung
-\begin{align}
-0
-&=
--u^3t^3
-+
-(-3u^2x_{1}+v^2+uv)t^2
-+
-(2vy_1+uy_1-3ux_1^2+vx_1-au)t
-+
-(y_1^2+x_1y_1-x_1^3-ax_1-b)
-\label{buch:crypto:eqn:tangente1}
-\end{align}
-Damit bei $t=0$ eine doppelte Nullstelle mussen die letzten beiden
-Koeffizienten verschwinden, dies führt auf die Gleichungen
-\begin{align}
-y_1^2+x_1y_1&=x_1^3+ax_1+b
-\label{buch:crypto:eqn:rest1}
-\\
-(2y_1
-+x_1)v
-+(y_1
--3x_1^2
--a)u
-&=0
-\label{buch:crypto:eqn:rest2}
-\end{align}
-Die erste Gleichung \eqref{buch:crypto:eqn:rest1} drückt aus,
-dass $g_1$ ein Punkt der Kurve ist, sie ist automatisch erfüllt.
-
-Die zweite Gleichung
-\eqref{buch:crypto:eqn:rest2}
-legt das Verhältnis von $u$ und $v$, also die
-\label{buch:crypto:eqn:rest2}
-Tangentenrichtung fest.
-Eine mögliche Lösung ist
-\begin{equation}
-\begin{aligned}
-u &= x_1+2y_1
-\\
-v &= -y_1+3x_1^2+a.
-\end{aligned}
-\label{buch:crypto:eqn:uv}
-\end{equation}
-
-Der Quotient ist ein lineares Polynom in $t$, die Nullstelle parametrisiert
-den Punkt, der $(g_1)^{-2}$ entspricht.
-Der zugehörige Wert von $t$ ist
-\begin{equation}
-t=-\frac{3u^2x_1-v^2-uv}{u^3}.
-\label{buch:crypto:eqn:t}
-\end{equation}
-
-
-Setzt man
-\label{buch:crypto:eqn:t}
-und
-\eqref{buch:crypto:eqn:uv}
-in $g(t)$ ein, erhält man sehr komplizierte Ausdrücke für den dritten Punkt.
-Wir verzichten darauf, diese Ausdrücke hier aufzuschreiben.
-In der Praxis wird man in einem Körper der Charakteristik 2 arbeiten.
-In diesem Körper werden alle geraden Koeffizienten zu $0$, alle ungeraden
-Koeffizienten werden unabhängig vom Vorzeichen zu $1$.
-Damit bekommt man die folgenden, sehr viel übersichtlicheren Ausdrücke
-für den dritten Punkt:
-\begin{equation}
-\begin{aligned}
-x
-&=
--\frac{
-y_1^2+x_1y_1+x_1^4+x_1^3+ax_1-a^2
- }{
-x_1^2
-}
-\\
-y
-&=
-\frac{
-y_1^3+(x_1^2+x_1+a)y_1^2+(x_1^4 +a^2)y_1+x_1^6+ax_1^4+ax_1^3+a^2x_1^2+a^2x_1+a^3
-}{
- x_1^3
-}
-\end{aligned}
-\label{buch:crypto:eqn:tangentechar2}
-\end{equation}
-Damit haben wir einen vollständigen Formelsatz für die Berechnung der
-Gruppenoperation in der elliptischen Kurve mindestens für den praktisch
-relevanten Fall einer Kurve über einem Körper der Charakteristik $2$.
-
-\begin{satz}
-Die elliptische Kurve
-\[
-E_{a,b}(\mathbb{F}_{p^l})
-=
-\{
-(X,Y)\in\mathbb{F}_{p^l}
-\;|\;
-Y^2+XY = X^3-aX-b
-\}
-\]
-trägt eine Gruppenstruktur, die wie folgt definiert ist:
-\begin{enumerate}
-\item Der Punkt $(0,0)$ entspricht dem neutralen Element.
-\item Das inverse Element von $(x,y)$ ist $(-x,-y-x)$.
-\item Für zwei verschiedene Punkte $g_1$ und $g_2$ kann $g_3=(g_1g_2)^{-1}$
-mit Hilfe der Formeln
-\eqref{buch:crypto:eqn:x3}
-und
-\eqref{buch:crypto:eqn:y3}
-gefunden werden.
-\item Für einen Punkt $g_1$ kann $g_3=g_1^{-2}$ in Charakteristik $2$ mit
-Hilfe der Formeln
-\eqref{buch:crypto:eqn:tangentechar2}
-gefunden werden.
-\end{enumerate}
-Diese Operationen machen $E_{a,b}(\mathbb{F}_{p^l})$ zu einer endlichen
-abelschen Gruppe.
-\end{satz}
-
-\subsubsection{Beispiele}
-% XXX
-TODO: elliptische Kurven in IPsec: Oakley Gruppen
-
-\subsubsection{Diffie-Hellman in einer elliptischen Kurve}
-% XXX
-TODO: $g^x$ in einer elliptischen Kurve
-
-
-
+%
+% ff.tex -- Kryptographie und endliche Körper
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+\section{Kryptographie und endliche Körper
+\label{buch:section:kryptographie-und-endliche-koerper}}
+\rhead{Kryptographie und endliche Körper}
+
+\subsection{Potenzen in $\mathbb{F}_p$ und diskreter Logarithmus
+\label{buch:subsection:potenzen-diskreter-logarithmus}}
+Für kryptographische Anwendungen wird eine einfach zu berechnende
+Funktion benötigt,
+die ohne zusätzliches Wissen, üblicherweise der Schlüssel genannt,
+nicht ohne weiteres umkehrbar ist.
+Die arithmetischen Operationen in einem endlichen Körper sind
+mit geringem Aufwand durchführbar.
+Für die ``schwierigste'' Operation, die Division, steht der
+euklidische Algorithmus zur Verfügung.
+
+Die nächstschwierigere Operation ist die Potenzfunktion.
+Für $g\in \Bbbk$ und $a\in\mathbb{N}$ ist die Potenz $g^a\in\Bbbk$
+natürlich durch die wiederholte Multiplikation definiert.
+In der Praxis werden aber $g$ und $a$ Zahlen mit vielen Binärstellen
+sein, die die wiederholte Multiplikation ist daher sicher nicht
+effizient, das Kriterium der einfachen Berechenbarkeit scheint
+also nicht erfüllt.
+Der folgende Algorithmus berechnet die Potenz in $O(\log_2 a)$
+Multiplikationen.
+
+\begin{algorithmus}[Divide-and-conquer]
+\label{buch:crypto:algo:divide-and-conquer}
+Sei $a=a_0 + a_12^1 + a_22^2 + \dots + a_k2^k$ die Binärdarstellung
+der Zahl $a$.
+\begin{enumerate}
+\item setze $f=g$, $x=1$, $i=0$
+\label{divide-and-conquer-1}
+\item solange $i\ge k$ ist, führe aus
+\label{divide-and-conquer-2}
+\begin{enumerate}
+\item
+\label{divide-and-conquer-3}
+falls $a_i=1$ setze $x \coloneqq x \cdot f$
+\item
+\label{divide-and-conquer-4}
+$i \coloneqq i+1$ und $f\coloneqq f\cdot f$
+\end{enumerate}
+\end{enumerate}
+Die Potenz $x=g^a$ kann so in $O(\log_2a)$ Multiplikationen
+berechnet werden.
+\end{algorithmus}
+
+\begin{proof}[Beweis]
+Die Initalisierung in Schritt~\ref{divide-and-conquer-1} stellt sicher,
+dass $x$ den Wert $g^0$ hat.
+Schritt~\ref{divide-and-conquer-4} stellt sicher,
+dass die Variable $f$ immer den Wert $g^{2^i}$ hat.
+Im Schritt~\ref{divide-and-conquer-3} wird zu $x$ die Potenz
+$g^{a_i2^i}$ hinzumultipliziert.
+Am Ende des Algorithmus hat daher $x$ den Wert
+\[
+x = g^{a_02^0} \cdot g^{a_12^1} \cdot g^{a_22^2} \cdot\ldots\cdot 2^{a_k2^k}
+=
+g^{a_0+a_12+a_22^2+\dots+a_k2^k}
+=
+g^a.
+\]
+Die Schleife wird $\lfloor1+\log_2ab\rfloor$ mal durchlaufen.
+In jedem Fall wird auf jeden Fall die Multiplikation in
+Schritt~\ref{divide-and-conquer-4} durchgeführt
+und im schlimmsten Fall auch noch die Multiplikation in
+Schritt~\ref{divide-and-conquer-3}.
+Es werden also nicht mehr als $2\lfloor 1+\log_2a\rfloor=O(\log_2a)$
+Multiplikationen durchgeführt.
+\end{proof}
+
+\begin{beispiel}
+Man berechne die Potenz $7^{2021}$ in $\mathbb{F}_p$.
+Die Binärdarstellung von 2021 ist $2021_{10}=\texttt{11111100101}_2$.
+Wir stellen die nötigen Operationen des
+Algorithmus~\ref{buch:crypto:algo:divide-and-conquer} in der folgenden
+Tabelle
+\begin{center}
+\begin{tabular}{|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|}
+\hline
+ i& f& a_i& x\\
+\hline
+ 0& 7& 1& 7\\
+ 1& 49& 0& 7\\
+ 2&1110& 1& 24\\
+ 3& 486& 0& 24\\
+ 4&1234& 0& 24\\
+ 5& 667& 1& 516\\
+ 6& 785& 1& 977\\
+ 7& 418& 1& 430\\
+ 8& 439& 1& 284\\
+ 9& 362& 1& 819\\
+10& 653& 1& 333\\
+\hline
+\end{tabular}
+\end{center}
+Daraus liest man ab, dass $7^{2021}=333\in\mathbb{F}_{1291}$.
+\end{beispiel}
+
+Die Tabelle suggeriert, dass die Potenzen von $g$ ``wild'', also
+scheinbar ohne System in $\mathbb{F}_p$ herumspringen.
+Dies deutet an, dass die Umkehrung der Exponentialfunktion in $\mathbb{F}_p$
+schwierig ist.
+Die Umkehrfunktion der Exponentialfunktion, die Umkehrfunktion von
+$x\mapsto g^x$ in $\mathbb{F}_p$ heisst der {\em diskrete Logarithmus}.
+\index{diskreter Logarithmus}%
+Tatsächlich ist der diskrete Logarithmus ähnlich schwierig zu bestimmen
+wie das Faktorisieren von Zahlen, die das Produkt grosser
+Primafaktoren ähnlicher Grössenordnung wie $p$ sind.
+Die Funktion $x\mapsto g^x$ ist die gesuchte, schwierig zu invertierende
+Funktion.
+
+Auf dern ersten Blick scheint der
+Algorithmus~\ref{buch:crypto:algo:divide-and-conquer}
+den Nachteil zu haben, dass erst die Binärdarstellung der Zahl $a$
+ermittelt werden muss.
+In einem Computer ist dies aber normalerweise kein Problem, da $a$
+im Computer ohnehin binär dargestellt ist.
+Die Binärziffern werden in der Reihenfolge vom niederwertigsten zum
+höchstwertigen Bit benötigt.
+Die folgende Modifikation des Algorithmus ermittelt laufend
+auch die Binärstellen von $a$.
+Die dazu notwendigen Operationen sind im Binärsystem besonders
+effizient implementierbar, die Division durch 2 ist ein Bitshift, der
+Rest ist einfach das niederwertigste Bit der Zahl.
+
+\begin{algorithmus}
+\label{buch:crypto:algo:divide-and-conquer2}
+\begin{enumerate}
+\item
+Setze $f=g$, $x=1$, $i=0$
+\item
+Solange $a>0$ ist, führe aus
+\begin{enumerate}
+\item
+Verwende den euklidischen Algorithmus um $r$ und $b$ zu bestimmen mit $a=2b+r$
+\item
+Falls $r=1$ setze $x \coloneqq x \cdot f$
+\item
+$i \coloneqq i+1$, $a = b$ und $f\coloneqq f\cdot f$
+\end{enumerate}
+\end{enumerate}
+Die Potenz $x=g^a$ kann so in $O(\log_2a)$ Multiplikationen
+berechnet werden.
+\end{algorithmus}
+
+
+%
+% Diffie-Hellman Schlüsseltausch
+%
+\subsection{Diffie-Hellman-Schlüsseltausch
+\label{buch:subsection:diffie-hellman}}
+Eine Grundaufgabe der Verschlüsselung im Internet ist, dass zwei
+Kommunikationspartner einen gemeinsamen Schlüssel für die Verschlüsselung
+der Daten aushandeln können müssen.
+Es muss davon ausgegangen werden, dass die Kommunikation abgehört wird.
+Trotzdem soll es für einen Lauscher nicht möglich sein, den
+ausgehandelten Schlüssel zu ermitteln.
+
+% XXX Historisches zu Diffie und Hellman
+
+Die beiden Partner $A$ und $B$ einigen sich zunächst auf eine Zahl $g$,
+die öffentlich bekannt sein darf.
+Weiter erzeugen sie eine zufällige Zahl $a$ und $b$, die sie geheim
+halten.
+Das Verfahren soll aus diesen beiden Zahlen einen Schlüssel erzeugen,
+den beide Partner berechnen können, ohne dass sie $a$ oder $b$
+übermitteln müssen.
+Die beiden Zahlen werden daher auch die privaten Schlüssel genannt.
+
+Die Idee von Diffie und Hellman ist jetzt, die Werte $x=g^a$ und $y=g^b$
+zu übertragen.
+In $\mathbb{R}$ würden dadurch natürlich dem Lauscher auch $a$ offenbart,
+er könnte einfach $a=\log_g x$ berechnen.
+Ebenso kann auch $b$ als $b=\log_g y$ erhalten werden, die beiden
+privaten Schlüssel wären also nicht mehr privat.
+Statt der Potenzfunktion in $\mathbb{R}$ muss also eine Funktion
+verwendet werden, die nicht so leicht umgekehrt werden kann.
+Die Potenzfunktion in $\mathbb{F}_p$ erfüllt genau diese Eigenschaft.
+Die Kommunikationspartner einigen sich also auch noch auf die (grosse)
+Primzahl $p$ und übermitteln $x=g^a\in\mathbb{F}_p$ und
+$y=g^b\in\mathbb{F}_p$.
+
+\begin{figure}
+\centering
+\includegraphics{chapters/90-crypto/images/dh.pdf}
+\caption{Schlüsselaustausch nach Diffie-Hellman.
+Die Kommunikationspartner $A$ und $B$ einigen sich öffentlich auf
+$p\in\mathbb{N}$ und $g\in\mathbb{F}_p$.
+$A$ wählt dann einen privaten Schlüssel $a\in\mathbb{N}$ und
+$B$ wählt $b\in\mathbb{N}$, sie tauschen dann $x=g^a$ und $y=g^b$
+aus.
+$A$ erhält den gemeinsamen Schlüssel aus $y^a$, $B$ erhält ihn
+aus $x^b$.
+\label{buch:crypto:fig:dh}}
+\end{figure}
+
+Aus $x$ und $y$ muss jetzt der gemeinsame Schlüssel abgeleitet werden.
+$A$ kennt $y=g^b$ und $a$, $B$ kennt $x=g^a$ und $b$.
+Beide können die Zahl $s=g^{ab}\in\mathbb{F}_p$ berechnen.
+$A$ macht das, indem er $y^a=(g^b)^a = g^{ab}$ rechnet,
+$B$ rechnet $x^b = (g^a)^b = g^{ab}$, beide natürlich in $\mathbb{F}_p$.
+Der Lauscher kann aber $g^{ab}$ nicht ermitteln, dazu müsste er
+$a$ oder $b$ ermitteln können.
+Die Zahl $s=g^{ab}$ kann also als gemeinsamer Schlüssel verwendet
+werden.
+
+
+
+\subsection{Elliptische Kurven
+\label{buch:subsection:elliptische-kurven}}
+Das Diffie-Hellman-Verfahren basiert auf der Schwierigkeit, in einem
+Körper $\mathbb{F}_p$ die Gleichung $a^x=b$ nach $x$ aufzulösen.
+Die Addition in $\mathbb{F}_p$ wird dazu nicht benötigt.
+Es reicht, eine Menge mit einer Multiplikation zu haben, in der das
+die Gleichung $a^x=b$ schwierig zu lösen ist.
+Ein Gruppe wäre also durchaus ausreichend.
+
+Ein Kandidat für eine solche Gruppe könnte der Einheitskreis
+$S^1=\{z\in\mathbb{C}\;|\; |z|=1\}$ in der komplexen Ebene sein.
+Wählt man eine Zahl $g=e^{i\alpha}$, wobei $\alpha$ ein irrationales
+Vielfaches von $\pi$ ist, dann sind alle Potenzen $g^n$ für natürliche
+Exponenten voneinander verschieden.
+Wäre nämlich $g^{n_1}=g^{n_2}$, dann wäre $e^{i\alpha(n_1-n_2)}=1$ und
+somit müsste $\alpha=2k\pi/(n_1-n_2)$ sein.
+Damit wäre aber $\alpha$ ein rationales Vielfaches von $\pi$, im Widerspruch
+zur Voraussetzung.
+Die Abbildung $n\mapsto g^n\in S^1$ ist auf den ersten Blick etwa ähnlich
+undurchschaubar wie die Abbildung $n\mapsto g^n\in\mathbb{F}_p$.
+Es gibt zwar die komplexe Logarithmusfunktion, mit der man $n$ bestimmen
+kann, dazu muss man aber den Wert von $g^n$ mit beliebiger Genauigkeit
+kennen, denn die Werte von $g^n$ können beliebig nahe beieinander liegen.
+
+Der Einheitskreis ist die Lösungsmenge der Gleichung $x^2+y^2=1$ für
+reelle Koordinaten $x$ und $y$,
+doch Rundungsunsicherheiten verunmöglichen den Einsatz in einem
+Verfahren ähnlich dem Diffie-Hellman-Verfahren.
+Dieses Problem kann gelöst werden, indem für die Variablen Werte
+aus einem endlichen Körper verwendet werden.
+Gesucht ist also eine Gleichung in zwei Variablen, deren Lösungsmenge
+in einem endlichen Körper eine Gruppenstruktur trägt.
+Die Lösungsmenge ist eine ``Kurve'' von Punkten mit
+Koordinaten in einem endlichen Körper.
+
+In diesem Abschnitt wird gezeigt, dass sogenannte elliptische Kurven
+über endlichen Körpern genau die verlangen Eigenschaften haben.
+
+\subsubsection{Elliptische Kurven}
+Elliptische Kurven sind Lösungen einer Gleichung der Form
+\begin{equation}
+Y^2+XY=X^3+aX+b
+\label{buch:crypto:eqn:ellipticcurve}
+\end{equation}
+mit Werten von $X$ und $Y$ in einem geeigneten Körper.
+Die Koeffizienten $a$ und $b$ müssen so gewählt werden, dass die
+Gleichung~\eqref{buch:crypto:eqn:ellipticcurve} genügend viele
+Lösungen hat.
+Über den komplexen Zahlen hat die Gleichung natürlich für jede Wahl von
+$X$ drei Lösungen.
+Für einen endlichen Körper können wir dies im allgemeinen nicht erwarten,
+aber wenn wir genügend viele Wurzeln zu $\mathbb{F}$ hinzufügen können wir
+mindestens erreichen, dass die Lösungsmenge so viele Elemente hat,
+dass ein Versuch, die Gleichung $g^x=b$ mittels Durchprobierens zu
+lösen, zum Scheitern verurteil ist.
+
+\begin{definition}
+\label{buch:crypto:def:ellipticcurve}
+Die {\em elliptische Kurve} $E_{a,b}(\Bbbk)$ über dem Körper $\Bbbk$ ist
+die Menge
+\[
+E_{a,b}(\Bbbk)
+=
+\{(X,Y)\in\Bbbk^2\;|\;Y^2+XY=X^3+aX+b\},
+\]
+für $a,b\in\Bbbk$.
+\end{definition}
+
+Um die Anschauung zu vereinfachen, werden wir elliptische Kurven über
+dem Körper $\mathbb{R}$ visualisieren.
+Die daraus gewonnenen geometrischen Einsichten werden wir anschliessend
+algebraisch umsetzen.
+In den reellen Zahlen kann man die
+Gleichung~\eqref{buch:crypto:eqn:ellipticcurve}
+noch etwas vereinfachen.
+Indem man in \eqref{buch:crypto:eqn:ellipticcurve}
+quadratisch ergänzt, bekommt man
+\begin{align}
+Y^2 + XY + \frac14X^2 &= X^3+\frac14 X^2 +aX+b
+\notag
+\\
+\Rightarrow\qquad
+v^2&=X^3+\frac14X^2+aX+b,
+\label{buch:crypto:eqn:ell2}
+\end{align}
+indem man $v=Y+\frac12X$ setzt.
+Man beachte, dass man diese Substition nur machen kann, wenn $\frac12$
+definiert ist.
+In $\mathbb{R}$ ist dies kein Problem, aber genau über den Körpern
+mit Charakteristik $2$, die wir für die Computer-Implementation
+bevorzugen, ist dies nicht möglich.
+Es geht hier aber nur um die Visualisierung.
+
+Auch die Form \eqref{buch:crypto:eqn:ell2} lässt sich noch etwas
+vereinfachen.
+Setzt man $X=u-\frac1{12}$, dann verschwindet nach einiger Rechnung,
+die wir hier nicht durchführen wollen, der quadratische Term
+auf der rechten Seite.
+Die interessierenden Punkte sind Lösungen der einfacheren Gleichung
+\begin{equation}
+v^2
+=
+u^3+\biggl(a-\frac{1}{48}\biggr)u + b-\frac{a}{12}+\frac{1}{864}
+=
+u^3+Au+B.
+\label{buch:crypto:ellvereinfacht}
+\end{equation}
+In dieser Form ist mit $(u,v)$ immer auch $(u,-v)$ eine Lösung,
+die Kurve ist symmetrisch bezüglich der $u$-Achse.
+Ebenso kann man ablesen, dass nur diejenigen $u$-Werte möglich sind,
+für die das kubische Polynom $u^3+Au+B$ auf der rechten Seite von
+\eqref{buch:crypto:ellvereinfacht}
+nicht negativ ist.
+
+Sind $u_1$, $u_2$ und $u_3$ die Nullstellen des kubischen Polynoms
+auf der rechten Seite von~\eqref{buch:crypto:ellvereinfacht}, folgt
+\[
+v^2
+=
+(u-u_1)(u-u_2)(u-u_3)
+=
+u^3
+-(u_1+u_2+u_3)u^2
++(u_1u_2+u_1u_3+u_2u_3)u
+-
+u_1u_2u_3.
+\]
+Durch Koeffizientenvergleich sieht man, dass $u_1+u_2+u_3=0$ sein muss.
+\begin{figure}
+\centering
+\includegraphics{chapters/90-crypto/images/elliptic.pdf}
+\caption{Elliptische Kurve in $\mathbb{R}$ in der Form
+$v^2=u^3+Au+B$ mit Nullstellen $u_1$, $u_2$ und $u_3$ des
+kubischen Polynoms auf der rechten Seite.
+Die blauen Punkte und Geraden illustrieren die Definition der
+Gruppenoperation in der elliptischen Kurve.
+\label{buch:crypto:fig:elliptischekurve}}
+\end{figure}
+Abbildung~\ref{buch:crypto:fig:elliptischekurve}
+zeigt eine elliptische Kurve in der Ebene.
+
+\subsubsection{Geometrische Definition der Gruppenoperation}
+In der speziellen Form \ref{buch:crypto:ellvereinfacht} ist die
+elliptische Kurve symmetrisch unter Spiegelung an der $u$-Achse.
+Die Spiegelung ist eine Involution, zweimalige Ausführung führt auf
+den ursprünglichen Punkt zurück.
+Die Inverse in einer Gruppe hat diese Eigenschaft auch, es ist
+daher naheliegend, den gespiegelten Punkt als die Inverse eines
+Elementes zu nehmen.
+
+Eine Gerade durch zwei Punkte der
+in Abbildung~\ref{buch:crypto:fig:elliptischekurve}
+dargestellten Kurve schneidet die Kurve ein drittes Mal.
+Die Gruppenoperation wird so definiert, dass drei Punkte der Kurve
+auf einer Geraden das Gruppenprodukt $e$ haben.
+Da aus $g_1g_2g_3=e$ folgt $g_3=(g_1g_2)^{-1}$ oder
+$g_1g_2=g_3^{-1}$, erhält man das Gruppenprodukt zweier Elemente
+auf der elliptischen Kurve indem erst den dritten Schnittpunkt
+ermittelt und diesen dann an der $u$-Achse spiegelt.
+
+Die geometrische Konstruktion schlägt fehl, wenn $g_1=g_2$ ist.
+In diesem Fall kann man die Tangente im Punkt $g_1$ an die Kurve
+verwenden.
+Dieser Fall tritt zum Beispiel auch in den drei Punkten
+$(u_1,0)$, $(u_2,0)$ und $(u_3,0)$ ein.
+
+Um das neutrale Element der Gruppe zu finden, können wir
+zwei Punkte $g$ und $g^{-1}$ miteinander verknüpfen.
+Die Gerade durch $g$ und $g^{-1}$ schneidet aber die Kurve
+kein drittes Mal.
+Ausserdem sind alle Geraden durch $g$ und $g^{-1}$ für verschiedene
+$g$ parallel.
+Das neutrale Element entspricht also einem unendlich weit entfernten Punkt.
+Das neutrale Element entsteht immer dann als Produkt, wenn zwei
+Punkte die gleiche $u$-Koordinaten haben.
+
+\subsubsection{Gruppenoperation, algebraische Konstruktion}
+Nach den geometrischen Vorarbeiten zur Definition der Gruppenoperation
+kann können wir die Konstruktion jetzt algebraisch umsetzen.
+
+Zunächst überlegen wir uns wieder eine Involution, welche als Inverse
+dienen kann.
+Dazu beachten wir, dass die linke Seite der definierenden Gleichung
+\begin{equation}
+Y^2+XY=X^3-aX+b.
+\label{buch:crypto:eqn:grupopgl}
+\end{equation}
+auch als $Y(Y+X)$ geschrieben werden kann.
+Die Abbildung $Y\mapsto -X-Y$ macht daraus
+\[
+(-X-Y)(-X-Y+X)=(X+Y)Y,
+\]
+dies ist also die gesuchte Involution.
+
+Seien also $g_1=(x_1,y_1)$ und $g_2=(x_2,y_2)$ zwei verschiedene Lösungen
+der Gleichung \eqref{buch:crypto:eqn:grupopgl}
+Als erstes brauchen wir eine Gleichung für die Gerade durch die beiden
+Punkte.
+Sei also $l(X,Y)$ eine Linearform derart, dass $l(g_1)=d$ und $l(g_2)=d$
+für ein geeignetes $d\in\Bbbk$.
+Dann gilt auch für die Punkte
+\[
+g(t) = tg_1 + (1-t)g_2
+\qquad\Rightarrow\qquad
+l(g(t))
+=
+tl(g_1) + (1-t)l(g_2)
+=
+tc+(1-t)c
+=
+(t+1-t)c
+=c,
+\]
+jeder Punkt der Geraden durch $g_1$ und $g_2$ lässt sich in dieser Form
+schreiben.
+
+Setzt man jetzt $g(t)$ in die Gleichung ein, erhält man eine kubische
+Gleichung in $t$, von der wir bereits zwei Nullstellen kennen, nämlich
+$0$ und $1$.
+Die kubische Gleichung muss also durch $t$ und $(t-1)$ teilbar sein.
+Diese Berechnung kann man einfach in einem Computeralgebrasystem
+durchführen.
+Das Polynom ist
+\[
+p(t)
+=
+\]
+Nach Division durch $t(t-1)$ erhält man als den Quotienten
+\begin{align*}
+q(t)
+&=
+(y_2-y_1)^2
++
+(y_2-y_1) (x_2-x_1)
++
+t(x_2-x_1)^3
+-
+2x_2^3+3x_1x_2^2-x_1^3
+\end{align*}
+und den Rest
+\[
+r(t)
+=
+t(y_1^2+x_1y_1-x_1^3-ax_1-b)
++
+(1-t)(y_2^2+x_2y_2-x_2^3-ax_2-b).
+\]
+Die Klammerausdrücke verschwinden, da die sie gleichbedeutend damit sind,
+dass die Punkte Lösungen von \eqref{buch:crypto:eqn:grupopgl} sind.
+
+Für den dritten Punkt auf der Geraden muss $t$ so gewählt werden, dass
+$q(t)=0$ ist.
+Dies ist aber eine lineare Gleichung mit der Lösung
+\begin{align*}
+t
+&=
+-\frac{
+(y_1-y_2)^2
++
+(y_2-y_1)(x_2-x_1)
+-2x_2^3+3x_1x_2^2-x_1^3
+}{(x_2-x_1)^3}
+.
+\end{align*}
+Setzt man dies $g(t)$ ein, erhält man für die Koordinaten des dritten
+Punktes $g_3$ die Werte
+\begin{align}
+x_3
+&=
+\frac{
+(y_2-y_1)^2(x_2-x_1) + (y_2-y_1)(x_2-x_1)^2
+-(x_2^4+x_1^4)
+}{
+(x_2-x_1)^3
+}
+\label{buch:crypto:eqn:x3}
+\\
+y_3
+&=
+\frac{
+(y_2-y_1)^3
++(x_2-x_1)(y_2-y_1)^2
+-(x_{2}-x_{1})^3 ( y_{2} - y_{1})
+-(x_{2}-x_{1})^2 ( x_{1} y_{2}- x_{2} y_{1})
+}{
+(x_2-x_1)^3
+}
+\label{buch:crypto:eqn:y3}
+\end{align}
+Die Gleichungen
+\eqref{buch:crypto:eqn:x3}
+und
+\eqref{buch:crypto:eqn:y3}
+ermöglichen also, das Element $g_1g_2^{-1}$ zu berechnen.
+Interessant daran ist, dass in den Formeln die Konstanten $a$ und $b$
+gar nicht vorkommen.
+
+Es bleibt noch der wichtige Fall des Quadrierens in der Gruppe zu
+behandeln, also den Fall $g_1=g_2$.
+In diese Fall sind die Formeln
+\eqref{buch:crypto:eqn:x3}
+und
+\eqref{buch:crypto:eqn:y3}
+ganz offensichtlich nicht anwendbar.
+Die geometrische Anschauung hat nahegelegt, die Tangent an die Kurve
+im Punkt $g_1$ zu nehmen.
+In $\mathbb{R}$ würde man dafür einen Grenzübergang $g_2\to g_1$ machen,
+aber in einem endlichen Körper ist dies natürlich nicht möglich.
+
+Wir schreiben die Gerade als Parameterdarstellung in der Form
+\(
+t\mapsto g(t)= (x_1+ut, y_1+vt)
+\)
+für beliebige Parameter in $\Bbbk$.
+Die Werte $u_1$ und $u_2$ müssen so gewählt werden, dass $g(t)$ eine
+Tangente wird.
+Setzt man $g(t)$ in die Gleichung~\eqref{buch:crypto:eqn:grupopgl} ein,
+entsteht ein kubische Gleichung, die genau dann eine doppelte Nullstelle
+bei $0$ hat, wenn $u,v$ die Tangentenrichtung beschreiben.
+Einsetzen von $g(t)$ in \eqref{buch:crypto:eqn:grupopgl}
+ergibt die Gleichung
+\begin{align}
+0
+&=
+-u^3t^3
++
+(-3u^2x_{1}+v^2+uv)t^2
++
+(2vy_1+uy_1-3ux_1^2+vx_1-au)t
++
+(y_1^2+x_1y_1-x_1^3-ax_1-b)
+\label{buch:crypto:eqn:tangente1}
+\end{align}
+Damit bei $t=0$ eine doppelte Nullstelle mussen die letzten beiden
+Koeffizienten verschwinden, dies führt auf die Gleichungen
+\begin{align}
+y_1^2+x_1y_1&=x_1^3+ax_1+b
+\label{buch:crypto:eqn:rest1}
+\\
+(2y_1
++x_1)v
++(y_1
+-3x_1^2
+-a)u
+&=0
+\label{buch:crypto:eqn:rest2}
+\end{align}
+Die erste Gleichung \eqref{buch:crypto:eqn:rest1} drückt aus,
+dass $g_1$ ein Punkt der Kurve ist, sie ist automatisch erfüllt.
+
+Die zweite Gleichung
+\eqref{buch:crypto:eqn:rest2}
+legt das Verhältnis von $u$ und $v$, also die
+\label{buch:crypto:eqn:rest2}
+Tangentenrichtung fest.
+Eine mögliche Lösung ist
+\begin{equation}
+\begin{aligned}
+u &= x_1+2y_1
+\\
+v &= -y_1+3x_1^2+a.
+\end{aligned}
+\label{buch:crypto:eqn:uv}
+\end{equation}
+
+Der Quotient ist ein lineares Polynom in $t$, die Nullstelle parametrisiert
+den Punkt, der $(g_1)^{-2}$ entspricht.
+Der zugehörige Wert von $t$ ist
+\begin{equation}
+t=-\frac{3u^2x_1-v^2-uv}{u^3}.
+\label{buch:crypto:eqn:t}
+\end{equation}
+
+
+Setzt man
+\label{buch:crypto:eqn:t}
+und
+\eqref{buch:crypto:eqn:uv}
+in $g(t)$ ein, erhält man sehr komplizierte Ausdrücke für den dritten Punkt.
+Wir verzichten darauf, diese Ausdrücke hier aufzuschreiben.
+In der Praxis wird man in einem Körper der Charakteristik 2 arbeiten.
+In diesem Körper werden alle geraden Koeffizienten zu $0$, alle ungeraden
+Koeffizienten werden unabhängig vom Vorzeichen zu $1$.
+Damit bekommt man die folgenden, sehr viel übersichtlicheren Ausdrücke
+für den dritten Punkt:
+\begin{equation}
+\begin{aligned}
+x
+&=
+-\frac{
+y_1^2+x_1y_1+x_1^4+x_1^3+ax_1-a^2
+ }{
+x_1^2
+}
+\\
+y
+&=
+\frac{
+y_1^3+(x_1^2+x_1+a)y_1^2+(x_1^4 +a^2)y_1+x_1^6+ax_1^4+ax_1^3+a^2x_1^2+a^2x_1+a^3
+}{
+ x_1^3
+}
+\end{aligned}
+\label{buch:crypto:eqn:tangentechar2}
+\end{equation}
+Damit haben wir einen vollständigen Formelsatz für die Berechnung der
+Gruppenoperation in der elliptischen Kurve mindestens für den praktisch
+relevanten Fall einer Kurve über einem Körper der Charakteristik $2$.
+
+\begin{satz}
+Die elliptische Kurve
+\[
+E_{a,b}(\mathbb{F}_{p^l})
+=
+\{
+(X,Y)\in\mathbb{F}_{p^l}
+\;|\;
+Y^2+XY = X^3-aX-b
+\}
+\]
+trägt eine Gruppenstruktur, die wie folgt definiert ist:
+\begin{enumerate}
+\item Der Punkt $(0,0)$ entspricht dem neutralen Element.
+\item Das inverse Element von $(x,y)$ ist $(-x,-y-x)$.
+\item Für zwei verschiedene Punkte $g_1$ und $g_2$ kann $g_3=(g_1g_2)^{-1}$
+mit Hilfe der Formeln
+\eqref{buch:crypto:eqn:x3}
+und
+\eqref{buch:crypto:eqn:y3}
+gefunden werden.
+\item Für einen Punkt $g_1$ kann $g_3=g_1^{-2}$ in Charakteristik $2$ mit
+Hilfe der Formeln
+\eqref{buch:crypto:eqn:tangentechar2}
+gefunden werden.
+\end{enumerate}
+Diese Operationen machen $E_{a,b}(\mathbb{F}_{p^l})$ zu einer endlichen
+abelschen Gruppe.
+\end{satz}
+
+\subsubsection{Beispiele}
+% XXX
+TODO: elliptische Kurven in IPsec: Oakley Gruppen
+
+\subsubsection{Diffie-Hellman in einer elliptischen Kurve}
+% XXX
+TODO: $g^x$ in einer elliptischen Kurve
+
+
+
diff --git a/buch/chapters/90-crypto/images/Makefile b/buch/chapters/90-crypto/images/Makefile
index 5df9178..f4bed14 100644
--- a/buch/chapters/90-crypto/images/Makefile
+++ b/buch/chapters/90-crypto/images/Makefile
@@ -1,29 +1,29 @@
-#
-# Makefile -- build images for crypto chapter
-#
-# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-#
-all: dh.pdf elliptic.pdf schieberegister.pdf multiplikation.pdf sbox.pdf \
- shift.pdf keys.pdf
-
-dh.pdf: dh.tex
- pdflatex dh.tex
-
-elliptic.pdf: elliptic.tex
- pdflatex elliptic.tex
-
-schieberegister.pdf: schieberegister.tex
- pdflatex schieberegister.tex
-
-multiplikation.pdf: multiplikation.tex
- pdflatex multiplikation.tex
-
-sbox.pdf: sbox.tex
- pdflatex sbox.tex
-
-shift.pdf: shift.tex
- pdflatex shift.tex
-
-keys.pdf: keys.tex
- pdflatex keys.tex
-
+#
+# Makefile -- build images for crypto chapter
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+all: dh.pdf elliptic.pdf schieberegister.pdf multiplikation.pdf sbox.pdf \
+ shift.pdf keys.pdf
+
+dh.pdf: dh.tex
+ pdflatex dh.tex
+
+elliptic.pdf: elliptic.tex
+ pdflatex elliptic.tex
+
+schieberegister.pdf: schieberegister.tex
+ pdflatex schieberegister.tex
+
+multiplikation.pdf: multiplikation.tex
+ pdflatex multiplikation.tex
+
+sbox.pdf: sbox.tex
+ pdflatex sbox.tex
+
+shift.pdf: shift.tex
+ pdflatex shift.tex
+
+keys.pdf: keys.tex
+ pdflatex keys.tex
+
diff --git a/buch/chapters/90-crypto/images/keys.tex b/buch/chapters/90-crypto/images/keys.tex
index 4b1b566..d556b7c 100644
--- a/buch/chapters/90-crypto/images/keys.tex
+++ b/buch/chapters/90-crypto/images/keys.tex
@@ -1,121 +1,121 @@
-%
-% keys.tex -- template for standalon tikz images
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{1}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-\definecolor{darkgreen}{rgb}{0,0.6,0}
-\def\s{0.5}
-\def\punkt#1#2{({(#1)*\s},{(#2)*\s})}
-\def\wort#1#2#3{
- \fill[color=#3] \punkt{#1}{#2} rectangle \punkt{(#1+1)}{(#2+4)};
- \draw \punkt{#1}{#2} rectangle \punkt{(#1+1)}{(#2+4)};
-}
-
-\def\summe{
- \foreach \x in {0,3,...,21}{
- \draw[->] \punkt{(\x+0.5)}{-0.1} -- \punkt{(\x+0.5)}{-2.1};
- \draw \punkt{(\x+0.5)}{-2.5} circle[radius={0.3*\s}];
- \draw \punkt{(\x+0.5-0.2)}{-2.5}
- --
- \punkt{(\x+0.5+0.2)}{-2.5};
- \draw \punkt{(\x+0.5)}{-2.5+0.2}
- --
- \punkt{(\x+0.5)}{-2.5-0.2};
- \draw[->] \punkt{(\x+0.5)}{-2.9} -- \punkt{(\x+0.5)}{-4.9};
- }
- \foreach \x in {0,3,...,18}{
- \draw[->] \punkt{(\x+1.1)}{-7} -- \punkt{(\x+2)}{-7}
- -- \punkt{(\x+2)}{-2.5} -- \punkt{(\x+3.1)}{-2.5};
- }
- \fill[color=white]
- \punkt{(9+1.25)}{-5.5}
- rectangle
- \punkt{(9+2.75)}{-4.00};
- \draw
- \punkt{(9+1.25)}{-5.5}
- rectangle
- \punkt{(9+2.75)}{-4.00};
- \node at \punkt{(9+2)}{-4.75} {$S$};
-}
-
-\def\blocks#1{
- \foreach \x in {0,3,...,21}{
- \wort{\x}{0}{#1}
- }
-}
-
-\def\schlange#1{
- \draw[->] \punkt{22.1}{2} -- \punkt{23}{2}
- -- \punkt{23}{-1.0} -- \punkt{-3}{-1.0}
- -- \punkt{-3}{-8} -- \punkt{-1}{-8} -- \punkt{-1}{-2.5}
- -- \punkt{0.1}{-2.5};
- ;
- \fill[color=white] \punkt{-3.75}{-1.75} rectangle \punkt{-2.25}{-3.25};
- \draw \punkt{-3.75}{-1.75} rectangle \punkt{-2.25}{-3.25};
- \node at \punkt{-3}{-2.5} {$\pi$};
-
- \fill[color=white] \punkt{-3.75}{-3.75} rectangle \punkt{-2.25}{-5.25};
- \draw \punkt{-3.75}{-3.75} rectangle \punkt{-2.25}{-5.25};
- \node at \punkt{-3}{-4.5} {$S$};
-
- \fill[color=white] \punkt{-3.75}{-5.75} rectangle \punkt{-2.25}{-7.25};
- \draw \punkt{-3.75}{-5.75} rectangle \punkt{-2.25}{-7.25};
- \node at \punkt{-3}{-6.5} {$r_{#1}$};
-}
-
-\begin{scope}
- \blocks{blue!20}
- \foreach \x in {0,...,7}{
- \node at \punkt{(3*\x+0.5)}{2} {$K_\x$};
- }
- \schlange{1}
- \summe
-\end{scope}
-
-\begin{scope}[yshift=-4.5cm]
- \blocks{darkgreen!20}
- \foreach \x in {8,...,15}{
- \node at \punkt{(3*(\x-8)+0.5)}{2} {$K_{\x}$};
- }
- \schlange{2}
- \summe
-\end{scope}
-
-\begin{scope}[yshift=-9cm]
- \blocks{darkgreen!20}
- \foreach \x in {16,...,23}{
- \node at \punkt{(3*(\x-16)+0.5)}{2} {$K_{\x}$};
- }
- \schlange{3}
- \summe
-\end{scope}
-
-\begin{scope}[yshift=-13.5cm]
- \blocks{darkgreen!20}
- \foreach \x in {24,...,31}{
- \node at \punkt{(3*(\x-24)+0.5)}{2} {$K_{\x}$};
- }
- \foreach \x in {0,3,...,21}{
- \draw[->,color=gray]
- \punkt{(\x+0.5)}{-0.1} -- \punkt{(\x+0.5)}{-2.1};
- \node[color=gray] at \punkt{(\x+0.5)}{-2.1} [below] {$\vdots$};
- }
- \draw[color=gray] \punkt{22.1}{2} -- \punkt{23}{2}
- -- \punkt{23}{-1.0} -- \punkt{-3}{-1.0}
- -- \punkt{-3}{-2.1};
- \node[color=gray] at \punkt{-3}{-2.1} [below] {$\vdots$};
-\end{scope}
-
-\end{tikzpicture}
-\end{document}
-
+%
+% keys.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\def\s{0.5}
+\def\punkt#1#2{({(#1)*\s},{(#2)*\s})}
+\def\wort#1#2#3{
+ \fill[color=#3] \punkt{#1}{#2} rectangle \punkt{(#1+1)}{(#2+4)};
+ \draw \punkt{#1}{#2} rectangle \punkt{(#1+1)}{(#2+4)};
+}
+
+\def\summe{
+ \foreach \x in {0,3,...,21}{
+ \draw[->] \punkt{(\x+0.5)}{-0.1} -- \punkt{(\x+0.5)}{-2.1};
+ \draw \punkt{(\x+0.5)}{-2.5} circle[radius={0.3*\s}];
+ \draw \punkt{(\x+0.5-0.2)}{-2.5}
+ --
+ \punkt{(\x+0.5+0.2)}{-2.5};
+ \draw \punkt{(\x+0.5)}{-2.5+0.2}
+ --
+ \punkt{(\x+0.5)}{-2.5-0.2};
+ \draw[->] \punkt{(\x+0.5)}{-2.9} -- \punkt{(\x+0.5)}{-4.9};
+ }
+ \foreach \x in {0,3,...,18}{
+ \draw[->] \punkt{(\x+1.1)}{-7} -- \punkt{(\x+2)}{-7}
+ -- \punkt{(\x+2)}{-2.5} -- \punkt{(\x+3.1)}{-2.5};
+ }
+ \fill[color=white]
+ \punkt{(9+1.25)}{-5.5}
+ rectangle
+ \punkt{(9+2.75)}{-4.00};
+ \draw
+ \punkt{(9+1.25)}{-5.5}
+ rectangle
+ \punkt{(9+2.75)}{-4.00};
+ \node at \punkt{(9+2)}{-4.75} {$S$};
+}
+
+\def\blocks#1{
+ \foreach \x in {0,3,...,21}{
+ \wort{\x}{0}{#1}
+ }
+}
+
+\def\schlange#1{
+ \draw[->] \punkt{22.1}{2} -- \punkt{23}{2}
+ -- \punkt{23}{-1.0} -- \punkt{-3}{-1.0}
+ -- \punkt{-3}{-8} -- \punkt{-1}{-8} -- \punkt{-1}{-2.5}
+ -- \punkt{0.1}{-2.5};
+ ;
+ \fill[color=white] \punkt{-3.75}{-1.75} rectangle \punkt{-2.25}{-3.25};
+ \draw \punkt{-3.75}{-1.75} rectangle \punkt{-2.25}{-3.25};
+ \node at \punkt{-3}{-2.5} {$\pi$};
+
+ \fill[color=white] \punkt{-3.75}{-3.75} rectangle \punkt{-2.25}{-5.25};
+ \draw \punkt{-3.75}{-3.75} rectangle \punkt{-2.25}{-5.25};
+ \node at \punkt{-3}{-4.5} {$S$};
+
+ \fill[color=white] \punkt{-3.75}{-5.75} rectangle \punkt{-2.25}{-7.25};
+ \draw \punkt{-3.75}{-5.75} rectangle \punkt{-2.25}{-7.25};
+ \node at \punkt{-3}{-6.5} {$r_{#1}$};
+}
+
+\begin{scope}
+ \blocks{blue!20}
+ \foreach \x in {0,...,7}{
+ \node at \punkt{(3*\x+0.5)}{2} {$K_\x$};
+ }
+ \schlange{1}
+ \summe
+\end{scope}
+
+\begin{scope}[yshift=-4.5cm]
+ \blocks{darkgreen!20}
+ \foreach \x in {8,...,15}{
+ \node at \punkt{(3*(\x-8)+0.5)}{2} {$K_{\x}$};
+ }
+ \schlange{2}
+ \summe
+\end{scope}
+
+\begin{scope}[yshift=-9cm]
+ \blocks{darkgreen!20}
+ \foreach \x in {16,...,23}{
+ \node at \punkt{(3*(\x-16)+0.5)}{2} {$K_{\x}$};
+ }
+ \schlange{3}
+ \summe
+\end{scope}
+
+\begin{scope}[yshift=-13.5cm]
+ \blocks{darkgreen!20}
+ \foreach \x in {24,...,31}{
+ \node at \punkt{(3*(\x-24)+0.5)}{2} {$K_{\x}$};
+ }
+ \foreach \x in {0,3,...,21}{
+ \draw[->,color=gray]
+ \punkt{(\x+0.5)}{-0.1} -- \punkt{(\x+0.5)}{-2.1};
+ \node[color=gray] at \punkt{(\x+0.5)}{-2.1} [below] {$\vdots$};
+ }
+ \draw[color=gray] \punkt{22.1}{2} -- \punkt{23}{2}
+ -- \punkt{23}{-1.0} -- \punkt{-3}{-1.0}
+ -- \punkt{-3}{-2.1};
+ \node[color=gray] at \punkt{-3}{-2.1} [below] {$\vdots$};
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/90-crypto/images/multiplikation.tex b/buch/chapters/90-crypto/images/multiplikation.tex
index dd59097..27c4329 100644
--- a/buch/chapters/90-crypto/images/multiplikation.tex
+++ b/buch/chapters/90-crypto/images/multiplikation.tex
@@ -1,464 +1,464 @@
-%
-% multiplikation.tex --
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{1}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-
-\definecolor{darkgreen}{rgb}{0,0.6,0}
-
-\def\s{0.45}
-
-\def\punkt#1#2{({#1*\s},{#2*\s})}
-
-\def\pfeile{
- \foreach \x in {0.5,1.5,...,7.5}{
- \draw[->,color=blue] \punkt{\x}{-2.1} -- \punkt{(\x-1)}{-3.3};
- }
-}
-
-\begin{scope}[yshift=0.1cm]
- \node at \punkt{0}{0.5} [left] {$p(X)=\mathstrut$};
- \draw \punkt{0}{0} rectangle \punkt{8}{1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{0} -- \punkt{\x}{1};
- }
- \node at \punkt{0.5}{0.5} {\texttt{1}};
- \node at \punkt{1.5}{0.5} {\texttt{0}};
- \node at \punkt{2.5}{0.5} {\texttt{0}};
- \node at \punkt{3.5}{0.5} {\texttt{1}};
- \node at \punkt{4.5}{0.5} {\texttt{0}};
- \node at \punkt{5.5}{0.5} {\texttt{1}};
- \node at \punkt{6.5}{0.5} {\texttt{0}};
- \node at \punkt{7.5}{0.5} {\texttt{1}};
- \foreach \x in {0.5,1.5,...,7.5}{
- \draw[->,color=blue] \punkt{\x}{-0.1} -- \punkt{(\x-1)}{-1.3};
- }
-\end{scope}
-
-\begin{scope}[yshift=-1cm]
- \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
- \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
- \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
- \draw \punkt{0}{0} rectangle \punkt{8}{1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{0} -- \punkt{\x}{1};
- }
- \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{1}};
- \node at \punkt{0.5}{0.5} {\texttt{0}};
- \node at \punkt{1.5}{0.5} {\texttt{0}};
- \node at \punkt{2.5}{0.5} {\texttt{1}};
- \node at \punkt{3.5}{0.5} {\texttt{0}};
- \node at \punkt{4.5}{0.5} {\texttt{1}};
- \node at \punkt{5.5}{0.5} {\texttt{0}};
- \node at \punkt{6.5}{0.5} {\texttt{1}};
- \node at \punkt{7.5}{0.5} {\texttt{0}};
-
- \draw[->,color=darkgreen]
- \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
- \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
- \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
- \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
- \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
-
- \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
- }
- \node at \punkt{0.5}{-1.5} {\texttt{0}};
- \node at \punkt{1.5}{-1.5} {\texttt{0}};
- \node at \punkt{2.5}{-1.5} {\texttt{1}};
- \node at \punkt{3.5}{-1.5} {\texttt{1}};
- \node at \punkt{4.5}{-1.5} {\texttt{0}};
- \node at \punkt{5.5}{-1.5} {\texttt{0}};
- \node at \punkt{6.5}{-1.5} {\texttt{0}};
- \node at \punkt{7.5}{-1.5} {\texttt{1}};
-
- \pfeile
-\end{scope}
-
-\begin{scope}[yshift=-3cm]
- \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
- \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
- \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
- \draw \punkt{0}{0} rectangle \punkt{8}{1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{0} -- \punkt{\x}{1};
- }
- \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{0}};
- \node at \punkt{0.5}{0.5} {\texttt{0}};
- \node at \punkt{1.5}{0.5} {\texttt{1}};
- \node at \punkt{2.5}{0.5} {\texttt{1}};
- \node at \punkt{3.5}{0.5} {\texttt{0}};
- \node at \punkt{4.5}{0.5} {\texttt{0}};
- \node at \punkt{5.5}{0.5} {\texttt{0}};
- \node at \punkt{6.5}{0.5} {\texttt{1}};
- \node at \punkt{7.5}{0.5} {\texttt{0}};
-
-% \draw[->,color=darkgreen]
-% \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
-% \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
- \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
-
- \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
- }
- \node at \punkt{0.5}{-1.5} {\texttt{0}};
- \node at \punkt{1.5}{-1.5} {\texttt{1}};
- \node at \punkt{2.5}{-1.5} {\texttt{1}};
- \node at \punkt{3.5}{-1.5} {\texttt{0}};
- \node at \punkt{4.5}{-1.5} {\texttt{0}};
- \node at \punkt{5.5}{-1.5} {\texttt{0}};
- \node at \punkt{6.5}{-1.5} {\texttt{1}};
- \node at \punkt{7.5}{-1.5} {\texttt{0}};
-
- \pfeile
-\end{scope}
-
-\begin{scope}[yshift=-5cm]
- \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
- \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
- \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
- \draw \punkt{0}{0} rectangle \punkt{8}{1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{0} -- \punkt{\x}{1};
- }
- \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{0}};
- \node at \punkt{0.5}{0.5} {\texttt{1}};
- \node at \punkt{1.5}{0.5} {\texttt{1}};
- \node at \punkt{2.5}{0.5} {\texttt{0}};
- \node at \punkt{3.5}{0.5} {\texttt{0}};
- \node at \punkt{4.5}{0.5} {\texttt{0}};
- \node at \punkt{5.5}{0.5} {\texttt{1}};
- \node at \punkt{6.5}{0.5} {\texttt{0}};
- \node at \punkt{7.5}{0.5} {\texttt{0}};
-
-% \draw[->,color=darkgreen]
-% \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
-% \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
- \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
-
- \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
- }
- \node at \punkt{0.5}{-1.5} {\texttt{1}};
- \node at \punkt{1.5}{-1.5} {\texttt{1}};
- \node at \punkt{2.5}{-1.5} {\texttt{0}};
- \node at \punkt{3.5}{-1.5} {\texttt{0}};
- \node at \punkt{4.5}{-1.5} {\texttt{0}};
- \node at \punkt{5.5}{-1.5} {\texttt{1}};
- \node at \punkt{6.5}{-1.5} {\texttt{0}};
- \node at \punkt{7.5}{-1.5} {\texttt{0}};
-
- \pfeile
-\end{scope}
-
-\begin{scope}[yshift=-7cm]
- \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
- \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
- \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
- \draw \punkt{0}{0} rectangle \punkt{8}{1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{0} -- \punkt{\x}{1};
- }
- \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{1}};
- \node at \punkt{0.5}{0.5} {\texttt{1}};
- \node at \punkt{1.5}{0.5} {\texttt{0}};
- \node at \punkt{2.5}{0.5} {\texttt{0}};
- \node at \punkt{3.5}{0.5} {\texttt{0}};
- \node at \punkt{4.5}{0.5} {\texttt{1}};
- \node at \punkt{5.5}{0.5} {\texttt{0}};
- \node at \punkt{6.5}{0.5} {\texttt{0}};
- \node at \punkt{7.5}{0.5} {\texttt{0}};
-
- \draw[->,color=darkgreen]
- \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
- \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
- \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
- \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
- \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
-
- \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
- }
- \node at \punkt{0.5}{-1.5} {\texttt{1}};
- \node at \punkt{1.5}{-1.5} {\texttt{0}};
- \node at \punkt{2.5}{-1.5} {\texttt{0}};
- \node at \punkt{3.5}{-1.5} {\texttt{1}};
- \node at \punkt{4.5}{-1.5} {\texttt{0}};
- \node at \punkt{5.5}{-1.5} {\texttt{0}};
- \node at \punkt{6.5}{-1.5} {\texttt{1}};
- \node at \punkt{7.5}{-1.5} {\texttt{1}};
-
- \pfeile
-\end{scope}
-
-\begin{scope}[yshift=-9cm]
- \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
- \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
- \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
- \draw \punkt{0}{0} rectangle \punkt{8}{1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{0} -- \punkt{\x}{1};
- }
- \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{1}};
- \node at \punkt{0.5}{0.5} {\texttt{0}};
- \node at \punkt{1.5}{0.5} {\texttt{0}};
- \node at \punkt{2.5}{0.5} {\texttt{1}};
- \node at \punkt{3.5}{0.5} {\texttt{0}};
- \node at \punkt{4.5}{0.5} {\texttt{0}};
- \node at \punkt{5.5}{0.5} {\texttt{1}};
- \node at \punkt{6.5}{0.5} {\texttt{1}};
- \node at \punkt{7.5}{0.5} {\texttt{0}};
-
- \draw[->,color=darkgreen]
- \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
- \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
- \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
- \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
- \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
-
- \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
- }
- \node at \punkt{0.5}{-1.5} {\texttt{0}};
- \node at \punkt{1.5}{-1.5} {\texttt{0}};
- \node at \punkt{2.5}{-1.5} {\texttt{1}};
- \node at \punkt{3.5}{-1.5} {\texttt{1}};
- \node at \punkt{4.5}{-1.5} {\texttt{1}};
- \node at \punkt{5.5}{-1.5} {\texttt{1}};
- \node at \punkt{6.5}{-1.5} {\texttt{0}};
- \node at \punkt{7.5}{-1.5} {\texttt{1}};
-
- \pfeile
-\end{scope}
-
-\begin{scope}[yshift=-11cm]
- \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
- \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
- \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
- \draw \punkt{0}{0} rectangle \punkt{8}{1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{0} -- \punkt{\x}{1};
- }
- \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{0}};
- \node at \punkt{0.5}{0.5} {\texttt{0}};
- \node at \punkt{1.5}{0.5} {\texttt{0}};
- \node at \punkt{2.5}{0.5} {\texttt{1}};
- \node at \punkt{3.5}{0.5} {\texttt{1}};
- \node at \punkt{4.5}{0.5} {\texttt{1}};
- \node at \punkt{5.5}{0.5} {\texttt{0}};
- \node at \punkt{6.5}{0.5} {\texttt{1}};
- \node at \punkt{7.5}{0.5} {\texttt{0}};
-
-% \draw[->,color=darkgreen]
-% \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
-% \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
- \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
-
- \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
- }
- \node at \punkt{0.5}{-1.5} {\texttt{0}};
- \node at \punkt{1.5}{-1.5} {\texttt{0}};
- \node at \punkt{2.5}{-1.5} {\texttt{1}};
- \node at \punkt{3.5}{-1.5} {\texttt{1}};
- \node at \punkt{4.5}{-1.5} {\texttt{1}};
- \node at \punkt{5.5}{-1.5} {\texttt{0}};
- \node at \punkt{6.5}{-1.5} {\texttt{1}};
- \node at \punkt{7.5}{-1.5} {\texttt{0}};
-
- \pfeile
-\end{scope}
-
-\begin{scope}[yshift=-13cm]
- \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
- \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
- \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
- \draw \punkt{0}{0} rectangle \punkt{8}{1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{0} -- \punkt{\x}{1};
- }
- \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{0}};
- \node at \punkt{0.5}{0.5} {\texttt{0}};
- \node at \punkt{1.5}{0.5} {\texttt{1}};
- \node at \punkt{2.5}{0.5} {\texttt{1}};
- \node at \punkt{3.5}{0.5} {\texttt{1}};
- \node at \punkt{4.5}{0.5} {\texttt{0}};
- \node at \punkt{5.5}{0.5} {\texttt{1}};
- \node at \punkt{6.5}{0.5} {\texttt{0}};
- \node at \punkt{7.5}{0.5} {\texttt{0}};
-
-% \draw[->,color=darkgreen]
-% \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
-% \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
-% \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
- \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
-
- \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
- }
- \node at \punkt{0.5}{-1.5} {\texttt{0}};
- \node at \punkt{1.5}{-1.5} {\texttt{1}};
- \node at \punkt{2.5}{-1.5} {\texttt{1}};
- \node at \punkt{3.5}{-1.5} {\texttt{0}};
- \node at \punkt{4.5}{-1.5} {\texttt{1}};
- \node at \punkt{5.5}{-1.5} {\texttt{1}};
- \node at \punkt{6.5}{-1.5} {\texttt{1}};
- \node at \punkt{7.5}{-1.5} {\texttt{1}};
-
-% \pfeile
-\end{scope}
-
-\begin{scope}[xshift=9cm]
-
-\begin{scope}[yshift=0.1cm]
- \draw[->] \punkt{-11.8}{0.5} -- \punkt{-0.1}{0.5};
- \draw \punkt{0}{0} rectangle \punkt{8}{1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{0} -- \punkt{\x}{1};
- }
- \draw \punkt{4}{-0.1} -- \punkt{4}{-3};
- \node at \punkt{0.5}{0.5} {\texttt{1}};
- \node at \punkt{1.5}{0.5} {\texttt{0}};
- \node at \punkt{2.5}{0.5} {\texttt{0}};
- \node at \punkt{3.5}{0.5} {\texttt{1}};
- \node at \punkt{4.5}{0.5} {\texttt{0}};
- \node at \punkt{5.5}{0.5} {\texttt{1}};
- \node at \punkt{6.5}{0.5} {\texttt{0}};
- \node at \punkt{7.5}{0.5} {\texttt{1}};
-\end{scope}
-
-\def\summation#1#2#3#4#5#6#7#8{
- \draw[->] \punkt{4}{2.3} -- \punkt{4}{1};
-
- \draw[->] \punkt{-11.8}{0.5} -- \punkt{3.5}{0.5};
-
- \draw \punkt{4}{0.5} circle[radius=0.2];
- \draw \punkt{4}{0.20} -- \punkt{4}{0.80};
- \draw \punkt{3.7}{0.5} -- \punkt{4.3}{0.5};
-
- \draw[->] \punkt{4}{-0.05} -- \punkt{4}{-0.95};
- \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
- }
-
- \node at \punkt{0.5}{-1.5} {\texttt{#1}};
- \node at \punkt{1.5}{-1.5} {\texttt{#2}};
- \node at \punkt{2.5}{-1.5} {\texttt{#3}};
- \node at \punkt{3.5}{-1.5} {\texttt{#4}};
- \node at \punkt{4.5}{-1.5} {\texttt{#5}};
- \node at \punkt{5.5}{-1.5} {\texttt{#6}};
- \node at \punkt{6.5}{-1.5} {\texttt{#7}};
- \node at \punkt{7.5}{-1.5} {\texttt{#8}};
-}
-
-\begin{scope}[yshift=-1.9cm]
- \summation{1}{0}{0}{1}{0}{1}{0}{1}
-\end{scope}
-
-\begin{scope}[yshift=-3.9cm]
- \summation{1}{1}{1}{1}{0}{1}{1}{1}
-\end{scope}
-
-\begin{scope}[yshift=-5.9cm]
- \summation{1}{1}{1}{1}{0}{1}{1}{1}
-\end{scope}
-
-\begin{scope}[yshift=-7.9cm]
- \summation{0}{1}{1}{0}{0}{1}{0}{0}
-\end{scope}
-
-\begin{scope}[yshift=-9.9cm]
- \summation{0}{1}{0}{1}{1}{0}{0}{1}
-\end{scope}
-
-\begin{scope}[yshift=-11.9cm]
- \summation{0}{1}{0}{1}{1}{0}{0}{1}
-\end{scope}
-
-\begin{scope}[yshift=-13.9cm]
- \summation{0}{0}{1}{1}{0}{1}{1}{0}
- \node at \punkt{0}{-1.5} [left] {$p(X)\cdot q(X)=\mathstrut$};
-\end{scope}
-
-\end{scope}
-
-\begin{scope}[xshift=5cm]
-
-\begin{scope}[yshift=2cm]
- \node at \punkt{0}{0.5} [left] {$q(X)=\mathstrut$};
- \draw \punkt{0}{0} rectangle \punkt{8}{1};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{0} -- \punkt{\x}{1};
- }
- \node at \punkt{0.5}{0.5} {\texttt{1}};
- \node at \punkt{1.5}{0.5} {\texttt{0}};
- \node at \punkt{2.5}{0.5} {\texttt{1}};
- \node at \punkt{3.5}{0.5} {\texttt{1}};
- \node at \punkt{4.5}{0.5} {\texttt{0}};
- \node at \punkt{5.5}{0.5} {\texttt{1}};
- \node at \punkt{6.5}{0.5} {\texttt{0}};
- \node at \punkt{7.5}{0.5} {\texttt{1}};
-
- \draw[->] \punkt{7.5}{-0.1} -- ({7.5*\s},{-1.3});
- \node at ({7.5*\s},{-1.2}) [below] {$\mathstrut\cdot\texttt{1}$};
-
- \def\y{1.2}
-
- \draw[->] \punkt{6.5}{-0.1} -- ({6.5*\s},{-1*2-\y-0.1});
- \node at ({6.5*\s},{-1*2-\y}) [below] {$\mathstrut\cdot\texttt{0}$};
-
- \draw[->] \punkt{5.5}{-0.1} -- ({5.5*\s},{-2*2-\y-0.1});
- \node at ({5.5*\s},{-2*2-\y}) [below] {$\mathstrut\cdot\texttt{1}$};
-
- \draw[->] \punkt{4.5}{-0.1} -- ({4.5*\s},{-3*2-\y-0.1});
- \node at ({4.5*\s},{-3*2-\y}) [below] {$\mathstrut\cdot\texttt{0}$};
-
- \draw[->] \punkt{3.5}{-0.1} -- ({3.5*\s},{-4*2-\y-0.1});
- \node at ({3.5*\s},{-4*2-\y}) [below] {$\mathstrut\cdot\texttt{1}$};
-
- \draw[->] \punkt{2.5}{-0.1} -- ({2.5*\s},{-5*2-\y-0.1});
- \node at ({2.5*\s},{-5*2-\y}) [below] {$\mathstrut\cdot\texttt{1}$};
-
- \draw[->] \punkt{1.5}{-0.1} -- ({1.5*\s},{-6*2-\y-0.1});
- \node at ({1.5*\s},{-6*2-\y}) [below] {$\mathstrut\cdot\texttt{0}$};
-
- \draw[->] \punkt{0.5}{-0.1} -- ({0.5*\s},{-7*2-\y-0.1});
- \node at ({0.5*\s},{-7*2-\y}) [below] {$\mathstrut\cdot\texttt{1}$};
-\end{scope}
-
-\end{scope}
-
-\end{tikzpicture}
-\end{document}
-
+%
+% multiplikation.tex --
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\def\s{0.45}
+
+\def\punkt#1#2{({#1*\s},{#2*\s})}
+
+\def\pfeile{
+ \foreach \x in {0.5,1.5,...,7.5}{
+ \draw[->,color=blue] \punkt{\x}{-2.1} -- \punkt{(\x-1)}{-3.3};
+ }
+}
+
+\begin{scope}[yshift=0.1cm]
+ \node at \punkt{0}{0.5} [left] {$p(X)=\mathstrut$};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node at \punkt{0.5}{0.5} {\texttt{1}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{0}};
+ \node at \punkt{3.5}{0.5} {\texttt{1}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{1}};
+ \node at \punkt{6.5}{0.5} {\texttt{0}};
+ \node at \punkt{7.5}{0.5} {\texttt{1}};
+ \foreach \x in {0.5,1.5,...,7.5}{
+ \draw[->,color=blue] \punkt{\x}{-0.1} -- \punkt{(\x-1)}{-1.3};
+ }
+\end{scope}
+
+\begin{scope}[yshift=-1cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{1}};
+ \node at \punkt{0.5}{0.5} {\texttt{0}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{1}};
+ \node at \punkt{3.5}{0.5} {\texttt{0}};
+ \node at \punkt{4.5}{0.5} {\texttt{1}};
+ \node at \punkt{5.5}{0.5} {\texttt{0}};
+ \node at \punkt{6.5}{0.5} {\texttt{1}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+ \draw[->,color=darkgreen]
+ \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+ \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{0}};
+ \node at \punkt{1.5}{-1.5} {\texttt{0}};
+ \node at \punkt{2.5}{-1.5} {\texttt{1}};
+ \node at \punkt{3.5}{-1.5} {\texttt{1}};
+ \node at \punkt{4.5}{-1.5} {\texttt{0}};
+ \node at \punkt{5.5}{-1.5} {\texttt{0}};
+ \node at \punkt{6.5}{-1.5} {\texttt{0}};
+ \node at \punkt{7.5}{-1.5} {\texttt{1}};
+
+ \pfeile
+\end{scope}
+
+\begin{scope}[yshift=-3cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{0}};
+ \node at \punkt{0.5}{0.5} {\texttt{0}};
+ \node at \punkt{1.5}{0.5} {\texttt{1}};
+ \node at \punkt{2.5}{0.5} {\texttt{1}};
+ \node at \punkt{3.5}{0.5} {\texttt{0}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{0}};
+ \node at \punkt{6.5}{0.5} {\texttt{1}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+% \draw[->,color=darkgreen]
+% \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+% \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{0}};
+ \node at \punkt{1.5}{-1.5} {\texttt{1}};
+ \node at \punkt{2.5}{-1.5} {\texttt{1}};
+ \node at \punkt{3.5}{-1.5} {\texttt{0}};
+ \node at \punkt{4.5}{-1.5} {\texttt{0}};
+ \node at \punkt{5.5}{-1.5} {\texttt{0}};
+ \node at \punkt{6.5}{-1.5} {\texttt{1}};
+ \node at \punkt{7.5}{-1.5} {\texttt{0}};
+
+ \pfeile
+\end{scope}
+
+\begin{scope}[yshift=-5cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{0}};
+ \node at \punkt{0.5}{0.5} {\texttt{1}};
+ \node at \punkt{1.5}{0.5} {\texttt{1}};
+ \node at \punkt{2.5}{0.5} {\texttt{0}};
+ \node at \punkt{3.5}{0.5} {\texttt{0}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{1}};
+ \node at \punkt{6.5}{0.5} {\texttt{0}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+% \draw[->,color=darkgreen]
+% \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+% \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{1}};
+ \node at \punkt{1.5}{-1.5} {\texttt{1}};
+ \node at \punkt{2.5}{-1.5} {\texttt{0}};
+ \node at \punkt{3.5}{-1.5} {\texttt{0}};
+ \node at \punkt{4.5}{-1.5} {\texttt{0}};
+ \node at \punkt{5.5}{-1.5} {\texttt{1}};
+ \node at \punkt{6.5}{-1.5} {\texttt{0}};
+ \node at \punkt{7.5}{-1.5} {\texttt{0}};
+
+ \pfeile
+\end{scope}
+
+\begin{scope}[yshift=-7cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{1}};
+ \node at \punkt{0.5}{0.5} {\texttt{1}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{0}};
+ \node at \punkt{3.5}{0.5} {\texttt{0}};
+ \node at \punkt{4.5}{0.5} {\texttt{1}};
+ \node at \punkt{5.5}{0.5} {\texttt{0}};
+ \node at \punkt{6.5}{0.5} {\texttt{0}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+ \draw[->,color=darkgreen]
+ \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+ \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{1}};
+ \node at \punkt{1.5}{-1.5} {\texttt{0}};
+ \node at \punkt{2.5}{-1.5} {\texttt{0}};
+ \node at \punkt{3.5}{-1.5} {\texttt{1}};
+ \node at \punkt{4.5}{-1.5} {\texttt{0}};
+ \node at \punkt{5.5}{-1.5} {\texttt{0}};
+ \node at \punkt{6.5}{-1.5} {\texttt{1}};
+ \node at \punkt{7.5}{-1.5} {\texttt{1}};
+
+ \pfeile
+\end{scope}
+
+\begin{scope}[yshift=-9cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{1}};
+ \node at \punkt{0.5}{0.5} {\texttt{0}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{1}};
+ \node at \punkt{3.5}{0.5} {\texttt{0}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{1}};
+ \node at \punkt{6.5}{0.5} {\texttt{1}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+ \draw[->,color=darkgreen]
+ \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+ \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{0}};
+ \node at \punkt{1.5}{-1.5} {\texttt{0}};
+ \node at \punkt{2.5}{-1.5} {\texttt{1}};
+ \node at \punkt{3.5}{-1.5} {\texttt{1}};
+ \node at \punkt{4.5}{-1.5} {\texttt{1}};
+ \node at \punkt{5.5}{-1.5} {\texttt{1}};
+ \node at \punkt{6.5}{-1.5} {\texttt{0}};
+ \node at \punkt{7.5}{-1.5} {\texttt{1}};
+
+ \pfeile
+\end{scope}
+
+\begin{scope}[yshift=-11cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{0}};
+ \node at \punkt{0.5}{0.5} {\texttt{0}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{1}};
+ \node at \punkt{3.5}{0.5} {\texttt{1}};
+ \node at \punkt{4.5}{0.5} {\texttt{1}};
+ \node at \punkt{5.5}{0.5} {\texttt{0}};
+ \node at \punkt{6.5}{0.5} {\texttt{1}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+% \draw[->,color=darkgreen]
+% \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+% \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{0}};
+ \node at \punkt{1.5}{-1.5} {\texttt{0}};
+ \node at \punkt{2.5}{-1.5} {\texttt{1}};
+ \node at \punkt{3.5}{-1.5} {\texttt{1}};
+ \node at \punkt{4.5}{-1.5} {\texttt{1}};
+ \node at \punkt{5.5}{-1.5} {\texttt{0}};
+ \node at \punkt{6.5}{-1.5} {\texttt{1}};
+ \node at \punkt{7.5}{-1.5} {\texttt{0}};
+
+ \pfeile
+\end{scope}
+
+\begin{scope}[yshift=-13cm]
+ \draw[<-] \punkt{8.2}{-1.3} arc (-30:30:1.8);
+ \node at \punkt{9.3}{0.6} {$\mathstrut\cdot X$};
+ \fill[color=blue!20] \punkt{-1}{0} rectangle \punkt{0}{1};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node[color=darkgreen] at \punkt{-0.5}{0.5} {\texttt{0}};
+ \node at \punkt{0.5}{0.5} {\texttt{0}};
+ \node at \punkt{1.5}{0.5} {\texttt{1}};
+ \node at \punkt{2.5}{0.5} {\texttt{1}};
+ \node at \punkt{3.5}{0.5} {\texttt{1}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{1}};
+ \node at \punkt{6.5}{0.5} {\texttt{0}};
+ \node at \punkt{7.5}{0.5} {\texttt{0}};
+
+% \draw[->,color=darkgreen]
+% \punkt{-0.5}{0.1} -- \punkt{-0.5}{-0.5} -- \punkt{3.1}{-0.5};
+% \node[color=darkgreen] at \punkt{3.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{4.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{6.5}{-0.5} {\texttt{1}};
+% \node[color=darkgreen] at \punkt{7.5}{-0.5} {\texttt{1}};
+ \node[color=darkgreen] at \punkt{4}{-0.5} {$\|$};
+
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+ \node at \punkt{0.5}{-1.5} {\texttt{0}};
+ \node at \punkt{1.5}{-1.5} {\texttt{1}};
+ \node at \punkt{2.5}{-1.5} {\texttt{1}};
+ \node at \punkt{3.5}{-1.5} {\texttt{0}};
+ \node at \punkt{4.5}{-1.5} {\texttt{1}};
+ \node at \punkt{5.5}{-1.5} {\texttt{1}};
+ \node at \punkt{6.5}{-1.5} {\texttt{1}};
+ \node at \punkt{7.5}{-1.5} {\texttt{1}};
+
+% \pfeile
+\end{scope}
+
+\begin{scope}[xshift=9cm]
+
+\begin{scope}[yshift=0.1cm]
+ \draw[->] \punkt{-11.8}{0.5} -- \punkt{-0.1}{0.5};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \draw \punkt{4}{-0.1} -- \punkt{4}{-3};
+ \node at \punkt{0.5}{0.5} {\texttt{1}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{0}};
+ \node at \punkt{3.5}{0.5} {\texttt{1}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{1}};
+ \node at \punkt{6.5}{0.5} {\texttt{0}};
+ \node at \punkt{7.5}{0.5} {\texttt{1}};
+\end{scope}
+
+\def\summation#1#2#3#4#5#6#7#8{
+ \draw[->] \punkt{4}{2.3} -- \punkt{4}{1};
+
+ \draw[->] \punkt{-11.8}{0.5} -- \punkt{3.5}{0.5};
+
+ \draw \punkt{4}{0.5} circle[radius=0.2];
+ \draw \punkt{4}{0.20} -- \punkt{4}{0.80};
+ \draw \punkt{3.7}{0.5} -- \punkt{4.3}{0.5};
+
+ \draw[->] \punkt{4}{-0.05} -- \punkt{4}{-0.95};
+ \draw \punkt{0}{-2} rectangle \punkt{8}{-1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-2} -- \punkt{\x}{-1};
+ }
+
+ \node at \punkt{0.5}{-1.5} {\texttt{#1}};
+ \node at \punkt{1.5}{-1.5} {\texttt{#2}};
+ \node at \punkt{2.5}{-1.5} {\texttt{#3}};
+ \node at \punkt{3.5}{-1.5} {\texttt{#4}};
+ \node at \punkt{4.5}{-1.5} {\texttt{#5}};
+ \node at \punkt{5.5}{-1.5} {\texttt{#6}};
+ \node at \punkt{6.5}{-1.5} {\texttt{#7}};
+ \node at \punkt{7.5}{-1.5} {\texttt{#8}};
+}
+
+\begin{scope}[yshift=-1.9cm]
+ \summation{1}{0}{0}{1}{0}{1}{0}{1}
+\end{scope}
+
+\begin{scope}[yshift=-3.9cm]
+ \summation{1}{1}{1}{1}{0}{1}{1}{1}
+\end{scope}
+
+\begin{scope}[yshift=-5.9cm]
+ \summation{1}{1}{1}{1}{0}{1}{1}{1}
+\end{scope}
+
+\begin{scope}[yshift=-7.9cm]
+ \summation{0}{1}{1}{0}{0}{1}{0}{0}
+\end{scope}
+
+\begin{scope}[yshift=-9.9cm]
+ \summation{0}{1}{0}{1}{1}{0}{0}{1}
+\end{scope}
+
+\begin{scope}[yshift=-11.9cm]
+ \summation{0}{1}{0}{1}{1}{0}{0}{1}
+\end{scope}
+
+\begin{scope}[yshift=-13.9cm]
+ \summation{0}{0}{1}{1}{0}{1}{1}{0}
+ \node at \punkt{0}{-1.5} [left] {$p(X)\cdot q(X)=\mathstrut$};
+\end{scope}
+
+\end{scope}
+
+\begin{scope}[xshift=5cm]
+
+\begin{scope}[yshift=2cm]
+ \node at \punkt{0}{0.5} [left] {$q(X)=\mathstrut$};
+ \draw \punkt{0}{0} rectangle \punkt{8}{1};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+ }
+ \node at \punkt{0.5}{0.5} {\texttt{1}};
+ \node at \punkt{1.5}{0.5} {\texttt{0}};
+ \node at \punkt{2.5}{0.5} {\texttt{1}};
+ \node at \punkt{3.5}{0.5} {\texttt{1}};
+ \node at \punkt{4.5}{0.5} {\texttt{0}};
+ \node at \punkt{5.5}{0.5} {\texttt{1}};
+ \node at \punkt{6.5}{0.5} {\texttt{0}};
+ \node at \punkt{7.5}{0.5} {\texttt{1}};
+
+ \draw[->] \punkt{7.5}{-0.1} -- ({7.5*\s},{-1.3});
+ \node at ({7.5*\s},{-1.2}) [below] {$\mathstrut\cdot\texttt{1}$};
+
+ \def\y{1.2}
+
+ \draw[->] \punkt{6.5}{-0.1} -- ({6.5*\s},{-1*2-\y-0.1});
+ \node at ({6.5*\s},{-1*2-\y}) [below] {$\mathstrut\cdot\texttt{0}$};
+
+ \draw[->] \punkt{5.5}{-0.1} -- ({5.5*\s},{-2*2-\y-0.1});
+ \node at ({5.5*\s},{-2*2-\y}) [below] {$\mathstrut\cdot\texttt{1}$};
+
+ \draw[->] \punkt{4.5}{-0.1} -- ({4.5*\s},{-3*2-\y-0.1});
+ \node at ({4.5*\s},{-3*2-\y}) [below] {$\mathstrut\cdot\texttt{0}$};
+
+ \draw[->] \punkt{3.5}{-0.1} -- ({3.5*\s},{-4*2-\y-0.1});
+ \node at ({3.5*\s},{-4*2-\y}) [below] {$\mathstrut\cdot\texttt{1}$};
+
+ \draw[->] \punkt{2.5}{-0.1} -- ({2.5*\s},{-5*2-\y-0.1});
+ \node at ({2.5*\s},{-5*2-\y}) [below] {$\mathstrut\cdot\texttt{1}$};
+
+ \draw[->] \punkt{1.5}{-0.1} -- ({1.5*\s},{-6*2-\y-0.1});
+ \node at ({1.5*\s},{-6*2-\y}) [below] {$\mathstrut\cdot\texttt{0}$};
+
+ \draw[->] \punkt{0.5}{-0.1} -- ({0.5*\s},{-7*2-\y-0.1});
+ \node at ({0.5*\s},{-7*2-\y}) [below] {$\mathstrut\cdot\texttt{1}$};
+\end{scope}
+
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/90-crypto/images/sbox.m b/buch/chapters/90-crypto/images/sbox.m
index 1f0c2ce..973ffc9 100644
--- a/buch/chapters/90-crypto/images/sbox.m
+++ b/buch/chapters/90-crypto/images/sbox.m
@@ -1,52 +1,52 @@
-#
-# sbox.m
-#
-# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-#
-A=[
-1,0,0,0,1,1,1,1;
-1,1,0,0,0,1,1,1;
-1,1,1,0,0,0,1,1;
-1,1,1,1,0,0,0,1;
-1,1,1,1,1,0,0,0;
-0,1,1,1,1,1,0,0;
-0,0,1,1,1,1,1,0;
-0,0,0,1,1,1,1,1;
-]
-
-R = zeros(8,16);
-R(:,1:8) = A;
-R(:,9:16) = eye(8);
-
-for k = (1:5)
- for i=(k+1:8)
- pivot = R(i,k);
- R(i,:) = R(i,:) + pivot * R(k,:);
- end
- R = mod(R, 2)
-end
-
-P = [
-1,0,0,0,0,0,0,0;
-0,1,0,0,0,0,0,0;
-0,0,1,0,0,0,0,0;
-0,0,0,1,0,0,0,0;
-0,0,0,0,1,0,0,0;
-0,0,0,0,0,0,0,1;
-0,0,0,0,0,1,0,0;
-0,0,0,0,0,0,1,0;
-]
-
-R = P * R
-
-for k = (8:-1:2)
- for i = (1:k-1)
- pivot = R(i,k);
- R(i,:) = R(i,:) + pivot * R(k,:);
- end
- R = mod(R, 2)
-end
-
-B = R(:,9:16)
-
-A * B
+#
+# sbox.m
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+A=[
+1,0,0,0,1,1,1,1;
+1,1,0,0,0,1,1,1;
+1,1,1,0,0,0,1,1;
+1,1,1,1,0,0,0,1;
+1,1,1,1,1,0,0,0;
+0,1,1,1,1,1,0,0;
+0,0,1,1,1,1,1,0;
+0,0,0,1,1,1,1,1;
+]
+
+R = zeros(8,16);
+R(:,1:8) = A;
+R(:,9:16) = eye(8);
+
+for k = (1:5)
+ for i=(k+1:8)
+ pivot = R(i,k);
+ R(i,:) = R(i,:) + pivot * R(k,:);
+ end
+ R = mod(R, 2)
+end
+
+P = [
+1,0,0,0,0,0,0,0;
+0,1,0,0,0,0,0,0;
+0,0,1,0,0,0,0,0;
+0,0,0,1,0,0,0,0;
+0,0,0,0,1,0,0,0;
+0,0,0,0,0,0,0,1;
+0,0,0,0,0,1,0,0;
+0,0,0,0,0,0,1,0;
+]
+
+R = P * R
+
+for k = (8:-1:2)
+ for i = (1:k-1)
+ pivot = R(i,k);
+ R(i,:) = R(i,:) + pivot * R(k,:);
+ end
+ R = mod(R, 2)
+end
+
+B = R(:,9:16)
+
+A * B
diff --git a/buch/chapters/90-crypto/images/sbox.tex b/buch/chapters/90-crypto/images/sbox.tex
index fefb823..41f8812 100644
--- a/buch/chapters/90-crypto/images/sbox.tex
+++ b/buch/chapters/90-crypto/images/sbox.tex
@@ -1,241 +1,241 @@
-%
-% sbox.tex -- template for standalon tikz images
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{1}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-
-\def\s{0.2}
-\def\punkt#1#2{({#1*\s},{(8-(#2))*\s})}
-
-\definecolor{b}{rgb}{0,0,0}
-\definecolor{w}{rgb}{1,1,1}
-
-\def\feld#1#2#3{
- \fill[color=#3] \punkt{#1}{#2} rectangle \punkt{(#1+1)}{(#2-1)};
-}
-
-\def\zeile#1#2#3#4#5#6#7#8#9{
- \feld{0}{#1}{#2}
- \feld{1}{#1}{#3}
- \feld{2}{#1}{#4}
- \feld{3}{#1}{#5}
- \feld{4}{#1}{#6}
- \feld{5}{#1}{#7}
- \feld{6}{#1}{#8}
- \feld{7}{#1}{#9}
-}
-\def\inverse#1#2#3#4#5#6#7#8#9{
- \feld{8}{#1}{#2}
- \feld{9}{#1}{#3}
- \feld{10}{#1}{#4}
- \feld{11}{#1}{#5}
- \feld{12}{#1}{#6}
- \feld{13}{#1}{#7}
- \feld{14}{#1}{#8}
- \feld{15}{#1}{#9}
-}
-\def\rechteck{
- \draw (0,{1*\s}) rectangle ({16*\s},{(8+1)*\s});
- \draw ({8*\s},{1*\s}) -- ({8*\s},{(8+1)*\s});
-}
-
-\def\pivot#1#2{
- \draw[color=red,line width=1.2pt]
- \punkt{(#1+\inset)}{(#2-\inset)}
- rectangle
- \punkt{(#1+1-\inset)}{(#2-1+\inset)};
-}
-\def\inset{0.1}
-\def\cleanup#1#2#3{
- \pgfmathparse{(#3-#2)/abs(#3-#2)}
- \xdef\signum{\pgfmathresult}
- \draw[color=blue!50,line width=1.2pt]
- \punkt{(#1+\inset)}{#3}
- --
- \punkt{(#1+\inset)}{(#2-1+\inset*\signum)}
- --
- \punkt{(#1+1-\inset)}{(#2-1+\inset*\signum)}
- --
- \punkt{(#1+1-\inset)}{#3}
- ;
-}
-
-\begin{scope}
- \zeile0bwwwbbbb \inverse0bwwwwwww
- \zeile1bbwwwbbb \inverse1wbwwwwww
- \zeile2bbbwwwbb \inverse2wwbwwwww
- \zeile3bbbbwwwb \inverse3wwwbwwww
- \zeile4bbbbbwww \inverse4wwwwbwww
- \zeile5wbbbbbww \inverse5wwwwwbww
- \zeile6wwbbbbbw \inverse6wwwwwwbw
- \zeile7wwwbbbbb \inverse7wwwwwwwb
- \rechteck
- \pivot{0}{0}
- \cleanup{0}{1}{7}
-\end{scope}
-
-\begin{scope}[xshift=4cm]
- \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
- \punkt{-4}{3} -- \punkt{0}{3};
- \zeile0bwwwbbbb \inverse0bwwwwwww
- \zeile1wbwwbwww \inverse1bbwwwwww
- \zeile2wbbwbbww \inverse2bwbwwwww
- \zeile3wbbbbbbw \inverse3bwwbwwww
- \zeile4wbbbwbbb \inverse4bwwwbwww
- \zeile5wbbbbbww \inverse5wwwwwbww
- \zeile6wwbbbbbw \inverse6wwwwwwbw
- \zeile7wwwbbbbb \inverse7wwwwwwwb
- \rechteck
- \pivot{1}{1}
- \cleanup{1}{2}{7}
-\end{scope}
-
-\begin{scope}[xshift=8cm]
- \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
- \punkt{-4}{3} -- \punkt{0}{3};
- \zeile0bwwwbbbb \inverse0bwwwwwww
- \zeile1wbwwbwww \inverse1bbwwwwww
- \zeile2wwbwwbww \inverse2wbbwwwww
- \zeile3wwbbwbbw \inverse3wbwbwwww
- \zeile4wwbbbbbb \inverse4wbwwbwww
- \zeile5wwbbwbww \inverse5bbwwwbww
- \zeile6wwbbbbbw \inverse6wwwwwwbw
- \zeile7wwwbbbbb \inverse7wwwwwwwb
- \rechteck
- \pivot{2}{2}
- \cleanup{2}{3}{7}
-\end{scope}
-
-\begin{scope}[xshift=12cm,yshift=0cm]
- \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
- \punkt{-4}{3} -- \punkt{0}{3};
- \zeile0bwwwbbbb \inverse0bwwwwwww
- \zeile1wbwwbwww \inverse1bbwwwwww
- \zeile2wwbwwbww \inverse2wbbwwwww
- \zeile3wwwbwwbw \inverse3wwbbwwww
- \zeile4wwwbbwbb \inverse4wwbwbwww
- \zeile5wwwbwwww \inverse5bwbwwbww
- \zeile6wwwbbwbw \inverse6wbbwwwbw
- \zeile7wwwbbbbb \inverse7wwwwwwwb
- \rechteck
- \pivot{3}{3}
- \cleanup{3}{4}{7}
- \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
- \punkt{8}{7} -- \punkt{8}{11};
-\end{scope}
-
-\begin{scope}[xshift=12cm,yshift=-2.4cm]
- \draw[<-,shorten >= 0.05cm,shorten <= 0.05cm]
- \punkt{-4}{3} -- \punkt{0}{3};
- \zeile0bwwwbbbb \inverse0bwwwwwww
- \zeile1wbwwbwww \inverse1bbwwwwww
- \zeile2wwbwwbww \inverse2wbbwwwww
- \zeile3wwwbwwbw \inverse3wwbbwwww
- \zeile4wwwwbwwb \inverse4wwwbbwww
- \zeile5wwwwwwbw \inverse5bwwbwbww
- \zeile6wwwwbwww \inverse6wbwbwwbw
- \zeile7wwwwbbwb \inverse7wwbbwwwb
- \rechteck
- \pivot{4}{4}
- \cleanup{4}{5}{7}
-\end{scope}
-
-\begin{scope}[xshift=8cm,yshift=-2.4cm]
- \draw[<-,shorten >= 0.05cm,shorten <= 0.05cm]
- \punkt{-4}{3} -- \punkt{0}{3};
- \zeile0bwwwbbbb \inverse0bwwwwwww
- \zeile1wbwwbwww \inverse1bbwwwwww
- \zeile2wwbwwbww \inverse2wbbwwwww
- \zeile3wwwbwwbw \inverse3wwbbwwww
- \zeile4wwwwbwwb \inverse4wwwbbwww
- \zeile5wwwwwwbw \inverse5bwwbwbww
- \zeile6wwwwwwwb \inverse6wbwwbwbw
- \zeile7wwwwwbww \inverse7wwbwbwwb
- \rechteck
-\end{scope}
-
-\begin{scope}[xshift=4cm,yshift=-2.4cm]
- \draw[<-,shorten >= 0.05cm,shorten <= 0.05cm]
- \punkt{-4}{3} -- \punkt{0}{3};
- \zeile0bwwwbbbb \inverse0bwwwwwww
- \zeile1wbwwbwww \inverse1bbwwwwww
- \zeile2wwbwwbww \inverse2wbbwwwww
- \zeile3wwwbwwbw \inverse3wwbbwwww
- \zeile4wwwwbwwb \inverse4wwwbbwww
- \zeile5wwwwwbww \inverse5wwbwbwwb
- \zeile6wwwwwwbw \inverse6bwwbwbww
- \zeile7wwwwwwwb \inverse7wbwwbwbw
- \rechteck
- \cleanup{7}{7}{-1}
-\end{scope}
-
-\begin{scope}[xshift=0cm,yshift=-2.4cm]
- \zeile0bwwwbbbw \inverse0bbwwbwbw
- \zeile1wbwwbwww \inverse1bbwwwwww
- \zeile2wwbwwbww \inverse2wbbwwwww
- \zeile3wwwbwwbw \inverse3wwbbwwww
- \zeile4wwwwbwww \inverse4wbwbwwbw
- \zeile5wwwwwbww \inverse5wwbwbwwb
- \zeile6wwwwwwbw \inverse6bwwbwbww
- \zeile7wwwwwwwb \inverse7wbwwbwbw
- \rechteck
- \cleanup{6}{6}{-1}
- \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
- \punkt{8}{7} -- \punkt{8}{11};
-\end{scope}
-
-\begin{scope}[xshift=0cm,yshift=-4.8cm]
- \zeile0bwwwbbww \inverse0wbwbbbbw
- \zeile1wbwwbwww \inverse1bbwwwwww
- \zeile2wwbwwbww \inverse2wbbwwwww
- \zeile3wwwbwwww \inverse3bwbwwbww
- \zeile4wwwwbwww \inverse4wbwbwwbw
- \zeile5wwwwwbww \inverse5wwbwbwwb
- \zeile6wwwwwwbw \inverse6bwwbwbww
- \zeile7wwwwwwwb \inverse7wbwwbwbw
- \rechteck
- \cleanup{5}{5}{-1}
-\end{scope}
-
-\begin{scope}[xshift=4cm,yshift=-4.8cm]
- \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
- \punkt{-4}{3} -- \punkt{0}{3};
- \zeile0bwwwbwww \inverse0wbbbwbbb
- \zeile1wbwwbwww \inverse1bbwwwwww
- \zeile2wwbwwwww \inverse2wbwwbwwb
- \zeile3wwwbwwww \inverse3bwbwwbww
- \zeile4wwwwbwww \inverse4wbwbwwbw
- \zeile5wwwwwbww \inverse5wwbwbwwb
- \zeile6wwwwwwbw \inverse6bwwbwbww
- \zeile7wwwwwwwb \inverse7wbwwbwbw
- \rechteck
- \cleanup{4}{4}{-1}
-\end{scope}
-
-\begin{scope}[xshift=8cm,yshift=-4.8cm]
- \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
- \punkt{-4}{3} -- \punkt{0}{3};
- \zeile0bwwwwwww \inverse0wwbwwbwb
- \zeile1wbwwwwww \inverse1bwwbwwbw
- \zeile2wwbwwwww \inverse2wbwwbwwb
- \zeile3wwwbwwww \inverse3bwbwwbww
- \zeile4wwwwbwww \inverse4wbwbwwbw
- \zeile5wwwwwbww \inverse5wwbwbwwb
- \zeile6wwwwwwbw \inverse6bwwbwbww
- \zeile7wwwwwwwb \inverse7wbwwbwbw
- \rechteck
-\end{scope}
-
-\end{tikzpicture}
-\end{document}
-
+%
+% sbox.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\s{0.2}
+\def\punkt#1#2{({#1*\s},{(8-(#2))*\s})}
+
+\definecolor{b}{rgb}{0,0,0}
+\definecolor{w}{rgb}{1,1,1}
+
+\def\feld#1#2#3{
+ \fill[color=#3] \punkt{#1}{#2} rectangle \punkt{(#1+1)}{(#2-1)};
+}
+
+\def\zeile#1#2#3#4#5#6#7#8#9{
+ \feld{0}{#1}{#2}
+ \feld{1}{#1}{#3}
+ \feld{2}{#1}{#4}
+ \feld{3}{#1}{#5}
+ \feld{4}{#1}{#6}
+ \feld{5}{#1}{#7}
+ \feld{6}{#1}{#8}
+ \feld{7}{#1}{#9}
+}
+\def\inverse#1#2#3#4#5#6#7#8#9{
+ \feld{8}{#1}{#2}
+ \feld{9}{#1}{#3}
+ \feld{10}{#1}{#4}
+ \feld{11}{#1}{#5}
+ \feld{12}{#1}{#6}
+ \feld{13}{#1}{#7}
+ \feld{14}{#1}{#8}
+ \feld{15}{#1}{#9}
+}
+\def\rechteck{
+ \draw (0,{1*\s}) rectangle ({16*\s},{(8+1)*\s});
+ \draw ({8*\s},{1*\s}) -- ({8*\s},{(8+1)*\s});
+}
+
+\def\pivot#1#2{
+ \draw[color=red,line width=1.2pt]
+ \punkt{(#1+\inset)}{(#2-\inset)}
+ rectangle
+ \punkt{(#1+1-\inset)}{(#2-1+\inset)};
+}
+\def\inset{0.1}
+\def\cleanup#1#2#3{
+ \pgfmathparse{(#3-#2)/abs(#3-#2)}
+ \xdef\signum{\pgfmathresult}
+ \draw[color=blue!50,line width=1.2pt]
+ \punkt{(#1+\inset)}{#3}
+ --
+ \punkt{(#1+\inset)}{(#2-1+\inset*\signum)}
+ --
+ \punkt{(#1+1-\inset)}{(#2-1+\inset*\signum)}
+ --
+ \punkt{(#1+1-\inset)}{#3}
+ ;
+}
+
+\begin{scope}
+ \zeile0bwwwbbbb \inverse0bwwwwwww
+ \zeile1bbwwwbbb \inverse1wbwwwwww
+ \zeile2bbbwwwbb \inverse2wwbwwwww
+ \zeile3bbbbwwwb \inverse3wwwbwwww
+ \zeile4bbbbbwww \inverse4wwwwbwww
+ \zeile5wbbbbbww \inverse5wwwwwbww
+ \zeile6wwbbbbbw \inverse6wwwwwwbw
+ \zeile7wwwbbbbb \inverse7wwwwwwwb
+ \rechteck
+ \pivot{0}{0}
+ \cleanup{0}{1}{7}
+\end{scope}
+
+\begin{scope}[xshift=4cm]
+ \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
+ \punkt{-4}{3} -- \punkt{0}{3};
+ \zeile0bwwwbbbb \inverse0bwwwwwww
+ \zeile1wbwwbwww \inverse1bbwwwwww
+ \zeile2wbbwbbww \inverse2bwbwwwww
+ \zeile3wbbbbbbw \inverse3bwwbwwww
+ \zeile4wbbbwbbb \inverse4bwwwbwww
+ \zeile5wbbbbbww \inverse5wwwwwbww
+ \zeile6wwbbbbbw \inverse6wwwwwwbw
+ \zeile7wwwbbbbb \inverse7wwwwwwwb
+ \rechteck
+ \pivot{1}{1}
+ \cleanup{1}{2}{7}
+\end{scope}
+
+\begin{scope}[xshift=8cm]
+ \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
+ \punkt{-4}{3} -- \punkt{0}{3};
+ \zeile0bwwwbbbb \inverse0bwwwwwww
+ \zeile1wbwwbwww \inverse1bbwwwwww
+ \zeile2wwbwwbww \inverse2wbbwwwww
+ \zeile3wwbbwbbw \inverse3wbwbwwww
+ \zeile4wwbbbbbb \inverse4wbwwbwww
+ \zeile5wwbbwbww \inverse5bbwwwbww
+ \zeile6wwbbbbbw \inverse6wwwwwwbw
+ \zeile7wwwbbbbb \inverse7wwwwwwwb
+ \rechteck
+ \pivot{2}{2}
+ \cleanup{2}{3}{7}
+\end{scope}
+
+\begin{scope}[xshift=12cm,yshift=0cm]
+ \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
+ \punkt{-4}{3} -- \punkt{0}{3};
+ \zeile0bwwwbbbb \inverse0bwwwwwww
+ \zeile1wbwwbwww \inverse1bbwwwwww
+ \zeile2wwbwwbww \inverse2wbbwwwww
+ \zeile3wwwbwwbw \inverse3wwbbwwww
+ \zeile4wwwbbwbb \inverse4wwbwbwww
+ \zeile5wwwbwwww \inverse5bwbwwbww
+ \zeile6wwwbbwbw \inverse6wbbwwwbw
+ \zeile7wwwbbbbb \inverse7wwwwwwwb
+ \rechteck
+ \pivot{3}{3}
+ \cleanup{3}{4}{7}
+ \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
+ \punkt{8}{7} -- \punkt{8}{11};
+\end{scope}
+
+\begin{scope}[xshift=12cm,yshift=-2.4cm]
+ \draw[<-,shorten >= 0.05cm,shorten <= 0.05cm]
+ \punkt{-4}{3} -- \punkt{0}{3};
+ \zeile0bwwwbbbb \inverse0bwwwwwww
+ \zeile1wbwwbwww \inverse1bbwwwwww
+ \zeile2wwbwwbww \inverse2wbbwwwww
+ \zeile3wwwbwwbw \inverse3wwbbwwww
+ \zeile4wwwwbwwb \inverse4wwwbbwww
+ \zeile5wwwwwwbw \inverse5bwwbwbww
+ \zeile6wwwwbwww \inverse6wbwbwwbw
+ \zeile7wwwwbbwb \inverse7wwbbwwwb
+ \rechteck
+ \pivot{4}{4}
+ \cleanup{4}{5}{7}
+\end{scope}
+
+\begin{scope}[xshift=8cm,yshift=-2.4cm]
+ \draw[<-,shorten >= 0.05cm,shorten <= 0.05cm]
+ \punkt{-4}{3} -- \punkt{0}{3};
+ \zeile0bwwwbbbb \inverse0bwwwwwww
+ \zeile1wbwwbwww \inverse1bbwwwwww
+ \zeile2wwbwwbww \inverse2wbbwwwww
+ \zeile3wwwbwwbw \inverse3wwbbwwww
+ \zeile4wwwwbwwb \inverse4wwwbbwww
+ \zeile5wwwwwwbw \inverse5bwwbwbww
+ \zeile6wwwwwwwb \inverse6wbwwbwbw
+ \zeile7wwwwwbww \inverse7wwbwbwwb
+ \rechteck
+\end{scope}
+
+\begin{scope}[xshift=4cm,yshift=-2.4cm]
+ \draw[<-,shorten >= 0.05cm,shorten <= 0.05cm]
+ \punkt{-4}{3} -- \punkt{0}{3};
+ \zeile0bwwwbbbb \inverse0bwwwwwww
+ \zeile1wbwwbwww \inverse1bbwwwwww
+ \zeile2wwbwwbww \inverse2wbbwwwww
+ \zeile3wwwbwwbw \inverse3wwbbwwww
+ \zeile4wwwwbwwb \inverse4wwwbbwww
+ \zeile5wwwwwbww \inverse5wwbwbwwb
+ \zeile6wwwwwwbw \inverse6bwwbwbww
+ \zeile7wwwwwwwb \inverse7wbwwbwbw
+ \rechteck
+ \cleanup{7}{7}{-1}
+\end{scope}
+
+\begin{scope}[xshift=0cm,yshift=-2.4cm]
+ \zeile0bwwwbbbw \inverse0bbwwbwbw
+ \zeile1wbwwbwww \inverse1bbwwwwww
+ \zeile2wwbwwbww \inverse2wbbwwwww
+ \zeile3wwwbwwbw \inverse3wwbbwwww
+ \zeile4wwwwbwww \inverse4wbwbwwbw
+ \zeile5wwwwwbww \inverse5wwbwbwwb
+ \zeile6wwwwwwbw \inverse6bwwbwbww
+ \zeile7wwwwwwwb \inverse7wbwwbwbw
+ \rechteck
+ \cleanup{6}{6}{-1}
+ \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
+ \punkt{8}{7} -- \punkt{8}{11};
+\end{scope}
+
+\begin{scope}[xshift=0cm,yshift=-4.8cm]
+ \zeile0bwwwbbww \inverse0wbwbbbbw
+ \zeile1wbwwbwww \inverse1bbwwwwww
+ \zeile2wwbwwbww \inverse2wbbwwwww
+ \zeile3wwwbwwww \inverse3bwbwwbww
+ \zeile4wwwwbwww \inverse4wbwbwwbw
+ \zeile5wwwwwbww \inverse5wwbwbwwb
+ \zeile6wwwwwwbw \inverse6bwwbwbww
+ \zeile7wwwwwwwb \inverse7wbwwbwbw
+ \rechteck
+ \cleanup{5}{5}{-1}
+\end{scope}
+
+\begin{scope}[xshift=4cm,yshift=-4.8cm]
+ \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
+ \punkt{-4}{3} -- \punkt{0}{3};
+ \zeile0bwwwbwww \inverse0wbbbwbbb
+ \zeile1wbwwbwww \inverse1bbwwwwww
+ \zeile2wwbwwwww \inverse2wbwwbwwb
+ \zeile3wwwbwwww \inverse3bwbwwbww
+ \zeile4wwwwbwww \inverse4wbwbwwbw
+ \zeile5wwwwwbww \inverse5wwbwbwwb
+ \zeile6wwwwwwbw \inverse6bwwbwbww
+ \zeile7wwwwwwwb \inverse7wbwwbwbw
+ \rechteck
+ \cleanup{4}{4}{-1}
+\end{scope}
+
+\begin{scope}[xshift=8cm,yshift=-4.8cm]
+ \draw[->,shorten >= 0.05cm,shorten <= 0.05cm]
+ \punkt{-4}{3} -- \punkt{0}{3};
+ \zeile0bwwwwwww \inverse0wwbwwbwb
+ \zeile1wbwwwwww \inverse1bwwbwwbw
+ \zeile2wwbwwwww \inverse2wbwwbwwb
+ \zeile3wwwbwwww \inverse3bwbwwbww
+ \zeile4wwwwbwww \inverse4wbwbwwbw
+ \zeile5wwwwwbww \inverse5wwbwbwwb
+ \zeile6wwwwwwbw \inverse6bwwbwbww
+ \zeile7wwwwwwwb \inverse7wbwwbwbw
+ \rechteck
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/90-crypto/images/schieberegister.tex b/buch/chapters/90-crypto/images/schieberegister.tex
index 49302ac..7c24e52 100644
--- a/buch/chapters/90-crypto/images/schieberegister.tex
+++ b/buch/chapters/90-crypto/images/schieberegister.tex
@@ -1,120 +1,120 @@
-%
-% schieberegister.tex -- template for standalon tikz images
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{1}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-
-\definecolor{darkgreen}{rgb}{0,0.6,0}
-
-\def\s{0.8}
-
-\def\punkt#1#2{({#1*\s},{#2*\s})}
-
-\fill[color=blue!20] \punkt{0}{0} rectangle \punkt{8}{1};
-
-\node at \punkt{0.5}{1} [above] {$X^7\mathstrut$};
-\node at \punkt{3}{1} [above] {$+\mathstrut$};
-\node at \punkt{3.5}{1} [above] {$X^4\mathstrut$};
-\node at \punkt{5}{1} [above] {$+\mathstrut$};
-\node at \punkt{5.5}{1} [above] {$X^2\mathstrut$};
-\node at \punkt{7}{1} [above] {$+\mathstrut$};
-\node at \punkt{7.5}{1} [above] {$1\mathstrut$};
-
-\node at \punkt{0}{1} [above left] {\llap{$p(X)=\mathstrut$}};
-
-\node at \punkt{0.5}{0.5} {\texttt{1}};
-\node at \punkt{1.5}{0.5} {\texttt{0}};
-\node at \punkt{2.5}{0.5} {\texttt{0}};
-\node at \punkt{3.5}{0.5} {\texttt{1}};
-\node at \punkt{4.5}{0.5} {\texttt{0}};
-\node at \punkt{5.5}{0.5} {\texttt{1}};
-\node at \punkt{6.5}{0.5} {\texttt{0}};
-\node at \punkt{7.5}{0.5} {\texttt{1}};
-
-\draw \punkt{0}{0} rectangle \punkt{8}{1};
-\foreach \x in {1,...,7}{
- \draw \punkt{\x}{0} -- \punkt{\x}{1};
-}
-
-\fill[color=blue!20] \punkt{-1}{-3} rectangle \punkt{7}{-2};
-\fill[color=darkgreen!20] \punkt{0}{-4} rectangle \punkt{8}{-3};
-
-\node[color=darkgreen] at \punkt{-1}{-1.5} [left]
- {$m(X) = X^8+X^4+X^3+X+1$};
-
-\node[color=darkgreen] at \punkt{-1}{-2.7} [left]
- {$\underbrace{X^4+X^3+X+1}_{}= X^8=\mathstrut$};
-
-\coordinate (A) at ({-4.15*\s},{-3*\s});
-\coordinate (B) at ({0*\s},{-3.5*\s});
-
-\draw[->,color=red,shorten >= 0.1cm] (A) to[out=-90,in=180] (B);
-\node[color=red] at \punkt{-3.1}{-3.8} [below] {Feedback};
-
-\node at \punkt{-0.5}{-2.5} {\texttt{1}};
-\node at \punkt{0.5}{-2.5} {\texttt{0}};
-\node at \punkt{1.5}{-2.5} {\texttt{0}};
-\node at \punkt{2.5}{-2.5} {\texttt{1}};
-\node at \punkt{3.5}{-2.5} {\texttt{0}};
-\node at \punkt{4.5}{-2.5} {\texttt{1}};
-\node at \punkt{5.5}{-2.5} {\texttt{0}};
-\node at \punkt{6.5}{-2.5} {\texttt{1}};
-\node at \punkt{7.5}{-2.5} {\texttt{0}};
-
-\node[color=darkgreen] at \punkt{0.5}{-3.5} {\texttt{0}};
-\node[color=darkgreen] at \punkt{1.5}{-3.5} {\texttt{0}};
-\node[color=darkgreen] at \punkt{2.5}{-3.5} {\texttt{0}};
-\node[color=darkgreen] at \punkt{3.5}{-3.5} {\texttt{1}};
-\node[color=darkgreen] at \punkt{4.5}{-3.5} {\texttt{1}};
-\node[color=darkgreen] at \punkt{5.5}{-3.5} {\texttt{0}};
-\node[color=darkgreen] at \punkt{6.5}{-3.5} {\texttt{1}};
-\node[color=darkgreen] at \punkt{7.5}{-3.5} {\texttt{1}};
-
-\draw \punkt{0}{-4} rectangle \punkt{8}{-2};
-\draw \punkt{0}{-3} -- \punkt{8}{-3};
-\foreach \x in {1,...,7}{
- \draw \punkt{\x}{-4} -- \punkt{\x}{-2};
-}
-
-\foreach \x in {0.5,1.5,...,7.5}{
- \draw[->,color=blue] \punkt{\x}{-0.1} -- \punkt{(\x-1)}{-1.9};
-}
-
-\draw \punkt{0}{-6} rectangle \punkt{8}{-5};
-\foreach \x in {1,...,7}{
- \draw \punkt{\x}{-6} -- \punkt{\x}{-5};
-}
-
-\node at \punkt{0.5}{-5.5} {\texttt{0}};
-\node at \punkt{1.5}{-5.5} {\texttt{0}};
-\node at \punkt{2.5}{-5.5} {\texttt{1}};
-\node at \punkt{3.5}{-5.5} {\texttt{1}};
-\node at \punkt{4.5}{-5.5} {\texttt{0}};
-\node at \punkt{5.5}{-5.5} {\texttt{0}};
-\node at \punkt{6.5}{-5.5} {\texttt{0}};
-\node at \punkt{7.5}{-5.5} {\texttt{1}};
-
-\node at \punkt{4}{-4.5} {$\|$};
-
-\node at \punkt{10.3}{-3} [left]
- {$\left.\begin{matrix}\\ \\ \\ \end{matrix}\right\} + = \text{XOR}$};
-
-\draw[<-,shorten >= 0.1cm, shorten <= 0.1cm]
- \punkt{8.0}{-2.0} arc (-30:30:{2.0*\s});
-\node at \punkt{8.3}{-1} [right] {$\mathstrut \cdot X$};
-
-\node at \punkt{8.1}{-5.5} [right] {$=X\cdot p(X)\mathstrut$};
-
-\end{tikzpicture}
-\end{document}
-
+%
+% schieberegister.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\def\s{0.8}
+
+\def\punkt#1#2{({#1*\s},{#2*\s})}
+
+\fill[color=blue!20] \punkt{0}{0} rectangle \punkt{8}{1};
+
+\node at \punkt{0.5}{1} [above] {$X^7\mathstrut$};
+\node at \punkt{3}{1} [above] {$+\mathstrut$};
+\node at \punkt{3.5}{1} [above] {$X^4\mathstrut$};
+\node at \punkt{5}{1} [above] {$+\mathstrut$};
+\node at \punkt{5.5}{1} [above] {$X^2\mathstrut$};
+\node at \punkt{7}{1} [above] {$+\mathstrut$};
+\node at \punkt{7.5}{1} [above] {$1\mathstrut$};
+
+\node at \punkt{0}{1} [above left] {\llap{$p(X)=\mathstrut$}};
+
+\node at \punkt{0.5}{0.5} {\texttt{1}};
+\node at \punkt{1.5}{0.5} {\texttt{0}};
+\node at \punkt{2.5}{0.5} {\texttt{0}};
+\node at \punkt{3.5}{0.5} {\texttt{1}};
+\node at \punkt{4.5}{0.5} {\texttt{0}};
+\node at \punkt{5.5}{0.5} {\texttt{1}};
+\node at \punkt{6.5}{0.5} {\texttt{0}};
+\node at \punkt{7.5}{0.5} {\texttt{1}};
+
+\draw \punkt{0}{0} rectangle \punkt{8}{1};
+\foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{1};
+}
+
+\fill[color=blue!20] \punkt{-1}{-3} rectangle \punkt{7}{-2};
+\fill[color=darkgreen!20] \punkt{0}{-4} rectangle \punkt{8}{-3};
+
+\node[color=darkgreen] at \punkt{-1}{-1.5} [left]
+ {$m(X) = X^8+X^4+X^3+X+1$};
+
+\node[color=darkgreen] at \punkt{-1}{-2.7} [left]
+ {$\underbrace{X^4+X^3+X+1}_{}= X^8=\mathstrut$};
+
+\coordinate (A) at ({-4.15*\s},{-3*\s});
+\coordinate (B) at ({0*\s},{-3.5*\s});
+
+\draw[->,color=red,shorten >= 0.1cm] (A) to[out=-90,in=180] (B);
+\node[color=red] at \punkt{-3.1}{-3.8} [below] {Feedback};
+
+\node at \punkt{-0.5}{-2.5} {\texttt{1}};
+\node at \punkt{0.5}{-2.5} {\texttt{0}};
+\node at \punkt{1.5}{-2.5} {\texttt{0}};
+\node at \punkt{2.5}{-2.5} {\texttt{1}};
+\node at \punkt{3.5}{-2.5} {\texttt{0}};
+\node at \punkt{4.5}{-2.5} {\texttt{1}};
+\node at \punkt{5.5}{-2.5} {\texttt{0}};
+\node at \punkt{6.5}{-2.5} {\texttt{1}};
+\node at \punkt{7.5}{-2.5} {\texttt{0}};
+
+\node[color=darkgreen] at \punkt{0.5}{-3.5} {\texttt{0}};
+\node[color=darkgreen] at \punkt{1.5}{-3.5} {\texttt{0}};
+\node[color=darkgreen] at \punkt{2.5}{-3.5} {\texttt{0}};
+\node[color=darkgreen] at \punkt{3.5}{-3.5} {\texttt{1}};
+\node[color=darkgreen] at \punkt{4.5}{-3.5} {\texttt{1}};
+\node[color=darkgreen] at \punkt{5.5}{-3.5} {\texttt{0}};
+\node[color=darkgreen] at \punkt{6.5}{-3.5} {\texttt{1}};
+\node[color=darkgreen] at \punkt{7.5}{-3.5} {\texttt{1}};
+
+\draw \punkt{0}{-4} rectangle \punkt{8}{-2};
+\draw \punkt{0}{-3} -- \punkt{8}{-3};
+\foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-4} -- \punkt{\x}{-2};
+}
+
+\foreach \x in {0.5,1.5,...,7.5}{
+ \draw[->,color=blue] \punkt{\x}{-0.1} -- \punkt{(\x-1)}{-1.9};
+}
+
+\draw \punkt{0}{-6} rectangle \punkt{8}{-5};
+\foreach \x in {1,...,7}{
+ \draw \punkt{\x}{-6} -- \punkt{\x}{-5};
+}
+
+\node at \punkt{0.5}{-5.5} {\texttt{0}};
+\node at \punkt{1.5}{-5.5} {\texttt{0}};
+\node at \punkt{2.5}{-5.5} {\texttt{1}};
+\node at \punkt{3.5}{-5.5} {\texttt{1}};
+\node at \punkt{4.5}{-5.5} {\texttt{0}};
+\node at \punkt{5.5}{-5.5} {\texttt{0}};
+\node at \punkt{6.5}{-5.5} {\texttt{0}};
+\node at \punkt{7.5}{-5.5} {\texttt{1}};
+
+\node at \punkt{4}{-4.5} {$\|$};
+
+\node at \punkt{10.3}{-3} [left]
+ {$\left.\begin{matrix}\\ \\ \\ \end{matrix}\right\} + = \text{XOR}$};
+
+\draw[<-,shorten >= 0.1cm, shorten <= 0.1cm]
+ \punkt{8.0}{-2.0} arc (-30:30:{2.0*\s});
+\node at \punkt{8.3}{-1} [right] {$\mathstrut \cdot X$};
+
+\node at \punkt{8.1}{-5.5} [right] {$=X\cdot p(X)\mathstrut$};
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/90-crypto/images/shift.tex b/buch/chapters/90-crypto/images/shift.tex
index af225a7..bcdf819 100644
--- a/buch/chapters/90-crypto/images/shift.tex
+++ b/buch/chapters/90-crypto/images/shift.tex
@@ -1,131 +1,131 @@
-%
-% shift.tex -- template for standalon tikz images
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\documentclass[tikz]{standalone}
-\usepackage{amsmath}
-\usepackage{times}
-\usepackage{txfonts}
-\usepackage{pgfplots}
-\usepackage{csvsimple}
-\usetikzlibrary{arrows,intersections,math}
-\begin{document}
-\def\skala{1}
-\begin{tikzpicture}[>=latex,thick,scale=\skala]
-
-\definecolor{darkgreen}{rgb}{0,0.6,0}
-
-\def\s{0.8}
-\def\punkt#1#2{({#1*\s},{#2*\s})}
-
-\def\feld#1#2#3#4{
- \fill[color=#3] \punkt{#1}{#2} rectangle \punkt{(#1+1)}{(#2+1)};
- \node at \punkt{(#1+0.5)}{(#2+0.5)} {$\mathstrut #4$};
-}
-\def\gitter{
- \draw \punkt{0}{0} rectangle \punkt{8}{4};
- \foreach \x in {1,...,7}{
- \draw \punkt{\x}{0} -- \punkt{\x}{4};
- }
- \foreach \y in {1,...,3}{
- \draw \punkt{0}{\y} -- \punkt{8}{\y};
- }
-}
-
-\begin{scope}
- \feld{0}{3}{red!20}{b_{0}}
- \feld{0}{2}{red!20}{b_{1}}
- \feld{0}{1}{red!20}{b_{2}}
- \feld{0}{0}{red!20}{b_{3}}
-
- \feld{1}{3}{red!10}{b_{4}}
- \feld{1}{2}{red!10}{b_{5}}
- \feld{1}{1}{red!10}{b_{6}}
- \feld{1}{0}{red!10}{b_{7}}
-
- \feld{2}{3}{yellow!20}{b_{8}}
- \feld{2}{2}{yellow!20}{b_{9}}
- \feld{2}{1}{yellow!20}{b_{10}}
- \feld{2}{0}{yellow!20}{b_{11}}
-
- \feld{3}{3}{yellow!10}{b_{12}}
- \feld{3}{2}{yellow!10}{b_{13}}
- \feld{3}{1}{yellow!10}{b_{14}}
- \feld{3}{0}{yellow!10}{b_{15}}
-
- \feld{4}{3}{darkgreen!20}{b_{16}}
- \feld{4}{2}{darkgreen!20}{b_{17}}
- \feld{4}{1}{darkgreen!20}{b_{18}}
- \feld{4}{0}{darkgreen!20}{b_{19}}
-
- \feld{5}{3}{darkgreen!10}{b_{20}}
- \feld{5}{2}{darkgreen!10}{b_{21}}
- \feld{5}{1}{darkgreen!10}{b_{22}}
- \feld{5}{0}{darkgreen!10}{b_{23}}
-
- \feld{6}{3}{blue!20}{b_{24}}
- \feld{6}{2}{blue!20}{b_{25}}
- \feld{6}{1}{blue!20}{b_{26}}
- \feld{6}{0}{blue!20}{b_{27}}
-
- \feld{7}{3}{blue!10}{b_{28}}
- \feld{7}{2}{blue!10}{b_{29}}
- \feld{7}{1}{blue!10}{b_{30}}
- \feld{7}{0}{blue!10}{b_{31}}
-
- \gitter
-
- \draw[->] \punkt{8.1}{2} -- \punkt{9.3}{2};
-\end{scope}
-
-
-\begin{scope}[xshift=7.5cm]
-
- \feld{0}{3}{red!20}{b_{0}}
- \feld{1}{2}{red!20}{b_{1}}
- \feld{2}{1}{red!20}{b_{2}}
- \feld{3}{0}{red!20}{b_{3}}
-
- \feld{1}{3}{red!10}{b_{4}}
- \feld{2}{2}{red!10}{b_{5}}
- \feld{3}{1}{red!10}{b_{6}}
- \feld{4}{0}{red!10}{b_{7}}
-
- \feld{2}{3}{yellow!20}{b_{8}}
- \feld{3}{2}{yellow!20}{b_{9}}
- \feld{4}{1}{yellow!20}{b_{10}}
- \feld{5}{0}{yellow!20}{b_{11}}
-
- \feld{3}{3}{yellow!10}{b_{12}}
- \feld{4}{2}{yellow!10}{b_{13}}
- \feld{5}{1}{yellow!10}{b_{14}}
- \feld{6}{0}{yellow!10}{b_{15}}
-
- \feld{4}{3}{darkgreen!20}{b_{16}}
- \feld{5}{2}{darkgreen!20}{b_{17}}
- \feld{6}{1}{darkgreen!20}{b_{18}}
- \feld{7}{0}{darkgreen!20}{b_{19}}
-
- \feld{5}{3}{darkgreen!10}{b_{20}}
- \feld{6}{2}{darkgreen!10}{b_{21}}
- \feld{7}{1}{darkgreen!10}{b_{22}}
- \feld{0}{0}{darkgreen!10}{b_{23}}
-
- \feld{6}{3}{blue!20}{b_{24}}
- \feld{7}{2}{blue!20}{b_{25}}
- \feld{0}{1}{blue!20}{b_{26}}
- \feld{1}{0}{blue!20}{b_{27}}
-
- \feld{7}{3}{blue!10}{b_{28}}
- \feld{0}{2}{blue!10}{b_{29}}
- \feld{1}{1}{blue!10}{b_{30}}
- \feld{2}{0}{blue!10}{b_{31}}
-
- \gitter
-
-\end{scope}
-
-\end{tikzpicture}
-\end{document}
-
+%
+% shift.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\def\s{0.8}
+\def\punkt#1#2{({#1*\s},{#2*\s})}
+
+\def\feld#1#2#3#4{
+ \fill[color=#3] \punkt{#1}{#2} rectangle \punkt{(#1+1)}{(#2+1)};
+ \node at \punkt{(#1+0.5)}{(#2+0.5)} {$\mathstrut #4$};
+}
+\def\gitter{
+ \draw \punkt{0}{0} rectangle \punkt{8}{4};
+ \foreach \x in {1,...,7}{
+ \draw \punkt{\x}{0} -- \punkt{\x}{4};
+ }
+ \foreach \y in {1,...,3}{
+ \draw \punkt{0}{\y} -- \punkt{8}{\y};
+ }
+}
+
+\begin{scope}
+ \feld{0}{3}{red!20}{b_{0}}
+ \feld{0}{2}{red!20}{b_{1}}
+ \feld{0}{1}{red!20}{b_{2}}
+ \feld{0}{0}{red!20}{b_{3}}
+
+ \feld{1}{3}{red!10}{b_{4}}
+ \feld{1}{2}{red!10}{b_{5}}
+ \feld{1}{1}{red!10}{b_{6}}
+ \feld{1}{0}{red!10}{b_{7}}
+
+ \feld{2}{3}{yellow!20}{b_{8}}
+ \feld{2}{2}{yellow!20}{b_{9}}
+ \feld{2}{1}{yellow!20}{b_{10}}
+ \feld{2}{0}{yellow!20}{b_{11}}
+
+ \feld{3}{3}{yellow!10}{b_{12}}
+ \feld{3}{2}{yellow!10}{b_{13}}
+ \feld{3}{1}{yellow!10}{b_{14}}
+ \feld{3}{0}{yellow!10}{b_{15}}
+
+ \feld{4}{3}{darkgreen!20}{b_{16}}
+ \feld{4}{2}{darkgreen!20}{b_{17}}
+ \feld{4}{1}{darkgreen!20}{b_{18}}
+ \feld{4}{0}{darkgreen!20}{b_{19}}
+
+ \feld{5}{3}{darkgreen!10}{b_{20}}
+ \feld{5}{2}{darkgreen!10}{b_{21}}
+ \feld{5}{1}{darkgreen!10}{b_{22}}
+ \feld{5}{0}{darkgreen!10}{b_{23}}
+
+ \feld{6}{3}{blue!20}{b_{24}}
+ \feld{6}{2}{blue!20}{b_{25}}
+ \feld{6}{1}{blue!20}{b_{26}}
+ \feld{6}{0}{blue!20}{b_{27}}
+
+ \feld{7}{3}{blue!10}{b_{28}}
+ \feld{7}{2}{blue!10}{b_{29}}
+ \feld{7}{1}{blue!10}{b_{30}}
+ \feld{7}{0}{blue!10}{b_{31}}
+
+ \gitter
+
+ \draw[->] \punkt{8.1}{2} -- \punkt{9.3}{2};
+\end{scope}
+
+
+\begin{scope}[xshift=7.5cm]
+
+ \feld{0}{3}{red!20}{b_{0}}
+ \feld{1}{2}{red!20}{b_{1}}
+ \feld{2}{1}{red!20}{b_{2}}
+ \feld{3}{0}{red!20}{b_{3}}
+
+ \feld{1}{3}{red!10}{b_{4}}
+ \feld{2}{2}{red!10}{b_{5}}
+ \feld{3}{1}{red!10}{b_{6}}
+ \feld{4}{0}{red!10}{b_{7}}
+
+ \feld{2}{3}{yellow!20}{b_{8}}
+ \feld{3}{2}{yellow!20}{b_{9}}
+ \feld{4}{1}{yellow!20}{b_{10}}
+ \feld{5}{0}{yellow!20}{b_{11}}
+
+ \feld{3}{3}{yellow!10}{b_{12}}
+ \feld{4}{2}{yellow!10}{b_{13}}
+ \feld{5}{1}{yellow!10}{b_{14}}
+ \feld{6}{0}{yellow!10}{b_{15}}
+
+ \feld{4}{3}{darkgreen!20}{b_{16}}
+ \feld{5}{2}{darkgreen!20}{b_{17}}
+ \feld{6}{1}{darkgreen!20}{b_{18}}
+ \feld{7}{0}{darkgreen!20}{b_{19}}
+
+ \feld{5}{3}{darkgreen!10}{b_{20}}
+ \feld{6}{2}{darkgreen!10}{b_{21}}
+ \feld{7}{1}{darkgreen!10}{b_{22}}
+ \feld{0}{0}{darkgreen!10}{b_{23}}
+
+ \feld{6}{3}{blue!20}{b_{24}}
+ \feld{7}{2}{blue!20}{b_{25}}
+ \feld{0}{1}{blue!20}{b_{26}}
+ \feld{1}{0}{blue!20}{b_{27}}
+
+ \feld{7}{3}{blue!10}{b_{28}}
+ \feld{0}{2}{blue!10}{b_{29}}
+ \feld{1}{1}{blue!10}{b_{30}}
+ \feld{2}{0}{blue!10}{b_{31}}
+
+ \gitter
+
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/90-crypto/uebungsaufgaben/9001.tex b/buch/chapters/90-crypto/uebungsaufgaben/9001.tex
index 9cda25e..7ed1e57 100644
--- a/buch/chapters/90-crypto/uebungsaufgaben/9001.tex
+++ b/buch/chapters/90-crypto/uebungsaufgaben/9001.tex
@@ -1,31 +1,31 @@
-$A$ und $B$ einigen sich darauf, das Diffie-Hellman-Verfahren für
-$p=2027$ durchzuführen und mit $g=3$ zu arbeiten.
-$A$ verwenden $a=49$ als privaten Schlüssel und erhält von $B$
-den öffentlichen Schlüssel $y=1772$.
-Welchen gemeinsamen Schlüssel verwenden $A$ und $B$?
-
-\begin{loesung}
-Der zu verwendende gemeinsame Schlüssel ist
-$g^{ab}=(g^b)^a = y^a\in\mathbb{F}_{2027}$.
-Diese Potenz kann man mit dem Divide-and-Conquer-Algorithmus effizient
-berechnen.
-Die Binärdarstellung des privaten Schlüssels von $A$ ist
-$a=49_{10}=\texttt{110001}_2$.
-Der Algorithmus verläuft wie folgt:
-\begin{center}
-\begin{tabular}{|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|}
-\hline
-i&g^{2^i}&a_i& x\\
-\hline
-0& 3& 1& 3\\
-1& 9& 0& 3\\
-2& 81& 0& 3\\
-3& 480& 0& 3\\
-4& 1349& 1& 2020\\
-5& 1582& 1& 1088\\
-\hline
-\end{tabular}
-\end{center}
-Der gemeinsame Schlüssel ist daher $s=1088$.
-\end{loesung}
-
+$A$ und $B$ einigen sich darauf, das Diffie-Hellman-Verfahren für
+$p=2027$ durchzuführen und mit $g=3$ zu arbeiten.
+$A$ verwenden $a=49$ als privaten Schlüssel und erhält von $B$
+den öffentlichen Schlüssel $y=1772$.
+Welchen gemeinsamen Schlüssel verwenden $A$ und $B$?
+
+\begin{loesung}
+Der zu verwendende gemeinsame Schlüssel ist
+$g^{ab}=(g^b)^a = y^a\in\mathbb{F}_{2027}$.
+Diese Potenz kann man mit dem Divide-and-Conquer-Algorithmus effizient
+berechnen.
+Die Binärdarstellung des privaten Schlüssels von $A$ ist
+$a=49_{10}=\texttt{110001}_2$.
+Der Algorithmus verläuft wie folgt:
+\begin{center}
+\begin{tabular}{|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|}
+\hline
+i&g^{2^i}&a_i& x\\
+\hline
+0& 3& 1& 3\\
+1& 9& 0& 3\\
+2& 81& 0& 3\\
+3& 480& 0& 3\\
+4& 1349& 1& 2020\\
+5& 1582& 1& 1088\\
+\hline
+\end{tabular}
+\end{center}
+Der gemeinsame Schlüssel ist daher $s=1088$.
+\end{loesung}
+
diff --git a/buch/chapters/references.bib b/buch/chapters/references.bib
index dc95e7e..a5d0201 100644
--- a/buch/chapters/references.bib
+++ b/buch/chapters/references.bib
@@ -1,135 +1,141 @@
-%
-% references.bib
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-
-@article{BRIN1998107,
-title = "The anatomy of a large-scale hypertextual Web search engine",
-journal = "Computer Networks and ISDN Systems",
-volume = "30",
-number = "1",
-pages = "107 - 117",
-year = "1998",
-note = "Proceedings of the Seventh International World Wide Web Conference",
-issn = "0169-7552",
-doi = "https://doi.org/10.1016/S0169-7552(98)00110-X",
-url = "http://www.sciencedirect.com/science/article/pii/S016975529800110X",
-author = "Sergey Brin and Lawrence Page",
-keywords = "World Wide Web, Search engines, Information retrieval, PageRank, Google",
-abstract = "In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems. The prototype with a full text and hyperlink database of at least 24 million pages is available at http://google.stanford.edu/ To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of Web pages involving a comparable number of distinct terms. They answer tens of millions of queries every day. Despite the importance of large-scale search engines on the Web, very little academic research has been done on them. Furthermore, due to rapid advance in technology and Web proliferation, creating a Web search engine today is very different from three years ago. This paper provides an in-depth description of our large-scale Web search engine — the first such detailed public description we know of to date. Apart from the problems of scaling traditional search techniques to data of this magnitude, there are new technical challenges involved with using the additional information present in hypertext to produce better search results. This paper addresses this question of how to build a practical large-scale system which can exploit the additional information present in hypertext. Also we look at the problem of how to effectively deal with uncontrolled hypertext collections where anyone can publish anything they want."
-}
-
-
-@book{buch:mathsem-dgl,
- title = {Mathematisches Seminar Differentialgleichungen},
- author = { Andreas M"uller and others },
- year = {2016},
-}
-
-@online{buch:fftw,
- title = {Fastest Fourier Transform in the West},
- url = {http://www.fftw.org/},
- DAY = {23},
- MONTH = {july},
- YEAR = 2018
-}
-
-@online{buch:repo,
- subtitle = {Source Code Repository},
- author = {Andreas Müller},
- url = {https://github.com/AndreasFMueller/SeminarNumerik.git},
- DAY = 6,
- MONTH = {february},
- YEAR = 2020
-}
-
-@book{buch:henrici,
- author = {Peter Henrici},
- title = {Essentials of numerical analysis},
- subtitle = {With pocket calculator demonstrations},
- year = 1982,
- publisher = {John Wiley and Sons, Inc.},
- isbn = {0-471-05904-8}
-}
-
-@online{buch:tartaglia,
- title = {Niccolò Tartaglia},
- url = {https://de.wikipedia.org/wiki/Niccolò_Tartaglia},
- date = {2020-02-06},
- year = {2020},
- month = {2},
- day = {6}
-}
-
-@online{buch:kahan-summation,
- title = {Kahan summation algorithm},
- url = {https://en.wikipedia.org/wiki/Kahan_summation_algorithm},
- date = {2020-02-29},
- year = {2020},
- month = {2},
- day = {29}
-}
-
-@book{buch:watkins,
- title = {Fundamentals of Matrix Computations},
- author = {David S. Watkins},
- year = 2010,
- publisher = {John Wiley and Sons, Inc.},
- edition = {3}
-}
-
-@online{buch:lissajous,
- title = {Makeing Shapes with PSLab Oscilloscope},
- author = {CloudyPadmal},
- url = {https://blog.fossasia.org/making-shapes-with-pslab-oscilloscope/},
- DAY = 7,
- month = 3,
- year = 2020
-}
-@book{buch:richardson,
- title = {The emergence of numerical weather prediction: Richardson's dream},
- author = {Peter Lynch},
- year = 2006,
- publisher = {Cambridge University Press},
- isbn = {978-0-52-185729-1}
-}
-
-@book{buch:dieudonne,
- title={Foundations of Modern Analysis},
- author={Jean Dieudonn{\'e}},
- number={Vol. 1},
- lccn={60008049},
- series={Dieudonn{\'e}, Jean: Treatise on analysis},
- year={1960},
- publisher={Academic Press}
-}
-
-@book{buch:ebbinghaus,
- title = {Zahlen},
- year = 1983,
- inseries = {Grundwissen Mathematik},
- volume = 1,
- publisher = {Springer-Verlag},
- author = { Hans-Dieter Ebbinghaus et al },
- isbn = { 3-540-12666-X }
-}
-
-@online{buch:primitivepolynomiallist,
- title = {Primitive Polynomial List},
- url = {https://www.partow.net/programming/polynomials/index.html},
- day = 8,
- month = 3,
- year = 2021
-}
-
-@book{skript:landaulifschitz1,
- author = {Landau, L. D. and Lifschitz, E. M.},
- title = {Mechanik},
- series = {Lehrbuch der theoretischen Physik},
- volume = {1},
- publisher = {Akademie-Verlag},
- year = {1981},
- language = {german},
-}
-
+%
+% references.bib
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+@article{BRIN1998107,
+title = "The anatomy of a large-scale hypertextual Web search engine",
+journal = "Computer Networks and ISDN Systems",
+volume = "30",
+number = "1",
+pages = "107 - 117",
+year = "1998",
+note = "Proceedings of the Seventh International World Wide Web Conference",
+issn = "0169-7552",
+doi = "https://doi.org/10.1016/S0169-7552(98)00110-X",
+url = "http://www.sciencedirect.com/science/article/pii/S016975529800110X",
+author = "Sergey Brin and Lawrence Page",
+keywords = "World Wide Web, Search engines, Information retrieval, PageRank, Google",
+abstract = "In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems. The prototype with a full text and hyperlink database of at least 24 million pages is available at http://google.stanford.edu/ To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of Web pages involving a comparable number of distinct terms. They answer tens of millions of queries every day. Despite the importance of large-scale search engines on the Web, very little academic research has been done on them. Furthermore, due to rapid advance in technology and Web proliferation, creating a Web search engine today is very different from three years ago. This paper provides an in-depth description of our large-scale Web search engine — the first such detailed public description we know of to date. Apart from the problems of scaling traditional search techniques to data of this magnitude, there are new technical challenges involved with using the additional information present in hypertext to produce better search results. This paper addresses this question of how to build a practical large-scale system which can exploit the additional information present in hypertext. Also we look at the problem of how to effectively deal with uncontrolled hypertext collections where anyone can publish anything they want."
+}
+
+
+@book{buch:mathsem-wavelets,
+ title = {Mathematisches Seminar Wavelets},
+ author = { Andreas M"uller and others },
+ year = {2019},
+}
+
+@book{buch:mathsem-dgl,
+ title = {Mathematisches Seminar Differentialgleichungen},
+ author = { Andreas M"uller and others },
+ year = {2016},
+}
+
+@online{buch:fftw,
+ title = {Fastest Fourier Transform in the West},
+ url = {http://www.fftw.org/},
+ DAY = {23},
+ MONTH = {july},
+ YEAR = 2018
+}
+
+@online{buch:repo,
+ subtitle = {Source Code Repository},
+ author = {Andreas Müller},
+ url = {https://github.com/AndreasFMueller/SeminarNumerik.git},
+ DAY = 6,
+ MONTH = {february},
+ YEAR = 2020
+}
+
+@book{buch:henrici,
+ author = {Peter Henrici},
+ title = {Essentials of numerical analysis},
+ subtitle = {With pocket calculator demonstrations},
+ year = 1982,
+ publisher = {John Wiley and Sons, Inc.},
+ isbn = {0-471-05904-8}
+}
+
+@online{buch:tartaglia,
+ title = {Niccolò Tartaglia},
+ url = {https://de.wikipedia.org/wiki/Niccolò_Tartaglia},
+ date = {2020-02-06},
+ year = {2020},
+ month = {2},
+ day = {6}
+}
+
+@online{buch:kahan-summation,
+ title = {Kahan summation algorithm},
+ url = {https://en.wikipedia.org/wiki/Kahan_summation_algorithm},
+ date = {2020-02-29},
+ year = {2020},
+ month = {2},
+ day = {29}
+}
+
+@book{buch:watkins,
+ title = {Fundamentals of Matrix Computations},
+ author = {David S. Watkins},
+ year = 2010,
+ publisher = {John Wiley and Sons, Inc.},
+ edition = {3}
+}
+
+@online{buch:lissajous,
+ title = {Makeing Shapes with PSLab Oscilloscope},
+ author = {CloudyPadmal},
+ url = {https://blog.fossasia.org/making-shapes-with-pslab-oscilloscope/},
+ DAY = 7,
+ month = 3,
+ year = 2020
+}
+@book{buch:richardson,
+ title = {The emergence of numerical weather prediction: Richardson's dream},
+ author = {Peter Lynch},
+ year = 2006,
+ publisher = {Cambridge University Press},
+ isbn = {978-0-52-185729-1}
+}
+
+@book{buch:dieudonne,
+ title={Foundations of Modern Analysis},
+ author={Jean Dieudonn{\'e}},
+ number={Vol. 1},
+ lccn={60008049},
+ series={Dieudonn{\'e}, Jean: Treatise on analysis},
+ year={1960},
+ publisher={Academic Press}
+}
+
+@book{buch:ebbinghaus,
+ title = {Zahlen},
+ year = 1983,
+ inseries = {Grundwissen Mathematik},
+ volume = 1,
+ publisher = {Springer-Verlag},
+ author = { Hans-Dieter Ebbinghaus et al },
+ isbn = { 3-540-12666-X }
+}
+
+@online{buch:primitivepolynomiallist,
+ title = {Primitive Polynomial List},
+ url = {https://www.partow.net/programming/polynomials/index.html},
+ day = 8,
+ month = 3,
+ year = 2021
+}
+
+@book{skript:landaulifschitz1,
+ author = {Landau, L. D. and Lifschitz, E. M.},
+ title = {Mechanik},
+ series = {Lehrbuch der theoretischen Physik},
+ volume = {1},
+ publisher = {Akademie-Verlag},
+ year = {1981},
+ language = {german},
+}
+
diff --git a/buch/test2.tex b/buch/common/test-common.tex
index ea842ce..289e59c 100644
--- a/buch/test2.tex
+++ b/buch/common/test-common.tex
@@ -1,9 +1,8 @@
%
-% test2.tex -- Test 2
+% test.tex -- Gemeinsamer Rahmen für Kurztests
%
-% (c) 2012 Prof. Dr. Andreas Mueller, HSR
+% (c) 2021 Prof. Dr. Andreas Mueller, OST Ostschweizer Fachhochschule
%
-%\documentclass[a4paper,12pt]{book}
\documentclass[a4paper,12pt]{article}
\usepackage{geometry}
\geometry{papersize={210mm,297mm},total={165mm,260mm}}
@@ -58,7 +57,7 @@
}{\end{enumerate}}
% Loesung
\NewEnviron{loesung}{%
-\begin{proof}[L"osung]%
+\begin{proof}[Lösung]%
\renewcommand{\qedsymbol}{$\bigcirc$}
\BODY
\end{proof}}
@@ -72,20 +71,3 @@
\renewcommand{\qedsymbol}{}
\begin{proof}[Hinweis]}{\end{proof}}
-\begin{document}
-{\parindent0pt\hbox to\hsize{%
-Name: \hbox to7cm{\dotfill} Vorname: \dotfill}}
-\vspace{0.5cm}
-
-\section*{Kurztest 2}
-
-\begin{uebungsaufgaben}
-
-\item
-\input chapters/40-eigenwerte/uebungsaufgaben/4004.tex
-\item
-\input chapters/40-eigenwerte/uebungsaufgaben/4005.tex
-
-\end{uebungsaufgaben}
-
-\end{document}
diff --git a/buch/common/test1.tex b/buch/common/test1.tex
new file mode 100644
index 0000000..1f5a155
--- /dev/null
+++ b/buch/common/test1.tex
@@ -0,0 +1,21 @@
+%
+% test1.tex -- Test 1
+%
+% (c) 2021 Prof. Dr. Andreas Mueller, OST
+%
+\input{common/test-common.tex}
+
+\begin{document}
+{\parindent0pt\hbox to\hsize{%
+Name: \hbox to7cm{\dotfill} Vorname: \dotfill}}
+\vspace{0.5cm}
+
+\section*{Kurztest 1}
+
+\begin{uebungsaufgaben}
+
+\input{aufgaben1.tex}
+
+\end{uebungsaufgaben}
+
+\end{document}
diff --git a/buch/common/test2.tex b/buch/common/test2.tex
new file mode 100644
index 0000000..0980e44
--- /dev/null
+++ b/buch/common/test2.tex
@@ -0,0 +1,21 @@
+%
+% test2.tex -- Test 2
+%
+% (c) 2012 Prof. Dr. Andreas Mueller, OST
+%
+\input{common/test-common.tex}
+
+\begin{document}
+{\parindent0pt\hbox to\hsize{%
+Name: \hbox to7cm{\dotfill} Vorname: \dotfill}}
+\vspace{0.5cm}
+
+\section*{Kurztest 2}
+
+\begin{uebungsaufgaben}
+
+\input{aufgaben2.tex}
+
+\end{uebungsaufgaben}
+
+\end{document}
diff --git a/buch/common/test3.tex b/buch/common/test3.tex
new file mode 100644
index 0000000..8b24262
--- /dev/null
+++ b/buch/common/test3.tex
@@ -0,0 +1,21 @@
+%
+% test3.tex -- Test 3
+%
+% (c) 2021 Prof. Dr. Andreas Mueller, OST
+%
+\input{common/test-common.tex}
+
+\begin{document}
+{\parindent0pt\hbox to\hsize{%
+Name: \hbox to7cm{\dotfill} Vorname: \dotfill}}
+\vspace{0.5cm}
+
+\section*{Kurztest 3}
+
+\begin{uebungsaufgaben}
+
+\input{aufgaben3.tex}
+
+\end{uebungsaufgaben}
+
+\end{document}
diff --git a/buch/papers/clifford/0_ElevatorPitch.tex b/buch/papers/clifford/0_ElevatorPitch.tex
new file mode 100644
index 0000000..0db5617
--- /dev/null
+++ b/buch/papers/clifford/0_ElevatorPitch.tex
@@ -0,0 +1,2 @@
+TODO...
+GA [Geometric Algebra i.a.W. Clifford Algebra] provides a unified language for the whole of physics and for much of mathematics and its applications that is conceptually and computationally superior to alternative mathematical systems in many application domains. \ No newline at end of file
diff --git a/buch/papers/clifford/10_Quaternionen.tex b/buch/papers/clifford/10_Quaternionen.tex
new file mode 100644
index 0000000..8945ba8
--- /dev/null
+++ b/buch/papers/clifford/10_Quaternionen.tex
@@ -0,0 +1,61 @@
+%
+% teil3.tex -- Beispiel-File für Teil 3
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Quaternionen}
+\rhead{Quaternionen}
+Wie die komplexen Zahlen eine Erweiterung der reellen Zahlen sind, sind die Quaternionen eine Erweiterung der komplexen Zahlen für den 3 dimensionalen Raum. Sie haben, wie die komplexen Zahlen, eine dreh-streckende Eigenschaft.
+Sie finden beispielsweise in der Computergraphik und in der Robotik Anwendung.
+Die Quaternionen werden so definiert.
+\begin{align}
+ q = w + xi + yj + zk; \quad w,x,y,z \in \mathbb{R};\enspace q \in \mathbb{H}
+\end{align}
+Eine Drehstreckung wird dabei mit dieser Formel erreicht.
+\begin{align} \label{QuatRot}
+ \begin{split}
+ &v'' = qvq^{-1};\quad q,v,q^{-1} \in \mathbb{H}\\
+ &Re(q) = Re(q^{-1});\enspace Im(q) = -Im(q^-1)
+ \end{split}
+\end{align}
+Die Quaternionen besitzen im Gegensatz zu dem komplexen Zahlen 3 imaginäre Einheiten $i,j,k$. Wieso 3? Weil es in der dritten Dimension 3 Drehachsen gibt, anstatt nur eine. Nun haben wir ein kleines Problem. Wie sollen wir die Quaternionen darstellen? Wir bräuchten 4 Achsen für die 3 Imaginären Einheiten und die eine reelle Einheit. Ein weiterer Nachteil in visueller Hinsicht entsteht beim Anwenden eines Quaternion auf einen Vektor. Sie befinden sich nicht im gleichen Raum und müssen zuerst ineinander umgewandelt werden, um damit zu rechnen, wie man bei $v$ in der Formel (\ref{QuatRot}) sieht.
+
+\subsection{geometrischen Algebra}
+Die geometrische Algebra besitzt die Fähigkeit beide Probleme zu lösen. Die Quaternionen können, wie schon im 2 dimensionalen Fall durch die gerade Grade $\mathbb{G}_3^+ \cong \mathbb{H}$ dargestellt werden. Da wir uns jetzt aber in $\mathbb{G}_3$ befinden haben wir 3 Basisvektoren $e_1, e_2, e_3$ und können somit 3 Bivektoren bilden $e_{12}, e_{23}, e_{31}$.
+\begin{align}
+ \mathbf{q} = w + x\mathbf{e_{12}} + y\mathbf{e_{23}} + z\mathbf{e_{31}}; \quad w,x,y,z \in \mathbb{R};\enspace q \in \mathbb{G}_3^+
+\end{align}
+Die Probleme werden dadurch gelöst, da wir die Bivektoren im Raum nicht durch einzelne Achsen darstellen müssen, sondern sie als eine orientiere Fläche darstellen können. Anstatt die Vektoren in Quaternionen umzurechnen, können wir jetzt die Vektoren separat im gleichen Raum darstellen.
+\\BILD VEKTOR, QUATERNION IN G3\\
+Wie schon im 2 dimensionalen Fall beschreibt ein Bivektor, um wie viel der um 90 grad gedrehte orginale Vektor gestreckt wird. Dabei dreht jeder Bivektor den Vektor um eine andere Achse.
+\\BILD?\\
+In der Computergraphik und Robotik macht eine Drehstreckung aber nicht viel Sinn. Wieso sollte ein Objekt bei einer Drehung zusätzlich noch grösser werden? Darum verwendet man sogenannte Einheitsquaternion, welche den Betrag $|q|=1$ haben. Sie rotieren die Objekte bzw. Vektoren lediglich.
+\begin{align}
+ \mathbf{q} = \cos(\alpha) + sin(\alpha)(x\mathbf{e_{12}} + y\mathbf{e_{23}} + z\mathbf{e_{31}})
+\end{align}
+wobei definiert ist, dass $x^2+y^2+z^2=1$. Somit beträgt der Betrag immer 1.
+\begin{align}
+ |q| = \sqrt{cos(\alpha)^2 + sin(\alpha)^2(x^2+y^2+z^2) } = \sqrt{cos(\alpha)^2 + sin(\alpha)^2} = 1
+\end{align}
+Man verwendet um einen Vektor zu drehen wieder die gleiche Formel, wie auch schon im 2 dimensionalen Fall.
+\begin{align} \label{QuatRot}
+ \begin{split}
+ &v'' = qvq^{-1}\\
+ &Re(q) = Re(q^{-1});\enspace Im(q) = -Im(q^-1)
+ \end{split}
+\end{align}
+Es ist wichtig bei Quaternionen für eine reine Drehstreckung mit $q$ und $q^{-1}$ beidseitig zu multiplizieren, sonst werden die senkrechten Anteile zu den Bivektorebenen ebenfalls beeinflusst, wie man im Kapitel Rotation bei der Formel (\ref{RotAufPerpPar}) sehen kann
+
+\subsection{Gimbal-Lock und Interpolation}
+
+\subsection{Fazit}
+andere Darstellungsweise. Besser für Verständnis => komplexe Zahlen erscheinen ähnlicher zu Quaternionen? Eine Sprache für alle Geometrische Probleme
+
+
+\begin{tikzpicture}
+ \draw[thin,gray!40] (-3,-3) grid (3,3);
+ \draw[<->] (-3,0)--(3,0) node[right]{$x$};
+ \draw[<->] (0,-3)--(0,3) node[above]{$y$};
+ \draw[line width=2pt,blue,-stealth](0,0)--(1,1) node[anchor=south west]{$\boldsymbol{u}$};
+ \draw[line width=2pt,red,-stealth](0,0)--(-1,-1) node[anchor=north east]{$\boldsymbol{-u}$};
+\end{tikzpicture} \ No newline at end of file
diff --git a/buch/papers/clifford/1_Vektordarstellung.tex b/buch/papers/clifford/1_Vektordarstellung.tex
new file mode 100644
index 0000000..88a5789
--- /dev/null
+++ b/buch/papers/clifford/1_Vektordarstellung.tex
@@ -0,0 +1,71 @@
+\section{Vektoroperationen\label{clifford:section:Vektoroperationen}}
+\rhead{Vektoroperationen}
+\subsection{Vektordarstellung\label{clifford:section:Vektordarstellung}}
+Vektoren können neben der üblichen Darstellung, auch als Linearkombination aus Basisvektoren dargestellt werden
+\begin{equation}
+ \begin{split}
+ \textbf{a}
+ &=
+ \begin{pmatrix}
+ a_1 \\ a_2 \\ \vdots \\ a_n
+ \end{pmatrix}
+ =
+ a_1 \begin{pmatrix}
+ 1 \\ 0 \\ \vdots \\ 0
+ \end{pmatrix}
+ +
+ a_2\begin{pmatrix}
+ 0 \\ 1 \\ \vdots \\ 0
+ \end{pmatrix} + \dots
+ +
+ a_n\begin{pmatrix}
+ 0 \\ 0 \\ \vdots \\ 1
+ \end{pmatrix} \\\
+ &=
+ a_1\textbf{e}_1
+ +
+ a_2\textbf{e}_2
+ +
+ \dots + a_n\textbf{e}_n
+ =
+ \sum_{i=1}^{n} a_i \textbf{e}_i
+ \qquad
+ a_i \in \mathbb{R}
+ , \textbf{e}_i \in \mathbb{R}^n.
+ \end{split}
+\end{equation}
+Diese Basisvektoren sollen orthonormal sein und um die Darstellung zu vereinfachen werden sie durch $\textbf{e}_1 , \textbf{e}_2, ...$ ersetzt.
+\begin{beispiel}
+Linearkombination von Basisvektoren in $\mathbb{R}^4$
+ \begin{equation}
+ \begin{pmatrix}
+ 42 \\ 2 \\ 1291 \\ 4
+ \end{pmatrix}
+ =
+ 42 \begin{pmatrix}
+ 1 \\ 0 \\ 0 \\ 0
+ \end{pmatrix}
+ +
+ 2 \begin{pmatrix}
+ 0 \\ 1 \\ 0 \\ 0
+ \end{pmatrix}
+ +
+ 1291
+ \begin{pmatrix}
+ 0 \\ 0 \\ 1 \\ 0
+ \end{pmatrix}
+ +
+ 4 \begin{pmatrix}
+ 0 \\ 0 \\ 0 \\ 1
+ \end{pmatrix}
+ =
+ 42\textbf{e}_1
+ +
+ 2\textbf{e}_2
+ +
+ 1291\textbf{e}_3
+ +
+ 4\textbf{e}_4
+ \end{equation}
+\end{beispiel}
+Wobei Beispiel für einen vier dimensionalen Vektor ist, dies kann selbstverständlich für beliebig viele Dimensionen nach demselben Schema erweitert werden. \ No newline at end of file
diff --git a/buch/papers/clifford/2_QuadratVektoren.tex b/buch/papers/clifford/2_QuadratVektoren.tex
new file mode 100644
index 0000000..cfb05d6
--- /dev/null
+++ b/buch/papers/clifford/2_QuadratVektoren.tex
@@ -0,0 +1,110 @@
+\subsection{Quadrat von Vektoren}
+Was eine Addition von Vektoren bedeutet ist sehr intuitiv und auch leicht geometrisch darzustellen, was allerdings das Produkt von Vektoren ergibt mag anfänglich unintuitiv wirken.
+Was soll es schon heissen zwei Vektoren miteinander zu multiplizieren?
+\newline
+Im Folgenden werden wir versuchen diese Operation ähnlich intuitiv darzustellen.
+\newline
+Um sinnvoll eine neue Operation zwischen zwei Elementen einer Algebra, in diesem Fall Vektoren, zu definieren, muss man überlegen, was das Ziel dieser Operation ist.
+Als grundsätzliches Ziel wird definiert, dass das Quadrat eines Vektor dessen Länge im Quadrat ergibt, da dies auch in vielen anderen Bereichen der Mathematik,zum Beispiel bei komplexen Zahlen, auch so definiert ist.
+\newline
+Zusätzlich wollen wir auch das Assoziativgesetz und das Kommutativgesetz für Skalare beibehalten. Wobei das Kommutativgesetz leider, oder wie man sehen wird zum Glück, in der geometrischen Algebra im generellen nicht mehr gilt. Das heisst wir dürfen ausklammern \ref{eq:assoziativ} und die Position von Skalaren im Produkt ändern \ref{eq:kommSkalar}, allerdings nicht die Position der Vektoren \ref{eq:kommVector}.
+\begin{equation}
+ \label{eq:assoziativ}
+ \textbf{e}_i(\textbf{e}_j + \textbf{e}_k)
+ =
+ \textbf{e}_i\textbf{e}_j + \textbf{e}_i\textbf{e}_k
+\end{equation}
+\begin{equation}
+ \label{eq:kommSkalar}
+ a\textbf{e}_ib\textbf{e}_j
+ =
+ ab\textbf{e}_i\textbf{e}_j
+\end{equation}
+\begin{equation}
+ \label{eq:kommVector}
+ \textbf{e}_i\textbf{e}_j
+ \neq
+ \textbf{e}_j\textbf{e}_i
+\end{equation}
+Betrachten wir nun mit diesen Regeln das Quadrat eines Vektors.
+\begin{align}
+ \textbf{a}^2 &=
+ \left (
+ \sum_{i=1}^{n} a_i \textbf{e}_i
+ \right )
+ \left (
+ \sum_{i=1}^{n} a_i \textbf{e}_i
+ \right )
+ \label{eq:quad_a_1}
+ \\
+ &=
+ \textcolor{red}{\sum_{i=1}^{n} a_i^2\textbf{e}_i^2}
+ +
+ \textcolor{blue}{\sum_{\begin{subarray}{l}i,j=1\\i \neq j\end{subarray}}^n a_ia_j\textbf{e}_i\textbf{e}_j }
+ \label{eq:quad_a_2}
+ \\
+ &= \textcolor{cyan}{\sum_{i=1}^{n} a_i^2} + \textcolor{orange}{\sum_{\begin{subarray}{l}i,j=1\\i \neq j\end{subarray}}^n a_ia_j\textbf{e}_i\textbf{e}_j}.
+ \label{eq:quad_a_3}
+\end{align}
+
+\begin{beispiel}
+Quadrat eines Vektors in $\mathbb{R}^2$
+\begin{equation}
+ \begin{split}
+ \textbf{a}^2
+ &= (a_1\textbf{e}_1+a_2\textbf{e}_2)(a_1\textbf{e}_1+a_2\textbf{e}_2) \\\
+ &= \textcolor{red}{a_1^2\textbf{e}_1^2 + a_2^2\textbf{e}_2^2}
+ + \textcolor{blue}{a_1\textbf{e}_1a_2\textbf{e}_2 + a_2\textbf{e}_2a_1\textbf{e}_2} \\\
+ & = \textcolor{cyan}{a_1^2 + a_2^2} + \textcolor{orange}{a_1b\textbf{e}_1a_2\textbf{e}_2 + a_2\textbf{e}_2a_1\textbf{e}_2}
+ \end{split}
+\end{equation}
+
+\end{beispiel}
+Der Vektor wird in \ref{eq:quad_a_1} als Linearkombination geschrieben.
+Das Quadrat kann, wie in \ref{eq:quad_a_2} gezeigt, in zwei Summen aufteilen werden , wobei die roten Summe die quadrierten Terme und die blaue Summe die Mischterme beinhaltet.
+\newline
+Da $\textbf{e}_i^2 = 1$ gilt, da zuvor vorausgesetzt wurde, dass man mit orthonormalen Einheitsvektoren arbeitet, wird dies nun eingesetzt ergibt sich \ref{eq:quad_a_3}
+\newline
+Die hellblaue Teil ist nun bereits Länge im Quadrat eines Vektors, also das Ziel der Multiplikation.
+Daher muss der restliche Teil dieser Gleichung null ergeben.
+Aus dieser Erkenntnis leiten wir in \ref{eq:Mischterme_Null} weitere Eigenschaften für die Multiplikation her.
+\begin{equation}
+ \label{eq:Mischterme_Null}
+ \sum_{\begin{subarray}{l}i,j=1\\i \neq j\end{subarray}}^n a_ia_j\textbf{e}_i\textbf{e}_j = \textcolor{blue}{a_1a_2(\textbf{e}_1\textbf{e}_2 + \textbf{e}_2\textbf{e}_1)} + a_1a_3(\textbf{e}_1\textbf{e}_3 + \textbf{e}_3\textbf{e}_1) + \dots = 0
+\end{equation}
+Da dies für beliebige $a_i$ gelten muss werden alle Terme bis auf $a_1$ und $a_2$ gleich null gesetzt. Somit fallen alle Terme bis auf den blauen weg. Wird dies weiter vereinfacht ergibt sich
+\begin{equation}
+\begin{split}
+ a_1a_2(\textbf{e}_1\textbf{e}_2 + \textbf{e}_2\textbf{e}_1) &= 0 \\
+ a_1a_2\textbf{e}_1\textbf{e}_2 &= -a_1a_2\textbf{e}_2\textbf{e}_1 \\
+ \textbf{e}_1\textbf{e}_2 &= -\textbf{e}_2\textbf{e}_1.
+\end{split}
+\end{equation}
+\begin{satz}
+ Die Multiplikation von Vektoren ist antikommutativ, wenn die multiplizierten Vektoren orthogonal sind.
+ \begin{equation}
+ \textbf{e}_i\textbf{e}_j = -\textbf{e}_j\textbf{e}_i \qquad \textbf{e}_i \perp \textbf{e}_j
+ \end{equation}
+\end{satz}
+Dieses Wissen reicht nun bereits um alle Produkte der Basisvektoren zu berechnen, was in \ref{tab:multip_vec} gemacht wurde.
+\begin{table}
+\caption{Multiplikationstabelle für Vektoren}
+\label{tab:multip_vec}
+\begin{center}
+\begin{tabular}{ |c|c|c|c|c|c| }
+ \hline
+ & $\textbf{e}_1$ & $\textbf{e}_2$ & $\dots$ & $\textbf{e}_{n-1}$ & $\textbf{e}_{n}$ \\
+ \hline
+ $\textbf{e}_1$ & 1 & $\textbf{e}_1\textbf{e}_2$ & $\dots$ & $\textbf{e}_1\textbf{e}_{n-1}$ & $\textbf{e}_1\textbf{e}_{n}$ \\
+ \hline
+ $\textbf{e}_2$ & $-\textbf{e}_1\textbf{e}_2$ & 1 & $\dots$ & $\textbf{e}_2\textbf{e}_{n-1}$ & $\textbf{e}_2\textbf{e}_{n}$ \\
+ \hline
+ $\vdots$ & $\vdots$ & $\vdots$ & $\ddots$ & $\vdots$ & $\vdots$ \\
+ \hline
+ $\textbf{e}_{n-1}$ & $-\textbf{e}_1\textbf{e}_{n-1}$ & $-\textbf{e}_2\textbf{e}_{n-1}$ & $\dots$ & $1$ & $\textbf{e}_{n-1}\textbf{e}_{n}$ \\
+ \hline
+ $\textbf{e}_{n}$ & $-\textbf{e}_1\textbf{e}_{n}$ & $-\textbf{e}_2\textbf{e}_{n}$ & $\dots$ & $-\textbf{e}_{n-1}\textbf{e}_{n}$ & 1 \\
+ \hline
+\end{tabular}
+\end{center}
+\end{table} \ No newline at end of file
diff --git a/buch/papers/clifford/3_MultiplikationVektoren.tex b/buch/papers/clifford/3_MultiplikationVektoren.tex
new file mode 100644
index 0000000..841dde4
--- /dev/null
+++ b/buch/papers/clifford/3_MultiplikationVektoren.tex
@@ -0,0 +1,175 @@
+\subsection{Multiplikation von Vektoren}
+Was geschieht nun wenn zwei beliebige Vektoren,$u$ und $v$, miteinander multipliziert werden?
+\begin{equation}
+ \textbf{u} =
+ \sum_{i=1}^{n} u_i \textbf{e}_i
+ \qquad
+ \textbf{v} = \sum_{i=1}^{n} v_i \textbf{e}_i
+\end{equation}
+\begin{equation}
+ \begin{split}
+ \textbf{u}\textbf{v}
+ =
+ \left (
+ \sum_{i=1}^{n} u_i \textbf{e}_i
+ \right )
+ \left (
+ \sum_{i=1}^{n} v_i \textbf{e}_i
+ \right)
+ =
+ \sum_{i=1}^n u_iv_i\underbrace{\textbf{e}_i^2}_{1}
+ + \sum_{\begin{subarray}{l}i,j=1\\i \neq j\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j
+ \end{split}
+\end{equation}
+\begin{beispiel}
+ Multiplikation von Vektoren in $\mathbb{R}^2$
+\end{beispiel}
+\begin{equation}
+ \begin{split}
+ \textbf{u}\textbf{v}
+ &=
+ (u_1\textbf{e}_1 + u_2\textbf{e}_2)(v_1\textbf{e}_1 + v_2\textbf{e}_2)
+ =
+ u_1v_1\textbf{e}_1^2
+ +
+ u_2v_2\textbf{e}_2^2
+ +
+ u_1v_2\textbf{e}_1\textbf{e}_2
+ +
+ u_2v_1\underbrace{\textbf{e}_2\textbf{e}_1}_{-\textbf{e}_1\textbf{e}_2}
+ \\\
+ &=
+ \underbrace{(u_1v_1 + u_2v_2)}_{\text{Skalarprodukt}}
+ +
+ \underbrace{(u_1v_2 - u_2v_1)\textbf{e}_1\textbf{e}_2}_{\text{Äusseres Produkt}}
+ \end{split}
+\end{equation}
+Der linke Teil dieser Multiplikation ergibt das Skalarprodukt der zwei Vektoren, der rechte Term ergibt etwas neues das sich das äussere Produkt der zwei Vektoren nennt.
+\subsubsection{Äusseres Produkt}
+Das äussere Produkt von zwei Vektoren wird mit einem $\wedge$ dargestellt
+\begin{equation}
+ \textbf{u}\wedge \textbf{v}
+ =
+ \sum_{\begin{subarray}{l}i,j=1\\i \neq j\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j
+\end{equation}
+\begin{beispiel}
+Äusseres Produkt von zwei Vektoren in $\mathbb{R}^3$
+\end{beispiel}
+\begin{equation}
+ \begin{split}
+ u \wedge v
+ &=
+ u_1v_2\textbf{e}_1\textbf{e}_2
+ +
+ u_1v_3\textbf{e}_1\textbf{e}_3
+ +
+ u_2v_2\textbf{e}_2\textbf{e}_3
+ +
+ u_2v_1\textbf{e}_2\textbf{e}_1
+ +
+ u_3v_1\textbf{e}_3\textbf{e}_1
+ +
+ u_3v_2\textbf{e}_3\textbf{e}_2 \\\
+ &=
+ (u_1v_2 - u_2v_1)\textbf{e}_1\textbf{e}_2
+ +
+ (u_1v_3 - v_3u_1)\textbf{e}_1\textbf{e}_3
+ +
+ (u_2v_3 - u_3v_2)\textbf{e}_2\textbf{e}_3
+ \end{split}
+\end{equation}
+Im letzten Schritt des Beispiels wurden nun, mit Hilfe der antikommutativität des Produkts, die Vektorprodukte, welche die gleichen Einheitsvektoren beinhalten, zusammengefasst. Dieses Vorgehen kann man auch allgemein anwenden, wie in den Gleichungen \ref{eq:u_wedge_v}-\ref{eq:u_wedge_v_5} hergeleitet.
+\begin{align}
+ \textbf{u}\wedge \textbf{v}
+ &=
+ \sum_{\begin{subarray}{l}i,j=1\\i \neq j\end{subarray}}^n
+ u_iv_j\textbf{e}_i\textbf{e}_j
+ \label{eq:u_wedge_v}
+ \\
+ \label{eq:u_wedge_v_1}
+ &=
+ \sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j
+ +
+ \sum_{\begin{subarray}{l}i,j=1\\j < i\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j
+ \\
+ \label{eq:u_wedge_v_2}
+ &=
+ \sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j
+ +
+ \sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n u_jv_i\textbf{e}_j\textbf{e}_i
+ \\
+ \label{eq:u_wedge_v_3}
+ &=
+ \sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j
+ -
+ \sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n u_jv_i\textbf{e}_i\textbf{e}_j
+ \\
+ \label{eq:u_wedge_v_4}
+ &=
+ \sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n (u_iv_j -u_jv_i)\textbf{e}_i\textbf{e}_j
+ \\
+ \label{eq:u_wedge_v_5}
+ &=
+ \sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n \begin{vmatrix}
+ u_i & v_i \\
+ u_j & v_j
+ \end{vmatrix}\textbf{e}_i\textbf{e}_j
+\end{align}
+Die Summe aus \ref{eq:u_wedge_v_1} wird in \ref{eq:u_wedge_v} in zwei verschiedene Summen aufgeteilt.
+Wobei die linke Summe jeweils den Basisvektor mit dem höheren Index an erster Stelle und die rechte Summe diesen jeweils an zweiter Stelle hat.
+\newline
+Bei \ref{eq:u_wedge_v_2} werden die Indexe der zweiten Summe vertauscht, damit man nun bei beiden Teilen die gleiche Summe hat.
+Danach werden in \ref{eq:u_wedge_v_3}, mit Hilfe der Antikommutativität, die Einheitsvektoren der zweiten Summe vertauscht.
+\newline
+Nun können die Summen, wie in \ref{eq:u_wedge_v_4} wieder in eine Summe zusammengefasst werden.
+\newline
+Der Term in der Klammer in \ref{eq:u_wedge_v_4} kann auch als Determinante einer 2x2 Matrix dargestellt werden, was in \ref{eq:u_wedge_v_5} gemacht wird.
+\newline
+Die Determinante einer Matrix beschreibt welche von den Spaltenvektoren aufgespannt wird, wie in Abbildung \ref{figure:det} dargestellt.
+\begin{figure}
+\centering
+\begin{tikzpicture}
+ \draw[thin,gray!40] (0,0) grid (4,4);
+ \draw[<->] (0,0)--(4,0) ;
+ \draw[<->] (0,0)--(0,4) ;
+ \draw[line width=0,fill=gray!40] (0,0)--(3,1)--(4,3)--(1,2);
+ \draw[line width=2pt,blue,-stealth](0,0)--(3,1) node[anchor=north
+ west]{$\boldsymbol{u}$};
+ \draw[line width=2pt,red,-stealth](0,0)--(1,2) node[anchor=south east]{$\boldsymbol{v}$};
+ \draw[black] (2,1.5)--(-0.5,2.5) node[anchor = east]{$\begin{vmatrix}
+ u_i & v_i \\
+ u_j & v_j
+ \end{vmatrix} = u_iv_j - v_iu_j$};
+\end{tikzpicture}
+\caption{Geometrische Interpretation der Determinante einer 2x2 Matrix\label{figure:det}}
+\end{figure}
+\newline
+Das äussere Produkt besteht nun also aus der Summe
+ $\sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n$
+ von Flächen
+ $\begin{vmatrix}
+ u_i & v_i \\
+ u_j & v_j
+ \end{vmatrix}$, welche in $\textbf{e}_i\textbf{e}_j$ aufgespannt sind, wie man in \ref{eq:u_wedge_v_5} sieht.
+Dieses Produkt $\textbf{e}_i\textbf{e}_j$ der Basisvektoren interpretiert man als Umlaufrichtung.
+Wobei die gebildete Fläche in Richtung des ersten Vektors umschritten wird.
+Dies ist in \ref{figure:wedge} dargestellt, wobei bei diesem Beispiel die Umlaufrichtung im Gegenuhrzeigersinn ist, da die Fläche in Richtung u umschritten wird.
+Diese Fläche mit einer Richtung nennt man in der geometrischen Algebra einen Bivektor, da er eine Art zwei dimensionaler Vektor ist.
+\begin{figure}
+\centering
+\begin{tikzpicture}
+ \draw[thin,gray!40] (0,0) grid (4,4);
+ \draw[<->] (0,0)--(4,0) node[right]{$x$};
+ \draw[<->] (0,0)--(0,4) node[above]{$y$};
+ \draw[line width=0,fill=gray!40] (0,0)--(3,1)--(4,3)--(1,2);
+ \draw[line width=2pt,blue,-stealth](0,0)--(3,1) node[anchor=north
+ west]{$\boldsymbol{u}$};
+ \draw[line width=2pt,red,-stealth](0,0)--(1,2) node[anchor=south east]{$\boldsymbol{v}$};
+ \draw[->] (2.15,1.5) arc (0:310:0.3);
+ \draw[black] (2,1.5)--(-0.5,2.5) node[anchor = east]{$u\wedge v = \begin{vmatrix}
+ u_i & v_i \\
+ u_j & v_j
+ \end{vmatrix} e_1e_2 = (u_iv_j - v_iu_j)\textbf{e}_1\textbf{e}_2$};
+\end{tikzpicture}
+\caption{Geometrische Interpretation des äusseren Produkt in $\mathbb{R}^2$\label{figure:wedge}}
+\end{figure} \ No newline at end of file
diff --git a/buch/papers/clifford/4_GeometrischesProdukt.tex b/buch/papers/clifford/4_GeometrischesProdukt.tex
new file mode 100644
index 0000000..a19e983
--- /dev/null
+++ b/buch/papers/clifford/4_GeometrischesProdukt.tex
@@ -0,0 +1,59 @@
+\subsection{Geometrisches Produkt}
+Die Multiplikation von zwei Vektoren nennt man in der Clifford Algebra das geometrische Produkt, dieses können wir nun als Summe aus dem Skalar- und dem äusseren Produkt darstellen
+\begin{equation}
+ \textbf{u}\textbf{v} = \textbf{u}\cdot \textbf{v} + \textbf{u} \wedge \textbf{v}.
+\end{equation}
+Dieses Additionszeichen zwischen diesen zwei Produkten mag vielleicht ein wenig eigenartig wirken, da uns das Skalarprodukt ein Skalar und das äussere Produkt einen Bivektor zurück gibt. Was bedeutet es nun also diese beiden Elemente zu addieren?
+Man kann sich die Addition wie bei den komplexen Zahlen vorstellen, wobei die imaginäre Einheit auch nicht explizit zu dem reelen Teil addiert werden kann, sondern die zwei Teile zusammen ein Objekt, eine komplexe Zahl bilden.
+Dieses Objekt, also die Summe von verschiedenen Elemente der Clifford Algebra, wird Multivektor genannt.
+\begin{definition}
+Ein Multivektor besteht aus den verschiedenen Bauteilen, wie zum Beispiel Vektoren, Bivektoren oder Trivektoren (Volumen mit einer Richtung), der Clifford Algebra.
+\begin{equation}
+ M = \sum \left ( \prod a_i\textbf{e}_j \right)
+\end{equation}
+\end{definition}
+Besteht eine Clifford Algebra aus n Basisvektoren so hat sie n Dimensionen, dies wird nicht wie in der linearen Algebra mit $\mathbb{R}^n$ sondern mit $\mathbb{G}^n$ beschrieben.
+\begin{beispiel}
+Allgemeiner Multivektor in $\mathbb{G}^3$
+\begin{equation}
+ M = a
+ +
+ \underbrace{b\textbf{e}_1 + c\textbf{e}_2 + d\textbf{e}_3}_{\text{Vektorteil}}
+ +
+ \underbrace{f\textbf{e}_1\textbf{e}_2 + g\textbf{e}_1\textbf{e}_3 + h\textbf{e}_2\textbf{e}_3 }_{\text{Bivektorteil}}
+ +
+ \underbrace{k\textbf{e}_1\textbf{e}_2\textbf{e}_3}_{\text{Trivektorteil}}
+\end{equation}
+\end{beispiel}
+\begin{definition}
+Um das Produkt von Basisvektoren in Zukunft darzustellen wird folgende Notation definiert
+ \begin{equation}
+ e_ie_j = e_{ij}
+ \end{equation}
+\end{definition}
+Nun da das geometrische Produkt vollständig definiert wurde können Multiplikationstabellen für verschiedene Dimensionen $\mathbb{G}^n$ erstellt werden. In \ref{tab:multip} ist dies für $\mathbb{G}^3$ gemacht.
+\begin{table}
+ \caption{Multiplikationstabelle für $\mathbb{G^3}$}
+ \label{tab:multip}
+ \begin{center}
+ \begin{tabular}{ |c|c|c|c|c|c|c|c| }
+ \hline
+ 1 & $\textbf{e}_1$ & $\textbf{e}_2$ &$\textbf{e}_3$ & $\textbf{e}_{12}$ & $\textbf{e}_{13}$ & $\textbf{e}_{23}$ & $\textbf{e}_{123}$\\
+ \hline
+ $\textbf{e}_1$ & 1 & $\textbf{e}_{12}$ & $\textbf{e}_{12}$ & $\textbf{e}_2$ & $\textbf{e}_3$ & $\textbf{e}_{123}$ & $\textbf{e}_{23}$\\
+ \hline
+ $\textbf{e}_2$ & $-\textbf{e}_{12}$ & 1 & $\textbf{e}_{23}$ & $-\textbf{e}_1$ & $-\textbf{e}_{123}$ & $\textbf{e}_3$ & $-\textbf{e}_{13}$\\
+ \hline
+ $\textbf{e}_3$ & $-\textbf{e}_{13}$ & $-\textbf{e}_{23}$ & 1 & $\textbf{e}_{123}$ & $-\textbf{e}_1$ & $-\textbf{e}_2$ & $\textbf{e}_{12}$\\
+ \hline
+ $\textbf{e}_{12}$ & -$\textbf{e}_2$ & $\textbf{e}_1$& $\textbf{e}_{123}$ & -1 & $-\textbf{e}_{23}$ & $\textbf{e}_{13}$ & $-\textbf{e}_{3}$\\
+ \hline
+ $\textbf{e}_{13}$ & $-\textbf{e}_{3}$ & $-\textbf{e}_{123}$ & $\textbf{e}_{1}$ & $\textbf{e}_{23}$ & -1 & $-\textbf{e}_{12}$ & $\textbf{e}_{2}$\\
+ \hline
+ $\textbf{e}_{23}$ & $\textbf{e}_{123}$ & $-\textbf{e}_{3}$ & $\textbf{e}_{2}$ & $-\textbf{e}_{13}$ & $\textbf{e}_{12}$ & -1 & $-\textbf{e}_{1}$ \\
+ \hline
+ $\textbf{e}_{123}$ & $\textbf{e}_{23}$ & $-\textbf{e}_{13}$ & $\textbf{e}_{12}$ & $-\textbf{e}_{3}$& $\textbf{e}_{2}$ & $-\textbf{e}_{1}$ & -1 \\
+ \hline
+ \end{tabular}
+ \end{center}
+\end{table}
diff --git a/buch/papers/clifford/5_PolareDarstellung.tex b/buch/papers/clifford/5_PolareDarstellung.tex
new file mode 100644
index 0000000..80fb49f
--- /dev/null
+++ b/buch/papers/clifford/5_PolareDarstellung.tex
@@ -0,0 +1,29 @@
+\subsection{Polare Darstellung des geometrischen Produktes}
+Beide Teile des geometrischen Produktes lassen sich durch trigonometrische Terme beschreiben. Das Skalarprodukt kann als
+\begin{equation}
+ \textbf{u}\cdot \textbf{v} = |\textbf{u}||\textbf{v}|\cos{\alpha}
+\end{equation}
+beschrieben werden. Wobei $\alpha$ den Winkel zwischen den beiden Vektoren beschreibt.
+\newline
+Beim äusseren Produkt wurde bereits erwähnt, dass es aus dem Produkt der Fläche des von den zwei Vektoren aufgespannten Parallelogram und einer Umlaufrichtung beschrieben wird. Die Fläche eines Parallelograms lässt sich auch mit einen Sinus Term beschreiben
+\begin{equation}
+ \textbf{u} \wedge \textbf{v}
+ =
+ \begin{vmatrix}
+ u_i & v_i \\
+ u_j & v_j
+ \end{vmatrix}\textbf{e}_i\textbf{e}_j
+ =
+ \underbrace{|u||v|\sin{\alpha}}_{\text{Fläche}}\textbf{e}_i\textbf{e}_j
+\end{equation}
+Wobei die Fläche des Parallelogram auf der von $\textbf{e}_i$ und $\textbf{e}_j$ aufgespannten Ebene liegen.\newline
+Nun kann man diese Terme wieder zum geometrischen Produkt vereinen
+\begin{equation}
+ \textbf{u}\textbf{v}
+ =
+ |\textbf{u}||\textbf{v}|\cos{(\alpha)}
+ +
+ |\textbf{u}||\textbf{v}|\sin{(\alpha)} \textbf{e}_i\textbf{e}_j
+ =
+ |\textbf{u}||\textbf{v}|(\cos{(\alpha)} + \sin{(\alpha)}\textbf{e}_i\textbf{e}_j)
+\end{equation} \ No newline at end of file
diff --git a/buch/papers/clifford/6_Dirac-Matrizen.tex b/buch/papers/clifford/6_Dirac-Matrizen.tex
new file mode 100644
index 0000000..6417bb3
--- /dev/null
+++ b/buch/papers/clifford/6_Dirac-Matrizen.tex
@@ -0,0 +1,7 @@
+%
+% einleitung.tex -- Beispiel-File für die Einleitung
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Dirac-Matrizen}
+\rhead{Dirac-Matrizen}
diff --git a/buch/papers/clifford/7_Reflektion.tex b/buch/papers/clifford/7_Reflektion.tex
new file mode 100644
index 0000000..d4942e0
--- /dev/null
+++ b/buch/papers/clifford/7_Reflektion.tex
@@ -0,0 +1,33 @@
+%
+% teil1.tex -- Beispiel-File für das Paper
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Reflektion/ Spiegelung}
+\rhead{Reflektion/ Spiegelung}
+Die Spiegelung ist eine grundlegende, geometrische Operation, aus welcher man weitere, wie beispielsweise die später beschriebene Rotation, ableiten kann. Da die Geometrische Algebra für geometrische Anwendungen ausgelegt ist, sollte die Reflektion auch eine einfache, praktische Formulierung besitzen. \\HIER BILD
+\subsection{linearen Algebra}
+Aus der linearen Algebra ist bekannt, dass man eine Reflektion wie folgt beschreiben kann.
+\begin{align} \label{RefLinAlg}
+ \mathbf{v^{'}} = \mathbf{v} - 2 \cdot \mathbf{v_{\perp u}}
+\end{align}
+Dabei stellt $\mathbf{u}$ die Spiegelachse dar.
+Es scheint für diese Formel aber umständlich zu sein, weitere Reflektionen, mit weiteren Spiegelachsen, anzufügen. Man kann die Abbildung des Vektors auf den Reflektierten Vektor auch als Matrix schreiben, welche aus den Komponenten des zu der Spiegelachse orthonormalen Vektors $\mathbf{\hat{n}}$ besteht.
+\\MATRIZEN O(2) und O(3) zeigen\\
+Diese Matrizen gehören der Matrizengruppe $O(n)$ an....
+\subsection{geometrischen Algebra}
+Die Geometrische Algebra leitet aus der obigen Formel (\ref{RefLinAlg}) eine einfache und intuitive Form her, welche auch für weitere Operationen einfach erweitert werden kann.
+\begin{align}
+ \mathbf{v'} = \mathbf{uvu^{-1}}
+\end{align}
+wobei die Inverse eines Vektors so definiert ist, dass multipliziert mit sich selbst das neutrale Element 1 ergibt.
+\begin{align}
+ u^{-1} = \dfrac{u}{|u|^2} \Rightarrow uu^{-1} = 1
+\end{align}
+verwendet man für $\mathbf{u}$ nur einen Einheitsvektor $\mathbf{\hat{u}}$, welcher die Länge 1 besitzt, wird somit die Formel reduziert zu einer beidseitigen Multiplikation von $\mathbf{\hat{u}}$.
+\begin{align}
+ \mathbf{v'} = \mathbf{\hat{u}v\hat{u}}
+\end{align}
+Im Gegensatz zu den Abbildungen in der linearen Algebra, welche in jeder anderen Dimension durch andere Matrizen beschrieben werden müssen, ist es in der geometrischen Algebra immer der gleiche Vorgehensweise.
+Zudem ist diese kompakte Schreibweise in der linearen Algebra nicht möglich, da keine Multiplikation von Vektoren definiert ist.
+\\BEISPIEL? \ No newline at end of file
diff --git a/buch/papers/clifford/8_Rotation.tex b/buch/papers/clifford/8_Rotation.tex
new file mode 100644
index 0000000..c2928bf
--- /dev/null
+++ b/buch/papers/clifford/8_Rotation.tex
@@ -0,0 +1,100 @@
+%
+% teil2.tex -- Beispiel-File für teil2
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Rotation}
+\rhead{Rotation}
+Eine Rotation kann man aus zwei, aufeinanderfolgende Reflektionen bilden. Das war für mich zuerst eine verwirrende Aussage, da man aus den vorherig gezeigten Formeln annehmen könnte, dass die Reflektion schon für eine Drehung ausreicht. Obwohl sich die Längen, Winkel und Volumen sich bei einer Reflektion, wie bei einer Rotation, nicht ändert, sind sie doch verschieden, da die Orientierung bei der Reflektion invertiert wird. Stellt man sich beispielsweise ein Objekt in 3D vor und spiegelt dieses an einer Fläche, dann ist es unmöglich nur durch eine Rotation (egal an welchem Punkt) das ursprüngliche Objekt deckungsgleich auf das Gespiegelte zu drehen. Hingegen ist es wiederum möglich ein zweifach gespiegeltes Objekt durch eine Drehung zu erreichen. Das liegt daran, da die Orientierung zwei mal invertiert wurde.
+\\BILD
+
+\subsection{linearen Algebra}
+In der linearen Algebra haben wir Drehungen durch die Matrizen der Gruppe $SO(n)$ beschrieben. Die SO(2) werden beispielsweise auf diese Weise gebildet.
+\begin{align}
+ D =
+ \begin{pmatrix}
+ cos(\alpha) & sin(\alpha) \\
+ -sin(\alpha) & cos(\alpha)
+ \end{pmatrix}
+\end{align}
+
+\subsection{geometrischen Algebra}
+Da wir jetzt aus der Geometrie wissen, dass eine Rotation durch zwei Reflektionen gebildet werden kann, können wir die Rotation einfach herleiten.
+\begin{align} \label{rotGA}
+ v'' = wv'w^{-1} = w(uvu^{-1})w^{-1}
+\end{align}
+Die Vektoren $\mathbf{w}$ und $\mathbf{u}$ bilden hier wiederum die Spiegelachsen. Diese versuchen wir jetzt noch zu verbessern. Dazu leiten wir zuerst die bekannte Polarform her. (Anmerkung: Hier wird eine Rotation auf der $\mathbf{e_{12}}$ Ebene hergeleitet. Weitere Drehungen können in höheren Dimensionen durch Linearkombinationen von Drehungen in den $\mathbf{e_{ij}}, i\not=j$ Ebenen erreicht werden)
+\begin{align}
+ \mathbf{w} = |w| \left[\cos(\theta_w) e_1 + \sin(\theta_w) e_2\right]
+\end{align}
+Dabei können wir ausnützen, dass $e_1^2 = 1$ ist. Was nichts ändert wenn wir es einfügen. Zudem klammern wir dann $e_1$ aus.
+\begin{align}
+ \mathbf{w} = |w| \left[\cos(\theta_w) e_1 + \sin(\theta_w) e_1e_1e_2\right]
+\end{align}
+\begin{align} \label{e1ausklammern}
+ \mathbf{w} = |w|e_1\left[\cos(\theta_w)+ \sin(\theta_w) e_{12}\right]
+\end{align}
+Durch die Reihenentwicklung ist es uns jetzt möglich den Term in eckigen Klammern mit der e-Funktion zu schreiben.
+\begin{align}
+ \mathbf{w} = |w|\mathbf{e_1} e^{\theta_w \mathbf{e_{12}}}
+\end{align}
+Man kann es so interpretieren, dass der Einheitsvektor $e_1$ um die Länge w gestreckt und um $theta_w$ gedreht wird.
+Nun werden wir den Effekt von zwei aneinandergereihten Vektoren $(wu)$ betrachten.
+\begin{align}
+ \mathbf{wu} = |w|\mathbf{e_1} e^{\theta_w \mathbf{e_{12}}}||u||\mathbf{e_1} e^{\theta_u \mathbf{e_{12}}}
+\end{align}
+Um die beiden $\mathbf{e_1}$ zu kürzen, können wir die Reihenfolge des exponential Terms mit $\mathbf{e_1}$ wechseln, indem man bei der Gleichung (\ref{e1ausklammern}), anstatt mit $\mathbf{e_1e_1e_2}$ mit $\mathbf{e_2e_1e_1}$ erweitert.
+\begin{align}
+ \mathbf{w} = |w|\left[\cos(\theta_w)+ \sin(\theta_w) \mathbf{e_2e_1}\right]\mathbf{e_1}
+\end{align}
+Da $\mathbf{e_2e_1 = -e_{12}}$ können wir einfach den Winkel negieren.
+Jetzt können wir wieder $e_1e_1 = 1$ kürzen. Die Längen können als Skalare beliebig verschoben werden und die exponential Terme zusammengefasst werden.
+\begin{align}
+ \mathbf{wu} = |w||u|e^{-\theta_w \mathbf{e_{12}}}\mathbf{e_1}\mathbf{e_1} e^{\theta_u \mathbf{e_{12}}}
+\end{align}
+\begin{align}
+ \mathbf{wu} = |w||u|e^{(\theta_u-\theta_w) \mathbf{e_{12}}}
+\end{align}
+der Term $\mathbf{u^{-1}w^{-1}}$ kann durch die selbe Methode zusammengefasst werden.
+\begin{align}
+ \mathbf{u^{-1}w^{-1}} = \dfrac{1}{|w||u|}e^{(\theta_w-\theta_u) \mathbf{e_{12}}}
+\end{align}
+Dabei definieren wir den Winkel zwischen den Vektoren $\mathbf{w}$ und $\mathbf{u}$ als $\theta = \theta_w - \theta_u$. Setzten wir nun unsere neuen Erkenntnisse in die Gleichung (\ref{rotGA}) ein.
+\begin{align}
+ \mathbf{v''} = |w||u|e^{-\theta \mathbf{e_{12}}} v \dfrac{1}{|w||u|}e^{\theta \mathbf{e_{12}}}
+\end{align}
+HIER DEFINITION/IST WICHTIGE FORMEL
+\begin{align}
+ \mathbf{v''} = e^{-\theta \mathbf{e_{12}}} v e^{\theta \mathbf{e_{12}}}
+\end{align}
+Wir wissen nun, dass das diese beidseitige Multiplikation die Länge von $\mathbf{v}$ nicht verändert, da sich die Längen von $\mathbf{w}$ und $\mathbf{u}$ kürzen. Betrachten wir nun den Effekt der Exponentialterme auf $\mathbf{v}$. Dabei Teilen wir den Vektor $\mathbf{v}$ auf in einen Anteil $\mathbf{v_\parallel}$, welcher auf der Ebene $\mathbf{e_{12}}$ liegt, und einen Anteil $\mathbf{v_\perp}$, welcher senkrecht zu der Ebene steht.
+\begin{align} \label{RotAufPerpPar}
+ \mathbf{v''} = e^{-\theta \mathbf{e_{12}}} (\mathbf{v_\perp + v_\parallel}) e^{\theta \mathbf{e_{12}}}
+\end{align}
+\begin{align}
+ \mathbf{v''} = e^{-\theta \mathbf{e_{12}}} \mathbf{v_\perp} e^{\theta \mathbf{e_{12}}} + e^{-\theta \mathbf{e_{12}}} \mathbf{v_\parallel} e^{\theta \mathbf{e_{12}}}
+\end{align}
+Auf eine allgemeine Herleitung wird hier zwar verzichtet, aber man kann zeigen, dass die Reihenfolge so vertauscht werden kann. Der Winkel wird dabei beim parallelen Term negiert.
+\begin{align}
+ \mathbf{v''} = \mathbf{v_\perp} e^{-\theta \mathbf{e_{12}}} e^{\theta \mathbf{e_{12}}} + \mathbf{v_\parallel} e^{-(-\theta) \mathbf{e_{12}}} e^{\theta \mathbf{e_{12}}}
+\end{align}
+\begin{align}
+ \mathbf{v''} = \mathbf{v_\perp} + \mathbf{v_\parallel} e^{2\theta \mathbf{e_{12}}}
+\end{align}
+Man kann an dieser Gleichung sehen, dass nur der parallele Anteil des Vektors $\mathbf{v}$ auf der Ebene $\mathbf{e_{12}}$ um $2\theta$ gedreht wird. Der senkrechte Anteil bleibt gleich. Wichtig dabei zu sehen ist, dass nur der Winkel zwischen den Vektoren $\mathbf{w}$ und $\mathbf{u}$ von Bedeutung ist. Die Länge und Richtung der einzelnen Vektoren spielt keine Rolle.
+\\BEISPIEL
+\begin{align}
+ \begin{split}
+ &\mathbf{v} = 1\mathbf{e_1} + 2\mathbf{e_2} + 3\mathbf{e_3}\quad\Rightarrow\quad \mathbf{v_\parallel} = 1\mathbf{e_1} + 2\mathbf{e_2}; \quad \mathbf{v_\perp} = 3\mathbf{e_3}\\ &\mathbf{wu} = 1e^{(-\pi/2) \mathbf{e_{12}}} = 1[\cos(-\pi/2)\mathbf{e_1}+\sin(-\pi/2)\mathbf{e_2}] = -\mathbf{e_2}; \\ &\mathbf{u^{-1}w^{-1}} = 1e^{(\pi/2) \mathbf{e_{12}}} = \mathbf{e_2}
+ \end{split}
+\end{align}
+\begin{align}
+ \begin{split}
+ \mathbf{v''} = &\mathbf{(wu)v(u^{-1}w^{-1})} \\
+ &-\mathbf{e_2} (1\mathbf{e_1} + 2\mathbf{e_2} + 3\mathbf{e_3}) \mathbf{e_2} \\
+ & -1\mathbf{e_2e_1e_2} - 2\mathbf{e_2e_2e_2} - 3\mathbf{e_2e_3e_2} \\
+ & 1\mathbf{e_2e_2e_1} - 2\mathbf{e_2} + 3\mathbf{e_2e_2e_3} \\
+ & 1\mathbf{e_1} - 2\mathbf{e_2} + 3\mathbf{e_3}
+ \end{split}
+\end{align}
+Man sieht, dass sich der Vektor $\mathbf{v_\parallel}$ sich um $2\cdot90^\circ$ gedreht hat und der Vektor $\mathbf{v_\perp}$ unverändert blieb. \ No newline at end of file
diff --git a/buch/papers/clifford/9_KomplexeZahlen.tex b/buch/papers/clifford/9_KomplexeZahlen.tex
new file mode 100644
index 0000000..4dbab2c
--- /dev/null
+++ b/buch/papers/clifford/9_KomplexeZahlen.tex
@@ -0,0 +1,28 @@
+%
+% teil3.tex -- Beispiel-File für Teil 3
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{komplexe Zahlen}
+\rhead{komplexe Zahlen}
+Die komplexen Zahlen finden eine Vielzahl von Anwendungsgebiete in den Ingenieurwissenschaften. Das liegt daran, weil die komplexen Zahlen Rotationen und Schwingungen gut beschreiben können. Nachdem vorherigen Kapitel überrascht es wahrscheinlich nicht viele, dass es möglich ist Komplexe Zahlen in der geometrischen Algebra darzustellen. Sie können durch die geraden Grade der 2 Dimensionalen geometrischen Algebra vollständig beschrieben werden: $\mathbb{G}_2^+ \cong \mathbb{C}$. Das bedeutet eine komplexe Zahl kann durch ein Skalar (Grade 0) und einem Bivektor (Grade 2) dargestellt werden. Als Abkürzung nehme ich die Bezeichnung $g_n \in \mathbb{G}_2^+$.
+\begin{align}
+ a_0 + a_1 j \cong a_0 + a_1 e_{12} = g_n;\quad a_0, a_1 \in \mathbb{R}
+\end{align}
+oder in Polarform.
+\begin{align}
+ |r|e^{\theta j} \cong |r|e^{\theta e_{12}} = g_n; \quad r, \theta \in \mathbb{R}
+\end{align}
+Man beachte, dass wenn wir, wie bei den komplexen Zahlen, Elemente von $\mathbb{G}_2^+$ miteinander Multiplizieren, ist es nicht, wie im Kapitel Rotation bei der Formel (\ref{rotGA})beschrieben, eine Multiplikation von zwei $g_n$ mit einem Vektor. Im 2 dimensionalen bewirken beide Multiplikationen grundsätzlich das Gleiche (eine Drehstreckung), aber die Multiplikation von mehreren $g_n$ ist kommutativ, wie wir es von den komplexen zahlen kennen.
+\begin{align}
+ \begin{split}
+ &(a + b \mathbf{e_{12}})(c + d \mathbf{e_{12}}) = (c + d \mathbf{e_{12}})(a + b \mathbf{e_{12}})\\
+ &(a + b \mathbf{e_{12}})(x\mathbf{e_1}+y\mathbf{e_2})(c + d \mathbf{e_{12}}) \not= (a + b \mathbf{e_{12}})(c + d \mathbf{e_{12}})(x\mathbf{e_1}+y\mathbf{e_2})
+ \end{split}
+\end{align}
+Um später die Auswirkung der Quaternionen besser zu verstehen, möchte ich kurz darauf eingehen, was ein $g_n$ für eine Auswirkung auf einen Vektor hat.
+Wir kennen diesen Effekt schon von den komplexen Zahlen. Wenn eine komplexe Zahl $c_1=a+bj$ mit einer zweiten $c_2=c+dj$ multipliziert wird, dann kann man diese so aufteilen.
+\begin{align}
+ c = (a + bj)(c + dj) = c\cdot(a+bj) + dj\cdot(a+bj)
+\end{align}
+Wobei $c\cdot(a+bj)$ die jetzige komplexe Zahl $c_1$ um den Faktor $c$ steckt und $dj\cdot(a+bj)$ die um 90° im gegenuhrzeigersinn gedrehte Zahl $c_1$ um den Faktor $d$ streckt. Diese Anteile addiert ergeben, dann den um $c_2$ drehgestreckten Vektor $c_1$. Die wirklichen Vorteile der geometrischen Algebra werden sich aber erst bei den Quaternionen zeigen.
diff --git a/buch/papers/clifford/Makefile.inc b/buch/papers/clifford/Makefile.inc
index 7b941b3..8cdd02e 100644
--- a/buch/papers/clifford/Makefile.inc
+++ b/buch/papers/clifford/Makefile.inc
@@ -3,12 +3,18 @@
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-dependencies-clifford = \
+dependencies-clifford = \
papers/clifford/packages.tex \
papers/clifford/main.tex \
- papers/clifford/references.bib \
- papers/clifford/teil0.tex \
- papers/clifford/teil1.tex \
- papers/clifford/teil2.tex \
- papers/clifford/teil3.tex
-
+ papers/clifford/references.bib \
+ papers/clifford/0_ElevatorPitch.tex \
+ papers/clifford/1_Vektordarstellung.tex \
+ papers/clifford/2_QuadratVektoren.tex \
+ papers/clifford/3_MultiplikationVektoren.tex \
+ papers/clifford/4_GeometrischesProdukt.tex \
+ papers/clifford/5_PolareDarstellung.tex \
+ papers/clifford/6_Dirac-Matrizen.tex \
+ papers/clifford/7_Reflektion.tex \
+ papers/clifford/8_Rotation.tex \
+ papers/clifford/9_KomplexeZahlen.tex \
+ papers/clifford/10_Quaternionen.tex
diff --git a/buch/papers/clifford/main.tex b/buch/papers/clifford/main.tex
index 5533c55..46d04bd 100644
--- a/buch/papers/clifford/main.tex
+++ b/buch/papers/clifford/main.tex
@@ -3,34 +3,23 @@
%
% (c) 2020 Hochschule Rapperswil
%
-\chapter{Thema\label{chapter:clifford}}
-\lhead{Thema}
+\chapter{Clifford Algebra\label{chapter:clifford}}
+\lhead{Clifford Algebra}
\begin{refsection}
-\chapterauthor{Hans Muster}
+\chapterauthor{Thierry Schwaller, Marius Baumann}
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
-\input{papers/clifford/teil0.tex}
-\input{papers/clifford/teil1.tex}
-\input{papers/clifford/teil2.tex}
-\input{papers/clifford/teil3.tex}
+\input{papers/clifford/0_ElevatorPitch.tex}
+\input{papers/clifford/1_Vektordarstellung.tex}
+\input{papers/clifford/2_QuadratVektoren.tex}
+\input{papers/clifford/3_MultiplikationVektoren.tex}
+\input{papers/clifford/4_GeometrischesProdukt.tex}
+\input{papers/clifford/5_PolareDarstellung.tex}
+\input{papers/clifford/6_Dirac-Matrizen.tex}
+\input{papers/clifford/7_Reflektion.tex}
+\input{papers/clifford/8_Rotation.tex}
+\input{papers/clifford/9_KomplexeZahlen.tex}
+\input{papers/clifford/10_Quaternionen.tex}
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/clifford/packages.tex b/buch/papers/clifford/packages.tex
index 8abcef1..8fb4bd9 100644
--- a/buch/papers/clifford/packages.tex
+++ b/buch/papers/clifford/packages.tex
@@ -7,4 +7,3 @@
% if your paper needs special packages, add package commands as in the
% following example
%\usepackage{packagename}
-
diff --git a/buch/papers/clifford/papers/clifford/teil0.tex b/buch/papers/clifford/papers/clifford/teil0.tex
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/buch/papers/clifford/papers/clifford/teil0.tex
diff --git a/buch/papers/clifford/teil0.tex b/buch/papers/clifford/teil0.tex
deleted file mode 100644
index ac943f4..0000000
--- a/buch/papers/clifford/teil0.tex
+++ /dev/null
@@ -1,22 +0,0 @@
-%
-% einleitung.tex -- Beispiel-File für die Einleitung
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 0\label{clifford:section:teil0}}
-\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{clifford:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
-
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
-
-
diff --git a/buch/papers/clifford/teil1.tex b/buch/papers/clifford/teil1.tex
deleted file mode 100644
index 0674afb..0000000
--- a/buch/papers/clifford/teil1.tex
+++ /dev/null
@@ -1,55 +0,0 @@
-%
-% teil1.tex -- Beispiel-File für das Paper
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 1
-\label{clifford:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{clifford:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{clifford:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{clifford:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{clifford:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
-
-
diff --git a/buch/papers/clifford/teil2.tex b/buch/papers/clifford/teil2.tex
deleted file mode 100644
index bbcefb0..0000000
--- a/buch/papers/clifford/teil2.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{clifford:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{clifford:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/clifford/teil3.tex b/buch/papers/clifford/teil3.tex
deleted file mode 100644
index f50d42d..0000000
--- a/buch/papers/clifford/teil3.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil3.tex -- Beispiel-File für Teil 3
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 3
-\label{clifford:section:teil3}}
-\rhead{Teil 3}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{clifford:subsection:malorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/erdbeben/Apperatur.jpg b/buch/papers/erdbeben/Apperatur.jpg
new file mode 100644
index 0000000..d25381e
--- /dev/null
+++ b/buch/papers/erdbeben/Apperatur.jpg
Binary files differ
diff --git a/buch/papers/erdbeben/Gausskurve2.pdf b/buch/papers/erdbeben/Gausskurve2.pdf
new file mode 100644
index 0000000..bee3bc0
--- /dev/null
+++ b/buch/papers/erdbeben/Gausskurve2.pdf
Binary files differ
diff --git a/buch/papers/erdbeben/Gausskurve2.tex b/buch/papers/erdbeben/Gausskurve2.tex
new file mode 100644
index 0000000..44319c3
--- /dev/null
+++ b/buch/papers/erdbeben/Gausskurve2.tex
@@ -0,0 +1,39 @@
+\documentclass{standalone}
+
+\usepackage{pgfplots}
+
+\pgfplotsset{compat = newest}
+
+\begin{document}
+
+
+\begin{tikzpicture}
+
+
+\begin{axis}[
+ xmin = -1, xmax = 4,
+ ymin = -0.5, ymax = 2.50,
+ axis lines = center,
+ xlabel = $\sigma$,
+ ylabel = {$\mu$},
+]
+
+\addplot [
+ domain=-2:5,
+ samples=200,
+ color=orange,
+]
+{(1/(2*pi*0.2^2)^0.2)*exp(-(x-2)^2/(2*0.2^2))};
+
+\addplot [
+ domain=-2:5,
+ samples=200,
+ color=blue,
+ ]
+ {1/(2*pi*0.5^2)^0.5)*exp(-(x-0.9)^2/(2*0.5^2))};
+
+\end{axis}
+\end{tikzpicture}
+
+
+\end{document} \ No newline at end of file
diff --git a/buch/papers/erdbeben/Gausskurve3.pdf b/buch/papers/erdbeben/Gausskurve3.pdf
new file mode 100644
index 0000000..e86a403
--- /dev/null
+++ b/buch/papers/erdbeben/Gausskurve3.pdf
Binary files differ
diff --git a/buch/papers/erdbeben/Gausskurve3.tex b/buch/papers/erdbeben/Gausskurve3.tex
new file mode 100644
index 0000000..85455ef
--- /dev/null
+++ b/buch/papers/erdbeben/Gausskurve3.tex
@@ -0,0 +1,47 @@
+\documentclass{standalone}
+
+\usepackage{pgfplots}
+
+\pgfplotsset{compat = newest}
+
+\begin{document}
+
+
+\begin{tikzpicture}
+
+
+\begin{axis}[
+ xmin = -1, xmax = 4,
+ ymin = -0.5, ymax = 2.50,
+ axis lines = center,
+ xlabel = $\sigma$,
+ ylabel = {$\mu$},
+]
+
+\addplot [
+ domain=-2:5,
+ samples=200,
+ color=orange,
+]
+{(1/(2*pi*0.2^2)^0.2)*exp(-(x-2)^2/(2*0.2^2))};
+
+\addplot [
+ domain=-2:5,
+ samples=200,
+ color=blue,
+ ]
+ {1/(2*pi*0.5^2)^0.5)*exp(-(x-0.9)^2/(2*0.5^2))};
+
+\addplot [
+ domain=-2:5,
+ samples=200,
+ color=red,
+ ]
+ {((1/(2*pi*0.5^2)^0.5)*exp(-(x-0.9)^2/(2*0.5^2))*(1/(2*pi*0.2^2)^0.2)*exp(-(x-2)^2/(2*0.2^2)))/0.1};
+
+
+\end{axis}
+\end{tikzpicture}
+
+
+\end{document} \ No newline at end of file
diff --git a/buch/papers/erdbeben/teil1.tex b/buch/papers/erdbeben/teil1.tex
index a89f303..0d21f84 100644
--- a/buch/papers/erdbeben/teil1.tex
+++ b/buch/papers/erdbeben/teil1.tex
@@ -3,16 +3,240 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Teil 1
-\label{erdbeben:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
+%
+% teil2.tex -- Beispiel-File für teil2
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+
+
+\section{Kalman Filter}
+\subsection{Geschichte}
+Das Kalman Filter wurde 1960 von Rudolf Emil Kalman entdeckt und direkt von der NASA für die Appollo Mission benutzt. Der Filter kommt mit wenig Rechenleistung aus und war somit dafür geeignet die Rakete bei der Navigation zu unterstützen. Das Filter schätzt den Zustand eines Systems anhand von Messungen und kann den nächsten Zustand errechnen. Typische Anwendungen des Kalman-Filters sind die Glättung von verrauschten Daten und die Schätzung von Parametern und kommt heutzutage in jedem Satellit, Navigationssystem, Smartphones und Videospielen vor.
+
+\subsection{Wahrscheinlichkeit}
+Das Kalman Filter versucht nichts anderes, als ein geeigneter Wert zwischen zwei Normalverteilungen zu schätzen. Die eine Kurve zeigt die errechnete Vorhersage des Zustands, bzw. deren Normal- Gauss-Verteilung. Die andere Kurve zeigt die verrauschte Messung des nächsten Zustand, bzw. deren Normal-Verteilung. Wie man in am Beispiel dieser zwei Gauss-Verteilungen sehen kann, ist sowohl der geschätzte Zustand als auch der gemessene Zustand nicht am selben Punkt.
+
+
+
+\begin{figure}
+ \begin{center}
+ \includegraphics[width=5cm]{papers/erdbeben/Gausskurve2.pdf}
+ \caption{System}
+ \end{center}
+\end{figure}
+
+
+
+Um eine genauere Schätzung des Zustandes zu machen, wird nun ein Wert zwischen den beiden Verteilungen gesucht. An diesem Punkt wird nun eine Eigenschaft ausgenutzt. Durch das Multiplizieren zweier Normalverteilungen entsteht eine neue Normalverteilung.
+
+Wir haben eine Normalverteilung der Vorhersage:
+\begin{equation}
+{y_1}(x;{\mu_1},{\sigma_1})=\frac{1}{\sqrt{2\pi\sigma_1^2}}\quad e^{-\frac{(x-{\mu_1})^2}{2{\sigma_1}^2}}
+\end{equation}
+und für die Messung:
+
+\begin{equation}
+{y_2}(x;{\mu_2},{\sigma_2})=\frac{1}{\sqrt{2\pi\sigma_2^2}}\quad e^{-\frac{(x-{\mu_2})^2}{2{\sigma_2}^2}}.
+\end{equation}
+
+Diesen werden nun Multipliziert und durch deren Fläche geteilt um sie wieder zu Normieren:
+\begin{equation}
+{y_f}(x;{\mu_f},{\sigma_f})=\frac{ \frac{1}{\sqrt{2\pi\sigma_1^2}}e^{-\frac{(x-{\mu_1})^2}{2{\sigma_1}^2}} \cdot \frac{1}{\sqrt{2\pi\sigma_2^2}}e^{-\frac{(x-{\mu_2})^2}{2{\sigma_2}^2}}}{\int {y_1}*{y_2}\,}
+\end{equation}
+
+Dadurch gleicht sich die neue Kurve den anderen an. Interessant daran ist, dass die fusionierte Kurve sich der genauere Normal-Verteilung anpasst. ist ${\sigma_2}$ klein und ${\sigma_1}$ gross, so wird sich die fusionierte Kurve näher an ${y_2}(x;{\mu_2},{\sigma_2})$ begeben. Sie ist also Gewichtet und die best mögliche Schätzung.
+
+
+\begin{figure}
+ \begin{center}
+ \includegraphics[width=5cm]{papers/erdbeben/Gausskurve3.pdf}
+ \caption{System}
+ \end{center}
+\end{figure}
+
+
+Was in 2 Dimensionen erklärt wurde, funktioniert auch in mehreren Dimensionen. Dieses Prinzip mach sich der Kalman Filter zu nutze, und wird von uns für die Erdbeben Berechnung genutzt.
+
+\subsection{Anwendungsgrenzen}
+Nicht lineare Systeme %Noch nicht Fertig
+
+
+\section{Aufbau}
+Um ein Erdbeben kenntlich zumachen werden in der Regel Seismographen mit vielen Sensoren verwendet.
+Ein Seismograph besteht im Grunde aus einer federgelagerten Masse. Wirkt eine Bodenerregung auf das Gerät ein, bleibt die gekoppelte Masse in der regel stehen und das Gehäuse schwingt mit.Relativbewegung des Bodens kann damit als Längenänderung im Zeitverlauf gemessen werden. In modernen Seismographen wird die Bodenbewegung in alle Richtungen gemessen, sowohl Horizontal als auch Vertikal.
+Wir konstruieren uns eine einfachere Version eines Seismographen, welcher rein mechanisch funktioniert. Zudem kann er nur in eine Dimension Messwerte aufnehmen. Würde das System ausgebaut werden, um alle Horizontalbewegungen aufzunehmen, würde der Verwendung des Kalman-Filters zu kompliziert werden. Für zwei Dimensionen (x,y) würde der Pythagoras für das System benötigt werden. Da sich der Pythagoras bekanntlich nicht linear verhält, kann kein lineares Kalman-Filter implementiert werden. Da das Kalman-Filter besonders effektiv und einfach für lineare Abläufe geeignet ist, würde eine Zweidimensionale Betrachtung den Rahmen dieser Arbeit sprengen. Für ein nicht-lineares System werden Extended Kalman-Filter benötigt, bei denen die System-Matrix (A) durch die Jacobi-Matrix des System ersetzt wird.
+
+\begin{figure}
+ \begin{center}
+ \includegraphics[width=5cm]{papers/erdbeben/Apperatur}
+ \caption{System}
+ \end{center}
+\end{figure}
+
+
+\subsection{Optionen}
+Wollte man einen 2D Seismographen aufbauen, ohne den Pythagroas zu verwenden, kann dies mit der Annahme, das die Feder sehr lang sind erfolgen. Da sich bei langen Federn die Auslenkungen verkleiner...!!Noch nicht fertig!
+
+\section{Systemgleichung}
+Da das Kalman-Filter zum Schätzen des nächsten Zustand verwendet wird, wird eine Gleichung, welche das System beschreibt. Das Kalman-Filter benötigt eine Beschreibung der Systemdynamik. Im Fall unseres Seismographen, kann die Differentialgleichung zweiter Ordnung einer gedämpften Schwingung am harmonischen Oszillator verwendet werden. Diese lautet:
+\begin{equation}
+m\ddot x + 2k \dot x + Dx = f
+\end{equation}
+mit den Konstanten $m$ = Masse, $k$ = Dämpfungskonstante und $D$ = Federkonstante.
+Um diese nun in die Systemmatrix umzuwandeln, wird aus der Differentialgleichung zweiter Ordnung durch eine Substitution eine DGL erster Ordnung:
+
+
+\begin{equation}
+{x_1}=x, \qquad
+{x_2}=\dot x, \qquad
+{x_3}=\ddot x\qquad \mid \quad \text {Substitution}
+\end{equation}
+
+
+\begin{equation}
+m{x_3}+ 2k{x_2} + D{x_1} = f\qquad \mid \quad \text {DGL 1. Ordnung}
+\end{equation}
+
+\begin{equation}
+{x_3}=-\frac{D}{m} {x_1} -\frac{2k}{m} {x_2} + \frac{f} {m} \qquad \mid \quad \text {nach} \quad{x_3}
+\end{equation}
+auch als Matrix-Vektor-Gleichung schreiben.
+Hierbei beschreibt die Matrix $A$ die gesamte Systemdynamik in der Form, wie sie ein Kalman-Filter benötigt.
+
+Um die lineare Differentialgleichung in das Kalman-Filter zu implementieren, muss dieses als Vektor-Gleichung umgewandelt werden. Dafür wird die Gleichung in die Zustände aufgeteilt. Die für uns relevanten Zustände sind die Position der Masse, die Geschwindigkeit der Masse und äussere Beschleunigung des ganzen System. Dabei muss unterschieden werden. um welche Beschleunigung es sich handelt. Das System beinhaltet sowohl eine Beschleunigung der Masse bzw. Feder (innere Beschleunigung), als auch eine Beschleunigung der ganzen Apparatur (äussere Beschleunigung). In unserem Fall wird die äusseren Beschleunigung gesucht, da diese der Erdbeben Anregung gleich kommt.
+
+
+\begin{equation}
+\frac{d}{dt} \left(\begin{array}{c} {x_1} \\ {x_2} \end{array}\right) = \left(
+ \begin{array}{ccc}
+0 & 1& 0 \\
+- \frac{D}{m} &-\frac{2k}{m} & \frac{1} {m}\\
+\end{array}\right) \left(\begin{array}{c} {x_1} \\ {x_2} \\ {x_3} \end{array}\right).
+\end{equation}
+
+Durch die Rücksubstituion ergibt sich:
+\begin{equation}
+\frac{d}{dt} \left(\begin{array}{c} x(t) \\ v(t) \end{array}\right) = \left(
+ \begin{array}{ccc}
+0 & 1& 0 \\
+- \frac{D}{m} &-\frac{2k}{m} & \frac{1} {m}\\
+\end{array}\right) \left(\begin{array}{c} x(t)\\ v(t)\\ f(t) \end{array}\right).
+\end{equation}
+
+
+Da die Kraft unbekannt ist, wird die letzte Zeile später mit Nullen bestückt, denn genau diese Werte wollen wir.
+
+\section{Kalman Filter}
+Um den Kalman Filter zu starten, müssen gewisse Bedingungen definiert werden. In diesem Abschnitt werden die einzelnen Parameter/Matrizen erläutert und Erklärt, wofür sie nützlich sind.
+
+
+\subsection{Anfangsbedingungen}
+\subsubsection*{Anfangszustand $x$}
+Das Filter benötigt eine Anfangsbedingung. In unserem Fall ist es die Ruhelage, die Masse bewegt sich nicht. Zudem erföhrt die Apparatur keine äussere Kraft.
+
+\begin{equation}
+{x_0 }= \left( \begin{array}{c} 0\\ 0\\ 0\end{array}\right)
+\end{equation}
+
+\subsubsection*{Anfangsfehler / Kovarianzmatrix $P$}
+Da auch der Anfangszustand fehlerhaft sein kann, wird für den Filter einen Anfangsfehler eingeführt. Auf der Diagonalen werden die Varianzen eingesetzt, in den restlichen Felder stehen die Kovarianzen.
+In unserem Fall ist der Anfangszustand gut bekannt. Wir gehen davon aus, dass das System in Ruhe und in Abwesenheit eines Erdbeben startet, somit kann die Matrix mit Nullen bestückt werden. Somit ergibt sich für die Kovarianzmatrix
+
+\begin{equation}
+{P_0 }=
+\left(
+\begin{array}{ccc}
+0 & 0 &0 \\
+0 &0 & 0 \\
+0 & 0 &0 \\
+\end{array}
+\right).
+\end{equation}
+Diese Matrix beschreibt die Unsicherheit des geschätzten Zustandes und wird sowohl für die Vorhersage als auch die Korrektur benötigt. Sie wird nach jeder Schätzung aktualisiert.. Für einen gut bekannten Zustandsvektor können kleine Werte eingesetzt werden, für ungenaue Anfangsbedingungen sollten grosse Werte (1 Million) verwendet werden. Grosse Werte ermöglichen dem Filter sich schnell einzupendeln.
+
+
+\subsubsection*{Dynamikmatrix $A$}
+Die Dynamikmatrix bildet den Kern des Filters. Diese wurde weiter oben Bereits beschrieben. Dabei wollen wird die äussere Kraft des Systems ermitteln.
+Da nichts über die äussere Kraft bekannt ist, müssen wir annehmen das deren Ableitung 0 ist.
+Die System Vektor-Gleichung lautet daher:
+
+
+\begin{equation}
+A = \left(
+ \begin{array}{ccc}
+0 & 1& 0 \\
+- \frac{D}{m} &-\frac{2k}{m} & \frac{1} {m}\\
+0 & 0& 0\\
+\end{array}\right)
+\end{equation}
+
+\subsubsection*{Prozessrauschkovarianzmatrix $Q$}
+Die Prozessrauschmatrix teilt dem Filter mit, wie sich der Systemzustand verändert. Kalman-Filter berücksichtigen Unsicherheiten wie Messfehler und -rauschen. Bei unserem Modell könnte das beispielsweise ein Windstoss an die Masse sein. Für uns wäre dies:
+\begin{equation}
+Q = \left(
+ \begin{array}{ccc}
+{\sigma_x }^2& 0& 0 \\
+0 & {\sigma_v }^2& 0\\
+0 & 0& {\sigma_f }^2\\
+\end{array}\right)
+\end{equation}
+
+Die Standabweichungen müssten Statistisch ermittelt werden, da der Fehler nicht vom Sensor kommt und somit nicht vom Hersteller gegeben ist. Das Bedeutet wiederum dass $Q$ die Unsicherheit des Prozesses beschreibt, und die Messung.
+
+\subsubsection*{Messmatrix $H$}
+Die Messmatrix gibt an, welcher Parameter gemessen werden soll. In unserem Fall ist es nur die Position der Massen.
+
+\[ H = (1, 0, 0) \]
+
+
+\subsubsection*{Messrauschkovarianz $R$}
+Die Messrauschkovarianzmatrix beinhaltet, wie der Name es schon sagt, das Rauschen der Positionssensoren. In unserem Fall wird nur die Position der Masse gemessen. Da wir keine anderen Sensoren haben ist dies lediglich:
+\begin{equation}
+R= ({\sigma_x}^2).
+\end{equation}
+Diese Messrauchen wird meistens vom Sensorhersteller angegeben. Für unsere Theoretische Apparatur wird hier ein kleiner Fehler eingesetzt.
+
+\subsection{Fiter Algorithmus}
+Nachdem alle Parameter aufgestellt sind, wird der Filter initialisiert und wird den Zustand der Feder vorherzusagen, die Messung zu präzisieren und laufend zu aktualisieren. Das Filter berechnet aufgrund der aktuellen Schätzung eine Vorhersage. Diese wird, sobald verfügbar, mit der Messung verglichen. Aus dieser Differenz und den Unsicherheiten des Prozesses ($Q$) und der Messung ($R$) wird der wahrscheinlichste, neue Zustand geschätzt.
+
+
+\subsubsection*{Vorhersage}
+Im Filterschritt Vorhersage wird der nächste Zustand anhand des Anfangszustand und der Systemmatrix berechnet. Dies funktioniert ganz Trivial mit dem Rechenschritt:
+\begin{equation}
+{x_{t+1}}=A\cdot{x_t}.
+\end{equation}
+
+
+Die Kovarianz $P_{pred}$ wird ebenfalls neu berechnet, da die Unsicherheit im Vorhersage grösser wird als im Aktuellen. Da wir ein mehrdimensionales System haben, kommt noch die Messunsicherheit $Q$ dazu, so dass die Unsicherheit des Anfangsfehlers $P$ immer grösser wird. Dies funktioniert durch multiplizieren der Systemmatrix, deren Ableitung und mit dem aktualisierten Anfangsfehler. Dazu wird noch die Messunsicherheit addiert, somit entsteht die Gleichung
+
+\begin{equation}
+{P_{pred}}=APA^T+Q.
+\end{equation}
+
+wird dieser Vorgang wiederholt, schaut der Filter wie genau die letzte Anpassung von $P$ zur Messung stimmt. Ist der Unterschied klein, wird die Kovarianz $P$ kleiner, ist der Unterschied gross, wird auch die Kovarianz grösser. Das Filter passt sich selber an und korrigiert sich bei grosser Abweichung.
+
+\subsubsection*{Messen}
+Der Sensor wurde noch nicht benutz, doch genau der liefert Werte für den Filter. Die aktuellen Messwerte $z$ werden die Innovation $w$ mit dem Zustandsvektor $x$ und der Messmatrix $H$ zusammengerechnet.
+Hier bei wird lediglich die Messung mit dem Fehler behaftet, und die Messmatrix $H$
+\begin{equation}
+w=Z-(H\cdot x)
+\end{equation}
+Die Innovation ist der Teil der Messung, die nicht durch die Systemdynamik erklärt werden kann.
+Innovation = Messung - Vorhersage. Dies ist Intuitiv logisch, eine Innovation von 0 bedeutet, dass die Messung nichts Neues hervorbrachte.
+
+Im nächsten Schritt wir analysiert, mit welcher Kovarianz weiter gerechnet wird.
+
+\subsubsection*{Korrigieren}
+Udpdate
+\section{Anfügen der Schwingung}
+
+Ein Erdbeben breitet sich im Boden wellenartig aus und bringt Objekte, wie zum Beispiel ein Gebäude, in Schwingung.
+Diese Schwingungen pflanzen sich im Gebäude mit gleicher Amplitude, Geschwindigkeit und Beschleunigung in horizontaler und vertikaler Bewegung fort.
+Wir möchten herauszufinden, wie gross die Massenbeschleunigung infolge eines Erdbeben ist.
+Mit Hilfe von fiktiven Sensoren, die eine Ortsveränderung des Gebäude messen, können wir mit Anwendung von Matrizen und dem Kalman-Filter die Beschleunigung berechnen.
+
\begin{equation}
\int_a^b x^2\, dx
=
@@ -21,35 +245,20 @@ voluptatem sequi nesciunt
\frac{b^3-a^3}3.
\label{erdbeben:equation1}
\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{erdbeben:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{erdbeben:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{erdbeben:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
+
+\section{Erreger-Schwingung}
+Wir möchten mit einer gedämpften harmonischen Schwingung ein einfaches Erdbeben simulieren, die im Kalman Filter eingespeist wird.
+Die Gleichung lautet
+
+\begin{equation}
+x(t)=Ae^{t/2}sin(t).
+\end{equation}
+
+Mit dieser Schwingung können wir ein einachsiger Seismograph simulieren, der eine Ortsverschiebung auf der x-Achse durchführt.
+Die Dämpfung der Schwingung ist relevant, da das System beim Schwingungsvorgang durch die Federkonstante und der Reibung, Energie verliert.
+
+Die Ergebnisse dieser Schwingung setzen wir in die Messmatrix ein und können den Kalman-Filter starten.
+
+
diff --git a/buch/papers/punktgruppen/Makefile.inc b/buch/papers/punktgruppen/Makefile.inc
index 7c6e70d..b6a76c1 100644
--- a/buch/papers/punktgruppen/Makefile.inc
+++ b/buch/papers/punktgruppen/Makefile.inc
@@ -3,12 +3,12 @@
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-dependencies-punktgruppen = \
- papers/punktgruppen/packages.tex \
- papers/punktgruppen/main.tex \
- papers/punktgruppen/references.bib \
- papers/punktgruppen/teil0.tex \
- papers/punktgruppen/teil1.tex \
- papers/punktgruppen/teil2.tex \
- papers/punktgruppen/teil3.tex
+dependencies-punktgruppen = \
+ papers/punktgruppen/packages.tex \
+ papers/punktgruppen/main.tex \
+ papers/punktgruppen/intro.tex \
+ papers/punktgruppen/symmetry.tex \
+ papers/punktgruppen/crystals.tex \
+ papers/punktgruppen/piezo.tex \
+ papers/punktgruppen/references.bib
diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex
new file mode 100644
index 0000000..6de2bca
--- /dev/null
+++ b/buch/papers/punktgruppen/crystals.tex
@@ -0,0 +1,16 @@
+\section{Kristalle}
+Unter dem Begriff Kristall sollte sich jeder ein Bild machen können.
+Wir werden uns aber nicht auf sein Äusseres fokussieren, sondern was ihn im Inneren ausmacht.
+Die Innereien eines Kristalles sind glücklicherweise relativ einfach definiert.
+\begin{definition}[Kristall]
+ Ein Kristall besteht aus Atomen, welche sich in einem Muster arrangieren, welches sich in drei Dimensionen periodisch wiederholt.
+\end{definition}
+
+
+Ein Zweidimensionales Beispiel eines solchen Muster ist Abbildung \ref{fig:punktgruppen:lattce-grid}.
+Für die Überschaubarkeit haben wir ein simples Muster eines einzelnen XgrauenX Punktes gewählt in nur Zwei Dimensionen.
+Die eingezeichneten Vektoren a und b sind die kleinstmöglichen Schritte im Raum bis sich das Kristallgitter wiederholt.
+Dadurch können von einem einzelnen XGrauenX Gitterpunkt in \ref{fig:punktgruppen:lattce-grid} können mit einer ganzzahligen Linearkombination von a und b alle anderen Gitterpunkte des Kristalles erreicht werden.
+Ein Kristallgitter kann eindeutig mit a und b und deren winkeln beschrieben werden weswegen a und b auch Gitterparameter genannt werden.
+Im Dreidimensionalen-Raum können alle Gitterpunkte mit derselben Idee und einem zusätzlichen Vektor also FRMEL FÜR TRANSLATIONSVEKTOR erreicht werden.
+Da sich das Ganze Kristallgitter wiederholt, wiederholen sich auch die Eigenschaften eines Gitterpunktes Periodisch mit eiem
diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex
new file mode 100644
index 0000000..10dea79
--- /dev/null
+++ b/buch/papers/punktgruppen/intro.tex
@@ -0,0 +1,10 @@
+\section{Einleitung}
+Es gibt viele möglichkeiten sich in Kristallen zu verlieren.
+Auch wen man nur die Mathematischen möglichkeiten in betracht zieht, hat man noch viel zu viele Möglichkeiten sich mit kristallen zu beschäftigen.
+In diesem Articel ist daher der Fokus "nur" auf die Symmetrie gelegt.
+Im Abschitt über Symmetrien werden wir sehen, wie eine Symmetrie eines Objektes weit
+2.ter versuch:
+Die Kristallographie ist ein grosses Thema, Symmetrien auch.
+Für beide bestehen schon bewährte Mathematische Modelle und Definitionen.
+Die
+
diff --git a/buch/papers/punktgruppen/main.tex b/buch/papers/punktgruppen/main.tex
index fc91913..d88e221 100644
--- a/buch/papers/punktgruppen/main.tex
+++ b/buch/papers/punktgruppen/main.tex
@@ -3,34 +3,19 @@
%
% (c) 2020 Hochschule Rapperswil
%
-\chapter{Thema\label{chapter:punktgruppen}}
-\lhead{Thema}
+\chapter{Crystal M\rotatebox[origin=c]{180}{a}th\label{chapter:punktgruppen}}
+\lhead{Crystal M\rotatebox[origin=c]{180}{a}th}
\begin{refsection}
-\chapterauthor{Hans Muster}
+\chapterauthor{Tim T\"onz, Naoki Pross}
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
+\input{papers/punktgruppen/intro}
+\input{papers/punktgruppen/symmetry}
+\input{papers/punktgruppen/crystals}
+\input{papers/punktgruppen/piezo}
-\input{papers/punktgruppen/teil0.tex}
-\input{papers/punktgruppen/teil1.tex}
-\input{papers/punktgruppen/teil2.tex}
-\input{papers/punktgruppen/teil3.tex}
+\nocite{punktgruppen:pinter-algebra}
+\nocite{punktgruppen:sands-crystal}
+\nocite{punktgruppen:lang-elt2}
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/punktgruppen/packages.tex b/buch/papers/punktgruppen/packages.tex
index 971bcfe..a6efdbf 100644
--- a/buch/papers/punktgruppen/packages.tex
+++ b/buch/papers/punktgruppen/packages.tex
@@ -4,7 +4,4 @@
% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-% if your paper needs special packages, add package commands as in the
-% following example
-%\usepackage{packagename}
-
+\usepackage{dsfont}
diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex
new file mode 100644
index 0000000..7ee4174
--- /dev/null
+++ b/buch/papers/punktgruppen/piezo.tex
@@ -0,0 +1 @@
+\section{Piezoelektrizit\"at}
diff --git a/buch/papers/punktgruppen/references.bib b/buch/papers/punktgruppen/references.bib
index aa7eb14..9edb8bd 100644
--- a/buch/papers/punktgruppen/references.bib
+++ b/buch/papers/punktgruppen/references.bib
@@ -4,32 +4,32 @@
% (c) 2020 Autor, Hochschule Rapperswil
%
-@online{punktgruppen:bibtex,
- title = {BibTeX},
- url = {https://de.wikipedia.org/wiki/BibTeX},
- date = {2020-02-06},
- year = {2020},
- month = {2},
- day = {6}
+@book{punktgruppen:pinter-algebra,
+ title = {A Book of Abstract Algebra},
+ author = {Charles C. Pinter},
+ publisher = {Dover Publications Inc.; 2. Edition},
+ year = {2010},
+ month = {1},
+ day = {10},
+ isbn = {978-0-486-47417-5},
+ inseries = {Dover Books on Mathematics},
}
-@book{punktgruppen:numerical-analysis,
- title = {Numerical Analysis},
- author = {David Kincaid and Ward Cheney},
- publisher = {American Mathematical Society},
- year = {2002},
- isbn = {978-8-8218-4788-6},
- inseries = {Pure and applied undegraduate texts},
- volume = {2}
+@book{punktgruppen:sands-crystal,
+ title = {Introduction to Crystallography},
+ author = {Donald E. Sands},
+ publisher = {Dover Publications Inc.},
+ year = {1993},
+ isbn = {978-0-486-67839-9},
+ inseries = {Dover Books on Science},
}
-@article{punktgruppen:mendezmueller,
- author = { Tabea Méndez and Andreas Müller },
- title = { Noncommutative harmonic analysis and image registration },
- journal = { Appl. Comput. Harmon. Anal.},
- year = 2019,
- volume = 47,
- pages = {607--627},
- url = {https://doi.org/10.1016/j.acha.2017.11.004}
+@book{punktgruppen:lang-elt2,
+ title = {Elektrotechnik 2},
+ author = {Hans-Dieter Lang},
+ publisher = {Fachhochschule Ostschweiz Rapperswil},
+ year = {2020},
+ month = {2},
+ inseries = {Vorlesungsskript zum Modul ELT},
}
diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex
new file mode 100644
index 0000000..db05ff5
--- /dev/null
+++ b/buch/papers/punktgruppen/symmetry.tex
@@ -0,0 +1,182 @@
+\section{Symmetrie}
+Das Wort Symmetrie ist sehr alt und hat sich seltsamerweise von seinem
+ursprünglichen griechischen Wort
+\(\mathrm{\sigma\nu\mu\mu\varepsilon\tau\rho\iota\alpha}\)
+\footnote{\emph{Simmetr\'ia}: ein gemeinsames Mass habend, gleichmässig,
+verhältnismässig} fast nicht verändert. In der Alltagssprache mag es ein
+locker definierter Begriff sein, aber in der Mathematik hat Symmetrie eine sehr
+präzise Bedeutung.
+\begin{definition}[Symmetrie]
+ Ein mathematisches Objekt wird als symmetrisch bezeichnet, wenn es unter einer
+ bestimmten Operation invariant ist.
+\end{definition}
+
+Wenn der Leser noch nicht mit der Gruppentheorie in Berührung gekommen ist, ist
+vielleicht nicht ganz klar, was eine Operation ist, aber die Definition sollte
+trotzdem Sinn machen. Die Formalisierung dieser Idee wird bald kommen, aber
+zunächst wollen wir eine Intuition aufbauen.
+
+\begin{figure}[h]
+ \centering
+ \begin{tikzpicture}[
+ node distance = 2cm,
+ shapetheme/.style = {
+ very thick, draw = black, fill = magenta!20!white,
+ minimum size = 2cm,
+ },
+ line/.style = {thick, draw = darkgray},
+ axis/.style = {line, dashed},
+ dot/.style = {
+ circle, draw = darkgray, fill = darkgray,
+ minimum size = 1mm, inner sep = 0, outer sep = 0,
+ },
+ ]
+
+ \node[
+ shapetheme,
+ rectangle
+ ] (R) {};
+ \node[dot] at (R) {};
+ \draw[axis] (R) ++(-1.5, 0) to ++(3, 0) node[right] {\(\sigma\)};
+
+ \node[
+ shapetheme,
+ regular polygon,
+ regular polygon sides = 5,
+ right = of R,
+ ] (Ps) {};
+ \node[dot] (P) at (Ps) {};
+ \draw[line, dotted] (P) to ++(18:1.5);
+ \draw[line, dotted] (P) to ++(90:1.5);
+ \draw[line, ->] (P) ++(18:1.2)
+ arc (18:90:1.2) node[midway, above right] {\(r, 72^\circ\)};
+
+ \node[
+ shapetheme,
+ circle, right = of P
+ ] (Cs) {};
+ \node[dot] (C) at (Cs) {};
+ \draw[line, dotted] (C) to ++(1.5,0);
+ \draw[line, dotted] (C) to ++(60:1.5);
+ \draw[line, ->] (C) ++(1.2,0)
+ arc (0:60:1.2) node[midway, above right] {\(r, \alpha\)};
+
+ \end{tikzpicture}
+ \caption{
+ Beispiele für geometrisch symmetrische Formen.
+ \label{fig:punktgruppen:geometry-example}
+ }
+\end{figure}
+
+Die intuitivsten Beispiele kommen aus der Geometrie, daher werden wir mit
+einigen geometrischen Beispielen beginnen. Wie wir jedoch später sehen werden,
+ist das Konzept der Symmetrie eigentlich viel allgemeiner. In Abbildung
+\ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die
+offensichtlich symmetrisch sind. Zum Beispiel hat ein Quadrat viele Achsen, um
+die es gedreht werden kann, ohne sein Aussehen zu verändern. Regelmässige
+Polygone mit \(n\) Seiten sind gute Beispiele, um eine diskrete
+Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um
+einen Punkt um einen bestimmten Winkel \(360^\circ/n\) sie unverändert lässt.
+Das letzte Beispiel auf der rechten Seite ist eine unendliche
+Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für
+\(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. Dies ist
+hoffentlich ausreichend, um die Bedeutung hinter der Notation zu verstehen, die
+nun eingeführt wird.
+
+\begin{definition}[Symmetriegruppe]
+ Sei \(g\) eine Operation, die ein mathematisches Objekt unverändert lässt.
+ Bei einer anderen Operation \(h\) definieren wir die Komposition \(h\circ g\)
+ als die Anwendung der Operationen nacheinander. Alle Operationen bilden unter
+ Komposition eine Gruppe, die Symmetriegruppe genannt wird.
+\end{definition}
+
+Mit dem oben Gesagten können wir das \(n\)-Gon Beispiel formalisieren. Wenn wir
+\(r\) eine Drehung von \(2\pi/n\) sein lassen, gibt es eine wohlbekannte Symmetriegruppe
+\[
+ C_n = \langle r \rangle
+ = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\}
+ = \mathbb{Z}/n\mathbb{Z},
+\]
+die Zyklische Gruppe heisst. Hier die Potenzen von \(r\) sind als wiederholte
+Komposition gemeint, d.h. \(r^n = r\circ r \circ \cdots r\circ r\). Die
+Schreibweise mit den spitzen Klammern wird als Erzeugendensystem bezeichnet.
+Das liegt daran, dass alle Elemente der Symmetriegruppe aus Kombinationen einer
+Teilmenge erzeugt werden, die als erzeugende Elemente bezeichnet werden. Die
+Reflexionssymmetriegruppe ist nicht so interessant, da sie nur
+\(\left\{\mathds{1}, \sigma\right\}\) enthält. Kombiniert man sie jedoch mit
+der Rotation, erhält man die so genannte Diedergruppe
+\[
+ D_n = \langle r, \sigma : r^{n-1} = \sigma^2 = (\sigma r)^2 = \mathds{1} \rangle
+ = \left\{
+ \mathds{1}, r, \ldots, r^{n-1}, \sigma, \sigma r, \ldots, \sigma r^{n-1}
+ \right\}.
+\]
+Diesmal muss die Generator-Notation die Beziehungen zwischen den beiden
+Operationen beinhalten. Die ersten beiden sind leicht zu erkennen, für die
+letzte empfehlen wir, sie an einem 2D-Quadrat auszuprobieren.
+
+Wir haben nun unseren Operationen Symbole gegeben, mit denen es tatsächlich
+möglich ist, eine nicht kommutative Algebra zu erstellen. Die naheliegende
+Frage ist dann, könnte es sein, dass wir bereits etwas haben, das dasselbe tut?
+Natürlich, ja. Dafür führen wir den Begriff der Darstellung ein.
+\begin{definition}[Darstellung einer Gruppe, Gruppenhomomorphismus]
+ Seien \(G\) und \(H\) Gruppe mit unterschiedlicher Operation \(\diamond\)
+ bzw. \(\star\). Ein Homomorphismus\footnote{ Für eine ausführlichere
+ Diskussion siehe \S\ref{buch:grundlagen:subsection:gruppen} im Buch.} ist
+ eine Funktion \(f: G \to H\), so dass für jedes \(a, b \in G\) gilt
+ \(f(a\diamond b) = f(a) \star f(b)\). Man sagt, dass der Homomorphismus
+ \(f\) \(G\) in \(H\) transformiert, oder dass \(H\) eine Darstellung von
+ \(G\) ist.
+\end{definition}
+\begin{beispiel}
+ Die Elemente \(r^k \in C_n\), wobei \(0 < k < n\), stellen abstrakt eine
+ Drehung von \(2\pi k/n\) um den Ursprung dar. Die mit der Matrix
+ \[
+ \Phi(r^k) = \begin{pmatrix}
+ \cos(2\pi k/n) & -\sin(2\pi k/n) \\
+ \sin(2\pi k/n) & \cos(2\pi k/n)
+ \end{pmatrix}
+ \]
+ definierte Funktion von \(C_n\) nach \(O(2)\) ist eine Darstellung von
+ \(C_n\). In diesem Fall ist die erste Gruppenoperation die Komposition und
+ die zweite die Matrixmultiplikation. Man kann überprüfen, dass \(\Phi(r^2
+ \circ r) = \Phi(r^2)\Phi(r)\).
+\end{beispiel}
+\begin{beispiel}
+ Die Rotationssymmetrie des Kreises \(C_\infty\), mit einem unendlichen
+ Kontinuum von Werten \(\alpha \in \mathbb{R}\), entspricht perfekt dem
+ komplexen Einheitskreis. Der Homomorphismus \(\phi: C_\infty \to \mathbb{C}\)
+ ist durch die Eulersche Formel \(\phi(r) = e^{i\alpha}\) gegeben.
+\end{beispiel}
+
+Die Symmetrien, die wir bis jetzt besprochen haben, haben immer mindestens
+einen Punkt unbesetzt gelassen. Im Fall der Rotation war es der Drehpunkt, bei
+der Spiegelung die Achse. Dies ist jedoch keine Voraussetzung für eine
+Symmetrie, da es Symmetrien gibt, die jeden Punkt zu einem anderen Punkt
+verschieben können. Ein aufmerksamer Leser wird bemerken, dass die
+unveränderten Punkte zum Eigenraum\footnote{Zur Erinnerung \(E_\lambda =
+\mathrm{null}(\Phi - \lambda I)\), \(\vec{v}\in E_\lambda \implies \Phi \vec{v}
+= \lambda\vec{v}\)} der Matrixdarstellung der Symmetrieoperation gehören.
+Diesen Spezialfall, bei dem mindestens ein Punkt unverändert bleibt, nennt man
+Punktsymmetrie.
+\begin{definition}[Punktgruppe]
+ Wenn jede Operation in einer Symmetriegruppe die Eigenschaft hat, mindestens
+ einen Punkt unverändert zu lassen, sagt man, dass die Symmetriegruppe eine
+ Punktgruppe ist.
+\end{definition}
+Um das Konzept zu illustrieren, werden wir den umgekehrten Fall diskutieren:
+eine Symmetrie, die keine Punktsymmetrie ist, die aber in der Physik sehr
+nützlich ist, nämlich die Translationssymmetrie. Von einem mathematischen
+Objekt \(U\) wird gesagt, dass es eine Translationssymmetrie \(Q(x) = x + a\)
+hat, wenn es die Gleichung
+\[
+ U(x) = U(Q(x)) = U(x + a),
+\]
+für ein gewisses \(a\), erfüllt. Zum Beispiel besagt das erste Newtonsche
+Gesetz, dass ein Objekt, auf das keine Kraft einwirkt, eine
+zeitranslationsinvariante Geschwindigkeit hat, d.h. wenn \(\vec{F} = \vec{0}\)
+dann \(\vec{v}(t) = \vec{v}(t + \tau)\).
+
+% \subsection{Sch\"onflies notation}
+
+% vim:ts=2 sw=2 spell spelllang=de:
diff --git a/buch/papers/punktgruppen/teil0.tex b/buch/papers/punktgruppen/teil0.tex
deleted file mode 100644
index 5a8278e..0000000
--- a/buch/papers/punktgruppen/teil0.tex
+++ /dev/null
@@ -1,22 +0,0 @@
-%
-% einleitung.tex -- Beispiel-File für die Einleitung
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 0\label{punktgruppen:section:teil0}}
-\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{punktgruppen:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
-
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
-
-
diff --git a/buch/papers/punktgruppen/teil1.tex b/buch/papers/punktgruppen/teil1.tex
deleted file mode 100644
index 228af33..0000000
--- a/buch/papers/punktgruppen/teil1.tex
+++ /dev/null
@@ -1,55 +0,0 @@
-%
-% teil1.tex -- Beispiel-File für das Paper
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 1
-\label{punktgruppen:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{punktgruppen:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{punktgruppen:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{punktgruppen:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{punktgruppen:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
-
-
diff --git a/buch/papers/punktgruppen/teil2.tex b/buch/papers/punktgruppen/teil2.tex
deleted file mode 100644
index b48e785..0000000
--- a/buch/papers/punktgruppen/teil2.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{punktgruppen:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{punktgruppen:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/punktgruppen/teil3.tex b/buch/papers/punktgruppen/teil3.tex
deleted file mode 100644
index 94abd74..0000000
--- a/buch/papers/punktgruppen/teil3.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil3.tex -- Beispiel-File für Teil 3
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 3
-\label{punktgruppen:section:teil3}}
-\rhead{Teil 3}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{punktgruppen:subsection:malorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/spannung/Einleitung.tex b/buch/papers/spannung/Einleitung.tex
new file mode 100644
index 0000000..0cb1433
--- /dev/null
+++ b/buch/papers/spannung/Einleitung.tex
@@ -0,0 +1,89 @@
+\section{Einleitung\label{spannung:section:Einleitung}}
+\rhead{Einleitung}
+Das Hook'sche Gesetz beschreibt die Beziehung von Spannung und Dehnung von linear-elastischen Materialien im Eindimensionalen.
+In diesem Kapitel geht es darum das Hook'sche Gesetz im Dreidimensionalen zu beschreiben.
+Durch variable Krafteinwirkungen entstehen in jedem Punkt des Materials eine Vielzahl an unterschiedlichen Spannungen.
+In jedem erdenklichen Punkt im Dreidimensionalen herrscht daher ein entsprechender individueller Spannungszustand.
+Um das Hook'sche Gesetz für den 3D Spannungszustand formulieren zu können, reichen Skalare nicht aus.
+Darum werden Vektoren, Matrizen und Tensoren zur Hilfe gezogen.
+Mit diesen lässt sich eine Spannungsformel für den 3D Spannungszustand bilden.
+Diese Spannungsformel ist Grundlage für Computerprogramme und geotechnische Versuche, wie der Oedometer-Versuch.
+
+Um die mathematische Untersuchung vorzunehmen, beschäftigt man sich zuerst mit den spezifischen Gegebenheiten und Voraussetzungen.
+Ebenfalls gilt es ein paar wichtige Begriffe und deren mathematischen Zeichen einzuführen.
+In diesem Kapitel gehen wir auch auf die Zusammenhänge von Spannung, Dehnungen und Verformungen an elastischen Materialien ein,
+wie sie in gängigen Lehrbüchern der Mechanik oder der Geotechnik behandelt werden, z.~B.~\cite{spannung:Grundlagen-der-Geotechnik}.
+
+\section{Spannungsausbreitung\label{spannung:section:Spannungsausbreitung}}
+\rhead{Spannungsausbreitung}
+Die Geotechnik ist eine Ingenieurdisziplin, bei welcher man Erdbau und den Erdbau tangierende Bauwerke dimensioniert.
+Sie beinhaltet aber auch die statische Beurteilung von Boden und Fels.
+
+Belastet man den Boden mit einer Spannung
+\[
+\sigma
+=
+\frac{F}{A}
+,
+\]
+so wird diese in den Boden geleitet und von diesem kompensiert.
+Im Boden entstehen unterschiedlich hohe Zusatzspannungen.
+Diese Zusatzspannung breitet sich räumlich im Boden aus.
+Im Falle einer konstanten Flächenlast $\sigma$ (siehe Abbildung 1.1) breitet sich die Zusatzspannung zwiebelartig aus.
+
+\begin{figure}
+ \centering
+ \includegraphics[width=0.4\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild4.png}
+ \caption{Ausbreitung der Zusatzspannung im Boden infolge einfacher Flächenlast}
+ \label{fig:Bild4}
+\end{figure}
+
+Mit der Tiefe $t$ nimmt diese permanent ab (siehe Abbildung 1.2).
+Wie diese Geometrie der Ausbreitung ist, kann durch viele Modelle und Ansätze näherungsweise beschrieben werden.
+Diese Zusatzspannung $\sigma$ ist im Wesentlichen abhängig von $(x,y,t)$.
+Je nach Modell werden noch andere Parameter berücksichtigt.
+Das können beispielsweise jenste Bodenkennwerte oder auch der Wassergehalt sein.
+
+\begin{figure}
+ \centering
+ \includegraphics[width=0.35\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild5.png}
+ \caption{Funktionen der Spannung und Dehnung im Zusammenhang mit der Tiefe}
+ \label{fig:Bild5}
+\end{figure}
+
+Bei jeder dieser Zusatzspannung geht eine entsprechende Zusatzdehnung des Bodens einher, welche eine Setzung bedeutet.
+Im einfachsten Fall kann modellhaft mit
+\[
+\varepsilon
+=
+\frac{\sigma}{E}
+\]
+die Setzung an einem Punkt an der Bodenoberfläche mit
+\[
+s
+=
+\int_{0}^{\infty}\varepsilon\enspace dt
+\]
+berechnet werden mit:
+\begin{align*}
+ \varepsilon &= \text{Dehnung [$-$]} \\
+ \sigma &= \text{Spannung [\si{\kilo\pascal}]} \\
+ E &= \text{Elastizitätsmodul; Young-Modul [\si{\kilo\pascal}]}\\
+ t &= \text{Tiefe [\si{\meter}]} \\
+ s &= \text{Setzung, Absenkung [m].}
+\end{align*}
+Diese Zusammenhänge sind wie erwähnt unter anderem im Lehrbuch [\cite{spannung:Grundlagen-der-Geotechnik}] beschrieben.
+In der praktischen Geotechnik wird man allerdings weitaus schwierigere Situationen antreffen.
+Ein Beispiel wäre eine Baugrube mit einem Baugrubenabschluss, wo ein Teil des Bodens abgetragen ist (siehe Abbildung 1.3).
+Die Ausbreitung der Zusatzspannung $\sigma(x,y,t)$ würde hier deutlich komplizierter ausfallen.
+Dies bedeutet auch eine komplexere Setzung der Bodenoberfläche infolge einer Flächenlast $\sigma$.
+Aus allen zusätzlichen Spannungen müssen die adäquaten Dehnungen mit Hilfe einer Spannungsgleichung berechnet werden.
+Diese beruht auf Annahmen nach Hooke auf einem linear-elastischen Boden.
+Generell wird im Ingenieurwesen versucht Phänomene möglichst nach dem Hook'schen Gesetz abbilden zu können.
+
+\begin{figure}
+ \centering
+ \includegraphics[width=0.45\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild3.png}
+ \caption{Beispiel eines Lastauftrags auf den Boden bei einer komplexeren Situation, welches kompliziertere Spannungsausbreitung zur Folge hat}
+ \label{fig:Bild3}
+\end{figure}
diff --git a/buch/papers/spannung/Grafiken/Bild1.png b/buch/papers/spannung/Grafiken/Bild1.png
new file mode 100644
index 0000000..32b627e
--- /dev/null
+++ b/buch/papers/spannung/Grafiken/Bild1.png
Binary files differ
diff --git a/buch/papers/spannung/Grafiken/Bild2.png b/buch/papers/spannung/Grafiken/Bild2.png
new file mode 100644
index 0000000..d1321a4
--- /dev/null
+++ b/buch/papers/spannung/Grafiken/Bild2.png
Binary files differ
diff --git a/buch/papers/spannung/Grafiken/Bild3.png b/buch/papers/spannung/Grafiken/Bild3.png
new file mode 100644
index 0000000..8ca72a1
--- /dev/null
+++ b/buch/papers/spannung/Grafiken/Bild3.png
Binary files differ
diff --git a/buch/papers/spannung/Grafiken/Bild4.png b/buch/papers/spannung/Grafiken/Bild4.png
new file mode 100644
index 0000000..526ee7b
--- /dev/null
+++ b/buch/papers/spannung/Grafiken/Bild4.png
Binary files differ
diff --git a/buch/papers/spannung/Grafiken/Bild5.png b/buch/papers/spannung/Grafiken/Bild5.png
new file mode 100644
index 0000000..6ee004d
--- /dev/null
+++ b/buch/papers/spannung/Grafiken/Bild5.png
Binary files differ
diff --git a/buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.png b/buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.png
new file mode 100644
index 0000000..31505bd
--- /dev/null
+++ b/buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.png
Binary files differ
diff --git a/buch/papers/spannung/Grafiken/infinitesimalerWuerfel.png b/buch/papers/spannung/Grafiken/infinitesimalerWuerfel.png
new file mode 100644
index 0000000..2c359e6
--- /dev/null
+++ b/buch/papers/spannung/Grafiken/infinitesimalerWuerfel.png
Binary files differ
diff --git a/buch/papers/spannung/main.tex b/buch/papers/spannung/main.tex
index 585a423..bbdf730 100644
--- a/buch/papers/spannung/main.tex
+++ b/buch/papers/spannung/main.tex
@@ -4,33 +4,18 @@
% (c) 2020 Hochschule Rapperswil
%
\chapter{Thema\label{chapter:spannung}}
-\lhead{Thema}
+\lhead{Dreiachsiger Spannungszustand}
\begin{refsection}
\chapterauthor{Adrian Schuler und Thomas Reichlin}
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
+% TODO Text
+\input{papers/spannung/Einleitung.tex}
\input{papers/spannung/teil0.tex}
\input{papers/spannung/teil1.tex}
\input{papers/spannung/teil2.tex}
\input{papers/spannung/teil3.tex}
+\input{papers/spannung/teil4.tex}
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/spannung/references.bib b/buch/papers/spannung/references.bib
index ed5703c..02f8d09 100644
--- a/buch/papers/spannung/references.bib
+++ b/buch/papers/spannung/references.bib
@@ -4,27 +4,46 @@
% (c) 2020 Autor, Hochschule Rapperswil
%
-@online{spannung:bibtex,
- title = {BibTeX},
- url = {https://de.wikipedia.org/wiki/BibTeX},
- date = {2020-02-06},
- year = {2020},
- month = {2},
+@online{spannung:Tensor,
+ title = {Tensor},
+ url = {https://de.wikipedia.org/wiki/Tensor},
+ date = {2021-05-29},
+ year = {2021},
+ month = {5},
day = {6}
}
-@book{spannung:numerical-analysis,
- title = {Numerical Analysis},
- author = {David Kincaid and Ward Cheney},
- publisher = {American Mathematical Society},
- year = {2002},
- isbn = {978-8-8218-4788-6},
- inseries = {Pure and applied undegraduate texts},
- volume = {2}
+@online{spannung:Voigtsche-Notation,
+ title = {Voigtsche Notation},
+ url = {https://de.wikipedia.org/wiki/Voigtsche_Notation},
+ date = {2021-05-29},
+ year = {2021},
+ month = {5},
+ day = {6}
+}
+
+@book{spannung:Grundlagen-der-Geotechnik,
+ title = {Grundlagen der Geotechnik},
+ author = {Hans-Henning Schmidt and Roland F. Buchmaier and Carola Vogt-Breyer},
+ publisher = {Springer Fachmedien Wiesbaden GmbH},
+ year = {2017},
+ isbn = {978-3-658-14930-7},
+ inseries = {Geotechnik nach Eurocode},
+ volume = {5}
+}
+
+@book{spannung:Stoffgesetze-und-numerische-Modellierung-in-der-Geotechnik,
+ title = {Stoffgesetze und numerische Modellierung in der Geotechnik},
+ author = {Carlo Rabaiotti and Alessio Höttges},
+ publisher = {Hochschule Rapperswil},
+ year = {2021},
+ isbn = {},
+ inseries = {},
+ volume = {}
}
@article{spannung:mendezmueller,
- author = { Tabea Méndez and Andreas Müller },
+ author = { Tabea Méndez and Andreas Müller },
title = { Noncommutative harmonic analysis and image registration },
journal = { Appl. Comput. Harmon. Anal.},
year = 2019,
diff --git a/buch/papers/spannung/teil0.tex b/buch/papers/spannung/teil0.tex
index cf47a18..ffc9009 100644
--- a/buch/papers/spannung/teil0.tex
+++ b/buch/papers/spannung/teil0.tex
@@ -1,22 +1,82 @@
-%
-% einleitung.tex -- Beispiel-File für die Einleitung
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 0\label{spannung:section:teil0}}
-\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{spannung:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
+\section{Der Spannungszustand\label{spannung:section:Der Spannungsustand}}
+\rhead{Der Spannungszustand}
+Ein Spannungszustand ist durch alle Spannungen, welche in einem beliebigen Punkt im Körper wirken, definiert (siehe Abbildung 1.4).
+Änderungen der äusseren Kräfte verändern die inneren Spannungszustände im Material.
+Um alle Spannungen eines Punktes darstellen zu können, wird ein infinitesimales Bodenelement in Form eines Würfels modellhaft vorgestellt.
+Man spricht auch von einem Elementarwürfel, da dieser elementar klein ist.
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
+\begin{figure}
+ \centering
+ \includegraphics[width=0.4\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild2.png}
+ \caption{Infinitesimales Bodenelement mit den 9 Spannungen}
+ \label{fig:Bild2}
+\end{figure}
+Es werden jeweils drei Seiten dieses Würfels betrachtet, wobei die drei gegenüberliegenden Seiten im Betrag die selben Spannungen aufweisen,
+sodass der Elementarwürfel im Gleichgewicht ist.
+Wäre dieses Gleichgewicht nicht vorhanden, käme es zu Verschiebungen und Drehungen.
+Das infinitesimale Bodenteilchen hat die Koordinaten $1$, $2$, $3$.
+Veränderungen der Normalspannungen können durch Schubspannungen kompensiert werden und umgekehrt.
+So sind insgesamt neun verschiedene Spannungen möglich, wobei drei Normal- und sechs Schubspannungen sind.
+Normalspannungen wirken normal (mit rechtem Winkel) zur angreifenden Fläche und Schubspannungen parallel zur angreifenden Fläche.
+Alle Beträge dieser neun Spannungen am Elementarwürfel bilden den Spannungszustand.
+Daraus können die äquivalenten Dehnungen $\varepsilon$ mit Hilfe des Hook'schen Gesetz berechnet werden.
+Daher gibt es auch den entsprechenden Dehnungszustand.
+
+\section{Spannungszustand\label{spannung:section:Spannungsustand}}
+\rhead{Spannungszustand}
+
+Im einachsigen Spannungszustand herrscht nur die Normalspannung $\sigma_{11}$ (siehe Abbildung 1.5).
+Das Hook'sche Gesetz beschreibt genau diesen 1D Spannungszustand.
+Nach Hooke gilt:
+\[
+F
+\sim
+\Delta l
+.
+\]
+Teilt man beide Seiten durch die Konstanten $A$ und $l_0$, erhält man
+\[
+\frac{F}{A}
+=
+\sigma
+\sim
+\varepsilon
+=
+\frac{\Delta l}{l_0}
+\]
+und somit
+\[
+\sigma
+\sim
+\varepsilon
+,
+\]
+mit
+\begin{align*}
+ l_0 &= \text{Länge zu Beginn [\si{\meter}]} \\
+ A &= \text{Fläche [\si{\meter\squared}].}
+\end{align*}
+Diese Beziehung gilt bei linear-elastischen Materialien, welche reversible Verformungen zulassen.
+Es ist praktisch die relative Dehnung $\varepsilon$ anzugeben und nicht eine absolute Längenänderung $\Delta l$.
+\begin{figure}
+ \centering
+ \includegraphics[width=0.35\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild1.png}
+ \caption{1D Spannungszustand aus einer quaderförmigen Bodenprobe}
+ \label{fig:Bild1}
+\end{figure}
+Mithilfe vom Elastizitätsmodul $E$ als Proportionalitätskonstante lässt sich der eindimensionale Fall mit
+\[
+\sigma
+=
+E\cdot\varepsilon
+\]
+beschreiben.
+Im Falle, dass $E$ nicht konstant ist, kann dieser näherungsweise durch
+\[
+E
+=
+\frac{\Delta\sigma}{\Delta\varepsilon}
+\]
+ausgedrückt werden. \ No newline at end of file
diff --git a/buch/papers/spannung/teil1.tex b/buch/papers/spannung/teil1.tex
index 95e6f0a..74516c1 100644
--- a/buch/papers/spannung/teil1.tex
+++ b/buch/papers/spannung/teil1.tex
@@ -1,55 +1,24 @@
-%
-% teil1.tex -- Beispiel-File für das Paper
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 1
-\label{spannung:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{spannung:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{spannung:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{spannung:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{spannung:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
+\section{Skalare, Vektoren, Matrizen und Tensoren\label{spannung:section:Skalare,_Vektoren,_Matrizen_und_Tensoren}}
+\rhead{Skalare, Vektoren, Matrizen und Tensoren}
+Der Begriff Tensor kann als Überbegriff, der mathematischen Objekte Skalar, Vektor und Matrix, betrachtet werden.
+Allerdings sind noch höhere Stufen dieser Objekte beinhaltet.
+Ein Skalar, ein Vektor oder eine Matrix ist daher auch ein Tensor.
+Ein Skalar ist ein Tensor 0. Stufe.
+Mit einem Vektor können mehrere Skalare auf einmal beschrieben werden.
+Ein Vektor hat daher die Stufe 1 und ist höherstufig als ein Skalar.
+Mit einer Matrix können wiederum mehrere Vektoren auf einmal beschrieben werden.
+Eine Matrix hat daher die Stufe 2 und ist noch höherstufig als ein Vektor.
+Versteht man diese Stufen, so versteht man den Sinn des Begriffs Tensor.
+Jede Stufe von Tensoren verlangt andere Rechenregeln.
+So zeigt sich auch der Nachteil von Tensoren mit Stufen höher als 2.
+Man ist also bestrebt höherstufige Tensoren mit Skalaren, Vektoren oder Matrizen zu beschreiben.
+Der Begriff Tensor wurde 1840 von Rowan Hamilton in die Mathematik eingeführt.
+James Clerk Maxwell hat bereits mit Tensoren operiert, ohne den Begriff Tensor gekannt zu haben.
+Erst Woldemar Voigt hat den Begriff in die moderne Bedeutung von Skalar, Matrix und Vektor verallgemeinert.
+Er hat in der Elastizitätstheorie als erstes Tensoren eingesetzt und beschrieben.
+Auch Albert Einstein hat solche Tensoren eingesetzt,
+um in der Relativitätstheorie die Änderung der 4D Raumzeit beschreiben zu können.
+\cite{spannung:Tensor}
+\cite{spannung:Voigtsche-Notation}
diff --git a/buch/papers/spannung/teil2.tex b/buch/papers/spannung/teil2.tex
index 37d3242..921d2b8 100644
--- a/buch/papers/spannung/teil2.tex
+++ b/buch/papers/spannung/teil2.tex
@@ -1,40 +1,491 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{spannung:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{spannung:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
+\section{Dreiachsiger Spannungszustand\label{spannung:section:Dreiachsiger_Spannungszustand}}
+\rhead{Dreiachsiger Spannungszustand}
+Durch komplexe Spannungsausbreitungen im Boden entstehen im 3D Spannungszustand unterschiedliche Normal- und Schubspannungen.
+\begin{figure}
+ \centering
+ \includegraphics[width=0.4\linewidth,keepaspectratio]{papers/spannung/Grafiken/infinitesimalerWuerfel.png}
+ \caption{Beispiel eines Spannungszustandes; Vergrösserung eines infinitesimalen Bodenteilchen}
+ \label{fig:infinitesimalerWuerfel}
+\end{figure}
+Ein Tensor 0. Stufe, sprich ein Skalar, kann lediglich den 1D Spannungszustand beschreiben.
+Um den 3D Spannungszustandes als ein mathematisches Objekt darstellen zu können, wird ein Tensor 2. Stufe, sprich eine Matrix, eingesetzt.
+Die Spannungen sind durch die zwei Indizes
+\[
+i, j\in\left\{1, 2, 3\right\}
+\]
+definiert.
+Daher ergeben sich die neun Spannungen.
+Die nachfolgenden Zusammenhänge sind in \cite{spannung:Voigtsche-Notation} beschrieben.
+Dieser Spannungstensor kann schliesslich mit $3^2$ Einträgen als $3\times3$ Matrix mit
+\[
+\overline{\sigma}
+=
+\sigma_{ij}
+=
+\begin{pmatrix}
+ \sigma_{11} & \sigma_{12} & \sigma_{13} \\
+ \sigma_{21} & \sigma_{22} & \sigma_{23} \\
+ \sigma_{31} & \sigma_{32} & \sigma_{33}
+\end{pmatrix}
+\]
+dargestellt werden und beschreibt somit den gesamten Spannungszustand.
+Die Dehnungen wirken in die gleichen Richtungen wie die korrespondierenden Spannungen und sind durch die zwei Indizes
+\[
+k, l\in\left\{1, 2, 3\right\}
+\]
+definiert.
+Der Dehnungstensor ist ebenfalls ein Tensor 2. Stufe und kann somit auch als $3\times3$ Matrix mit
+\[
+\overline{\varepsilon}
+=
+\varepsilon_{kl}
+=
+\begin{pmatrix}
+ \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
+ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
+ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
+\end{pmatrix}
+\]
+dargestellt werden und beschreibt den gesamten Dehnungszustand.
+Der Spannungs- und Dehnungstensor 2. Stufe kann je in einen Tensor 1. Stufe überführt werden, welches ein Spaltenvektor ist.
+Gemäss der Hadamard-Algebra dürfen Zeile um Zeile in eine Spalte notiert werden, sodass es einen Spaltenvektor ergibt.
+So ergibt sich der Spannungsvektor
+\[
+\overline{\sigma}
+=
+\sigma_{ij}
+=
+\begin{pmatrix}
+ \sigma_{11} & \sigma_{12} & \sigma_{13} \\
+ \sigma_{21} & \sigma_{22} & \sigma_{23} \\
+ \sigma_{31} & \sigma_{32} & \sigma_{33}
+\end{pmatrix}
+\qquad
+\Rightarrow
+\qquad
+\vec{\sigma}
+=
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{12}\\
+ \sigma_{13}\\
+ \sigma_{21}\\
+ \sigma_{22}\\
+ \sigma_{23}\\
+ \sigma_{31}\\
+ \sigma_{32}\\
+ \sigma_{33}
+\end{pmatrix}
+\]
+und Dehnungsvektor
+\[
+\overline{\varepsilon}
+=
+\varepsilon_{kl}
+=
+\begin{pmatrix}
+ \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
+ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
+ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
+\end{pmatrix}
+\qquad
+\Rightarrow
+\qquad
+\vec{\varepsilon}
+=
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{12} \\
+ \varepsilon_{13} \\
+ \varepsilon_{21} \\
+ \varepsilon_{22} \\
+ \varepsilon_{23} \\
+ \varepsilon_{31} \\
+ \varepsilon_{32} \\
+ \varepsilon_{33}
+\end{pmatrix}
+.
+\]
+Um die Beziehung von Spannung und Dehnung, welche mit Tensoren 2. Stufe ausgedrückt werden, zu beschreiben, wird ein Elastizitätstensor 4. Stufe benötigt.
+Dieser ist im 1D Spannungszustand ein Tensor 0. Stufe und somit ein Skalar, der Elastizitätsmodul $E$.
+
+Dieser Elastizitätstensor 4. Stufe kann als Tensor 2. Stufe, sprich als Matrix, dargestellt werden.
+So wird die Spannungsgleichung stark vereinfacht, da nun eine Matrix auf einen Vektor operiert.
+Dieser Tensor muss für eine Spannung jeden Einfluss aus allen 9 Dehnungen mit Konstanten erfassen.
+Dies bedeutet um eine von 9 Spannungen berechnen zu können müssen alle 9 Dehnung mit unterschiedlichen Faktoren summiert werden.
+Es ergeben sich $9^2$ Einträge, welches mit den 4 Indizes
+\[
+i, j, k, l\in\left\{1, 2, 3\right\}
+,
+\]
+die zueinander verknüpft werden müssen, zu begründen ist.
+Es ergeben sich $3^4$ Einträge, sprich eine $9\times9$ Matrix, welche allgemein
+\[
+\overline{\overline{C}}
+=
+C_{ijkl}
+=
+\begin{pmatrix}
+C_{1111} & C_{1112} & C_{1113} & C_{1121} & C_{1122} & C_{1123} & C_{1131} & C_{1132} & C_{1133} \\
+C_{1211} & C_{1212} & C_{1213} & C_{1221} & C_{1222} & C_{1223} & C_{1231} & C_{1232} & C_{1233} \\
+C_{1311} & C_{1312} & C_{1313} & C_{1321} & C_{1322} & C_{1323} & C_{1331} & C_{1332} & C_{1333} \\
+C_{2111} & C_{2112} & C_{2113} & C_{2121} & C_{2122} & C_{2123} & C_{2131} & C_{2132} & C_{2133} \\
+C_{2211} & C_{2212} & C_{2213} & C_{2221} & C_{2222} & C_{2223} & C_{2231} & C_{2232} & C_{2233} \\
+C_{2311} & C_{2312} & C_{2313} & C_{2321} & C_{2322} & C_{2323} & C_{2331} & C_{2332} & C_{2333} \\
+C_{3111} & C_{3112} & C_{3113} & C_{3121} & C_{3122} & C_{3123} & C_{3131} & C_{3132} & C_{3133} \\
+C_{3211} & C_{3212} & C_{3213} & C_{3221} & C_{3222} & C_{3223} & C_{3231} & C_{3232} & C_{3233} \\
+C_{3311} & C_{3312} & C_{3313} & C_{3321} & C_{3322} & C_{3323} & C_{3331} & C_{3332} & C_{3333}
+\end{pmatrix}
+\]
+geschrieben werden kann.
+Dieser Elastizitätstensor muss für isotrope Materialien zwingend symmetrisch sein.
+Folglich gilt:
+\[
+\overline{\overline{C}}
+=
+\overline{\overline{C}}~^{T}
+.
+\]
+Die allgemeine Spannungsgleichung lautet nun:
+\[
+\vec\sigma
+=
+\overline{\overline{C}}\cdot\vec{\varepsilon}
+.
+\]
+Die Konstanten $C$ werden nun nach dem Hook'schen Gesetz mit Hilfe des Elastizitätsmoduls $E$ definiert.
+Da dieser Modul durch die eindimensionale Betrachtung definiert ist,
+muss für die dreidimensionale Betrachtung eine weitere Kennzahl eingeführt werden.
+Dies ist die Querdehnungszahl $\nu$ (auch Poisson-Zahl), welche durch
+\[
+\nu
+=
+\frac{\varepsilon_q}{\varepsilon}
+=
+\frac{\Delta b}{b_0}
+\]
+und
+\begin{align*}
+ \varepsilon &= \text{Längsdehnung [$-$]} \\
+ \varepsilon_q &= \text{Querdehnung [$-$]}
+\end{align*}
+definiert ist. Trägt man die Konstanten in die Matrix ein, ergibt sich
+\[
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{12}\\
+ \sigma_{13}\\
+ \sigma_{21}\\
+ \sigma_{22}\\
+ \sigma_{23}\\
+ \sigma_{31}\\
+ \sigma_{32}\\
+ \sigma_{33}
+\end{pmatrix}
+=
+\frac{E}{(1+\nu)(1-2\nu)}
+\begin{pmatrix}
+ 1-2\nu & 0 & 0 & 0 & \nu & 0 & 0 & 0 & \nu \\
+ 0 &\frac{1}{4} & 0 &\frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\
+ 0 & 0 &\frac{1}{4} & 0 & 0 & 0 &\frac{1}{4} & 0 & 0 \\
+ 0 &\frac{1}{4} & 0 &\frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\
+ \nu & 0 & 0 & 0 & 1-2\nu & 0 & 0 & 0 & \nu \\
+ 0 & 0 & 0 & 0 & 0 &\frac{1}{4} & 0 &\frac{1}{4} & 0 \\
+ 0 & 0 &\frac{1}{4} & 0 & 0 & 0 &\frac{1}{4} & 0 & 0 \\
+ 0 & 0 & 0 & 0 & 0 &\frac{1}{4} & 0 &\frac{1}{4} & 0 \\
+ \nu & 0 & 0 & 0 & \nu & 0 & 0 & 0 & 1-2\nu
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{12} \\
+ \varepsilon_{13} \\
+ \varepsilon_{21} \\
+ \varepsilon_{22} \\
+ \varepsilon_{23} \\
+ \varepsilon_{31} \\
+ \varepsilon_{32} \\
+ \varepsilon_{33}
+\end{pmatrix}
+,
+\]
+welche ebenfalls als Indexnotation mit
+\[
+\sigma_{ij}
+=
+\sum_{k=1}^3
+\sum_{l=1}^3
+C_{ijkl}\cdot\varepsilon_{kl}
+\]
+ausgedrückt werden kann.
+Die Normalspannung $\sigma_{22}$ lässt sich exemplarisch als
+\[
+\sigma_{22}
+=
+\frac{E\cdot\nu}{(1+\nu)(1-2\nu)}\cdot\varepsilon_{11}+\frac{E}{(1+\nu)}\cdot\varepsilon_{22}+\frac{E\cdot\nu}{(1+\nu)(1-2\nu)}\cdot\varepsilon_{33}
+\]
+berechnen.
+
+Man betrachte nun die Eigenschaften des Elastizitätstensors.
+Dieser ist quadratisch und symmetrisch, die verschiedenen Einträge wechseln sich aber miteinander ab.
+Es ergeben sich keine Blöcke mit einheitlichen Einträgen.
+
+Allerdings weiss man, dass im isotropen Boden der Spannungs-, Dehnungs- und daher auch Elastizitätstensor symmetrisch sind.
+Wäre dem nicht so, würde sich das Material je nach Richtung unterschiedlich elastisch verhalten.
+Diese Symmetrie setzt daher voraus, dass
+\[
+\sigma_{12}
+=
+\sigma_{21}
+,
+\qquad
+\sigma_{13}
+=
+\sigma_{31}
+,
+\qquad
+\sigma_{23}
+=
+\sigma_{32}
+\]
+und folglich auch
+\[
+\varepsilon_{12}
+=
+\varepsilon_{21}
+,
+\qquad
+\varepsilon_{13}
+=
+\varepsilon_{31}
+,
+\qquad
+\varepsilon_{23}
+=
+\varepsilon_{32}
+\]
+gilt.
+Diese Eigenschaft wird durch die Voigt'sche Notation \cite{spannung:Voigtsche-Notation} ausgenutzt, um die Gleichung vereinfachen zu können.
+Durch diese Symmetrie gilt
+\[
+\overline{\sigma}
+=
+\begin{pmatrix}
+ \sigma_{11} & \sigma_{12} & \sigma_{13} \\
+ \sigma_{21} & \sigma_{22} & \sigma_{23} \\
+ \sigma_{31} & \sigma_{32} & \sigma_{33}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ \sigma_{11} & \sigma_{12} & \sigma_{13} \\
+ & \sigma_{22} & \sigma_{23} \\
+ \text{sym} & & \sigma_{33}
+\end{pmatrix}
+\qquad
+\Rightarrow
+\qquad
+\vec{\sigma}
+=
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{22}\\
+ \sigma_{33}\\
+ \sigma_{23}\\
+ \sigma_{13}\\
+ \sigma_{12}
+\end{pmatrix}
+\]
+und entsprechend
+\[
+\overline{\varepsilon}
+=
+\begin{pmatrix}
+ \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
+ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
+ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
+ & \varepsilon_{22} & \varepsilon_{23} \\
+ \text{sym} & & \varepsilon_{33}
+\end{pmatrix}
+\qquad
+\Rightarrow
+\qquad
+\vec{\varepsilon}
+=
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{22} \\
+ \varepsilon_{33} \\
+ \varepsilon_{23} \\
+ \varepsilon_{13} \\
+ \varepsilon_{12}
+\end{pmatrix}
+.
+\]
+
+Aus den Vereinfachungen der Voigt'schen Notation lassen sich die Spannungs- und Dehnungstensoren als Spaltenvektoren mit je sechs Einträgen darstellen.
+Der Elastizitätstensor kann entsprechend auf eine $6\times6$ Matrix reduziert werden.
+Es lässt sich nun eine reduzierte allgemeine Spannungsgleichung mit
+\[
+\vec{\sigma}
+=
+\overline{\overline{C}}\cdot\vec{\varepsilon}
+\]
+beziehungsweise
+\[
+\begin{pmatrix}
+ \sigma_{11} \\
+ \sigma_{22} \\
+ \sigma_{33} \\
+ \sigma_{23} \\
+ \sigma_{13} \\
+ \sigma_{12}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ C_{1111} & C_{1122} & C_{1133} & C_{1123} & C_{1113} & C_{1112} \\
+ C_{2211} & C_{2222} & C_{2233} & C_{2223} & C_{2213} & C_{2212} \\
+ C_{3311} & C_{3322} & C_{3333} & C_{3323} & C_{3313} & C_{3312} \\
+ C_{2311} & C_{2322} & C_{2333} & C_{2323} & C_{2313} & C_{2312} \\
+ C_{1311} & C_{1322} & C_{1333} & C_{1323} & C_{1313} & C_{1312} \\
+ C_{1211} & C_{1222} & C_{1233} & C_{1223} & C_{1213} & C_{1212}
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{22} \\
+ \varepsilon_{33} \\
+ \varepsilon_{23} \\
+ \varepsilon_{13} \\
+ \varepsilon_{12}
+\end{pmatrix}
+\]
+beschreiben.
+Die Spannung $\sigma_{11}$ beispielsweise erhält man, wenn man die sechs Produkte aus den Konstanten $C$ und Dehnungen $\varepsilon$ summiert.
+Die Symmetrieeigenschaft des Elastizitätstensors bleibt auch hier erhalten.
+Somit lässt sich die reduzierte allgemeine Spannungsgleichung mit
+
+\[
+\begin{pmatrix}
+ \sigma_{11} \\
+ \sigma_{22} \\
+ \sigma_{33} \\
+ \sigma_{23} \\
+ \sigma_{13} \\
+ \sigma_{12}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ C_{1111} & C_{1122} & C_{1133} & C_{1123} & C_{1113} & C_{1112} \\
+ & C_{2222} & C_{2233} & C_{2223} & C_{2213} & C_{2212} \\
+ & & C_{3333} & C_{3323} & C_{3313} & C_{3312} \\
+ & & & C_{2323} & C_{2313} & C_{2312} \\
+ & & & & C_{1313} & C_{1312} \\
+ \text{sym} & & & & & C_{1212}
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{22} \\
+ \varepsilon_{33} \\
+ \varepsilon_{23} \\
+ \varepsilon_{13} \\
+ \varepsilon_{12}
+\end{pmatrix}
+\]
+beschreiben.
+Die Konstanten $C$ werden wieder nach dem Hook'schen Gesetz definiert.
+Dies ergibt die Spannungsgleichung, welche weit möglichst vereinfacht ist:
+\[
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{22}\\
+ \sigma_{33}\\
+ \sigma_{23}\\
+ \sigma_{13}\\
+ \sigma_{12}
+\end{pmatrix}
+=
+\frac{E}{(1+\nu)(1-2\nu)}
+\begin{pmatrix}
+ 1- 2\nu & \nu & \nu & 0 & 0 & 0\\
+ \nu & 1- 2\nu & \nu & 0 & 0 & 0\\
+ \nu & \nu & 1- 2\nu & 0 & 0 & 0\\
+ 0 & 0 & 0 & \frac{1}{2} & 0 & 0\\
+ 0 & 0 & 0 & 0 & \frac{1}{2} & 0\\
+ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11}\\
+ \varepsilon_{22}\\
+ \varepsilon_{33}\\
+ \varepsilon_{23}\\
+ \varepsilon_{13}\\
+ \varepsilon_{12}
+\end{pmatrix}
+.
+\]
+
+Im Elastizitätstensor fallen zwei $3\times3$ Blöcke auf, welche nur Einträge mit $0$ haben. Der Tensor besagt also,
+dass diese jeweiligen Dehnungen keinen Einfluss auf unsere Spannung haben.
+Man sieht nun auch ganz gut, dass sich im Vergleich zu der allgemeinen Spannungsgleichung, die Einträge verschoben haben.
+Da nach Voigt zuerst die Normalspannungen und anschliessend die Schubspannungen notiert worden sind, ergeben sich die $3\times3$ Blöcke.
+
+Man betrachte als Beispiel die Berechnung von $\sigma_{33}$.
+Es ist ersichtlich, dass die Schubdehnungen keinen Einfluss auf $\sigma_{33}$ haben.
+Der Einfluss der zu $\sigma_{33}$ äquivalenten Dehnung $\varepsilon_{33}$ hat den grössten Einfluss.
+Die anderen Normalspannungen $\sigma_{11}$ und $\sigma_{22}$ haben einen unter anderem mit $\nu$ korrigierten Einfluss.
+
+Von $\overline{\overline{C}}$ bildet man noch die inverse Matrix $\overline{\overline{C}}\mathstrut^{-1}$ um die Gleichung umstellen zu können.
+Dadurch erhält man die Dehnungsgleichung:
+
+\[
+\vec{\varepsilon}
+=
+\overline{\overline{C}}\mathstrut^{-1}\cdot \vec{\sigma}
+\]
+
+\[
+\begin{pmatrix}
+ \varepsilon_{11}\\
+ \varepsilon_{22}\\
+ \varepsilon_{33}\\
+ \varepsilon_{23}\\
+ \varepsilon_{13}\\
+ \varepsilon_{12}
+\end{pmatrix}
+=
+\frac{1}{E}
+\begin{pmatrix}
+ 1 & -\nu & -\nu & 0 & 0 & 0 \\
+ -\nu & 1 & -\nu & 0 & 0 & 0 \\
+ -\nu & -\nu & 1 & 0 & 0 & 0 \\
+ 0 & 0 & 0 & 2+2\nu & 0 & 0 \\
+ 0 & 0 & 0 & 0 & 2+2\nu & 0 \\
+ 0 & 0 & 0 & 0 & 0 & 2+2\nu
+\end{pmatrix}
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{22}\\
+ \sigma_{33}\\
+ \sigma_{23}\\
+ \sigma_{13}\\
+ \sigma_{12}
+\end{pmatrix}
+.
+\]
+Die zwei $3\times3$ Blöcke links unten und rechts oben sind folglich noch vorhanden.
+Um wieder die Einflüsse der Parameter veranschaulichen zu können berechnet man die Dehnung
+\[
+\varepsilon_{22}
+=
+\frac{1}{E}\sigma_{22} - \frac{\nu}{E}\sigma_{11} - \frac{\nu}{E}\sigma_{33}
+=
+\frac{1}{E}\cdot(\sigma_{22}-\nu\cdot\sigma_{11}-\nu\cdot\sigma_{33})
+.
+\]
+Diese hängt wieder am meisten von $\sigma_{22}$ ab.
+Ist die Querdehnung $\nu$ grösser, so wird die Dehnung $\varepsilon_{22}$ reduziert.
+Bei inkompressiblen Medien, bei welchen keine Dehnungen und nur identische Normalspannungen auftreten können, ist folglich $\nu=0.5$.
diff --git a/buch/papers/spannung/teil3.tex b/buch/papers/spannung/teil3.tex
index ce7d50f..8d99733 100644
--- a/buch/papers/spannung/teil3.tex
+++ b/buch/papers/spannung/teil3.tex
@@ -1,40 +1,105 @@
-%
-% teil3.tex -- Beispiel-File für Teil 3
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 3
-\label{spannung:section:teil3}}
-\rhead{Teil 3}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
+\section{Die geotechnischen Invarianten\label{spannung:section:Die geotechnischen Invarianten}}
+\rhead{Die geotechnischen Invarianten}
+In vielen Fällen in der Geotechnik und auch in Versuchen hat man gleichmässige Belastungen über eine grössere Fläche.
+Durch eine solche Belastung auf den Boden, entstehen gleichermassen Spannungen in Richtung $2$ und $3$,
+wenn man von einem isotropen Bodenmaterial ausgeht.
+Folglich gilt:
-\subsection{De finibus bonorum et malorum
-\label{spannung:subsection:malorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
+\[
+\sigma_{22}
+=
+\sigma_{33}
+.
+\]
+Dadurch wird der Spannungszustand vereinfacht.
+Diesen vereinfachten Spannungszustand kann man mit den zwei geotechnischen Invarianten abbilden.
+Die erste Invariante ist die volumetrische Spannung
+\[
+p
+=
+\frac{\sigma_{11}+\sigma_{22}+\sigma_{33}}{3}
+,
+\]
+welche als arithmetisches Mittel aller Normalspannungen im infinitesimalen Würfel definiert ist.
+Die zweite Invariante ist die deviatorische Spannung
+\[
+q
+=
+\sqrt{\frac{(\sigma_{11}-\sigma_{22})^{2}+(\sigma_{11}-\sigma_{33})^{2}+(\sigma_{22}-\sigma_{33})^{2}}{2}}
+.
+\]
+Diese Zusammenhänge werden im Skript [\cite{spannung:Stoffgesetze-und-numerische-Modellierung-in-der-Geotechnik}] aufgezeigt.
+Die hydrostatische Spannung $p$ kann gemäss Gleichung (Nr) als
+\[
+p
+=
+\frac{\sigma_{11}+2\sigma_{33}}{3}
+\]
+vereinfacht werden.
+Die deviatorische Spannung $q$ wird gemäss Gleichung (Nr) als
+\[
+q
+=
+\sigma_{11}-\sigma_{33}
+\]
+vereinfacht. Man kann $p$ als Isotrop und $q$ als Schub betrachten.
+Die Invarianten können mit der Spannungsformel (Nr..xxx) berechnet werden.
+Durch geschickte Umformung dieser Gleichung, lassen sich die Module als Faktor separieren.
+Dabei entstehen spezielle Faktoren mit den Dehnungskomponenten.
+So ergibt sich
+\[
+\overbrace{\frac{\sigma_{11}+2\sigma_{33}}{3}}^{p}
+=
+\frac{E}{3(1-2\nu)} \overbrace{(\varepsilon_{11} - 2\varepsilon_{33})}^{\varepsilon_{v}}
+\]
+und
+\[
+\overbrace{\sigma_{11}-\sigma_{33}}^{q}
+=
+\frac{3E}{2(1+\nu)} \overbrace{\frac{2}{3}(\varepsilon_{11} - \varepsilon_{33})}^{\varepsilon_{s}}
+.
+\]
+Die Faktoren mit den Dehnungskomponenten können so mit
+\[
+\varepsilon_{v}
+=
+(\varepsilon_{11} - 2\varepsilon_{33})
+\qquad
+\text{und}
+\qquad
+\varepsilon_{s}
+=
+\frac{2}{3}(\varepsilon_{11} - \varepsilon_{33})
+\]
+eingeführt werden, mit
+\begin{align*}
+ \varepsilon_{v} &= \text{Hydrostatische Dehnung [-]} \\
+ \varepsilon_{s} &= \text{Deviatorische Dehnung [-].}
+\end{align*}
+Die hydrostatische Dehnung $\varepsilon_{v}$ kann mit einer Kompression verglichen werden.
+Die deviatorische Dehnung $\varepsilon_{s}$ kann mit einer Verzerrung verglichen werden.
+Diese zwei Gleichungen kann man durch die Matrixschreibweise
+\[
+\begin{pmatrix}
+ q\\
+ p
+\end{pmatrix}
+=
+\begin{pmatrix}
+ \frac{3E}{2(1+\nu)} & 0 \\
+ 0 & \frac{E}{3(1-2\nu)}
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{s}\\
+ \varepsilon_{v}
+\end{pmatrix}
+\]
+(sollte nummeriert sein) vereinfachen.
+Man hat so eine Matrix multipliziert mit einem Vektor und erhält einen Vektor.
+Änderungen des Spannungszustandes können mit dieser Gleichung vollumfänglich erfasst werden.
+
+Mit dieser Formel lassen sich verschieden Ergebnisse von Versuchen analysieren und berechnen.
+Ein solcher Versuch, den oft in der Geotechnik durchgeführt wird, ist der Oedometer-Versuch.
+Im nächsten Kapitel wird die Anwendung der Matrix an diesem Versuch beschrieben.
diff --git a/buch/papers/spannung/teil4.tex b/buch/papers/spannung/teil4.tex
new file mode 100644
index 0000000..d524f13
--- /dev/null
+++ b/buch/papers/spannung/teil4.tex
@@ -0,0 +1,79 @@
+\section{Oedometer-Versuch\label{spannung:section:Oedometer-Versuch}}
+\rhead{Oedometer-Versuch}
+Mit dem Oedometer-Versuch kann der oedometrische Elastizitätsmodul $E_{OED}$ bestimmt werden.
+Dieser beschreibt ebenfalls das Verhältnis zwischen Spannung und Dehnung, allerdings unter anderen Bedingungen.
+Diese Bedingung ist das Verhindern der seitlichen Verformung, sprich der Dehnung in Richtung $1$ und $2$.
+Es wird ein Probeelement mit immer grösseren Gewichten belastet, welche gleichmässig auf das Material drücken.
+Die seitliche Verschiebung des Materials wird durch einen Stahlring verhindert.
+Die Probe wird sich so stetig verdichten.
+Das Volumen nimmt ab und die Dehnung nimmt immer mehr zu.
+Unter diesen Bedingungen wird der oedometrische Elastizitätsmodul mit steigender Dehnung zunehmen.
+
+Da im Boden das umgebende Material ähnlich eine seitliche Verformung verhindert,
+bildet dieser oedometrische Elastizitätsmodul die Realität besser ab, als der gewöhnliche Elastizitätsmodul.
+Durch dieses Verhindern des seitlichen Ausbrechens ist
+\[
+\varepsilon_{22}
+=
+\varepsilon_{33}
+=
+0
+\]
+aber auch
+\[
+\sigma_{22}
+=
+\sigma_{33}
+\neq 0
+.
+\]
+Die Spannung $\sigma_{11}$ wird durch die aufgebrachte Kraft mit
+\[
+\sigma_{11}
+=
+\frac{F}{A}
+\]
+und die Dehnung $\varepsilon_{11}$ jeweils mit den entsprechenden Setzungen berechnet.
+Diese Randbedingungen können in die vereinfachte Gleichung (Nrxxx) eingesetzt werden.
+Diese lautet nun:
+\[
+\begin{pmatrix}
+ \sigma_{11}-\sigma_{33} \\
+ \sigma_{11}+2\sigma_{33}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ \frac{E_{OED}}{(1+\nu)} & 0 \\
+ 0 & \frac{E_{OED}}{3(1-2\nu)}
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11}\\
+ \varepsilon_{11}
+\end{pmatrix}
+.
+\]
+Daraus lässt sich bei jedem Setzungsgrad der oedometrische Elastitzitätsmodul $E_{OED}$ und die seitlichen Spannungen $\sigma_{33}$ mit den 2 Gleichungen
+\[
+\sigma_{11}-\sigma_{33}
+=
+\frac{E_{OED}}{(1+\nu)}\cdot\varepsilon_{11}
+\]
+und
+\[
+\sigma_{11}+2\sigma_{33}
+=
+\frac{E_{OED}}{3(1-2\nu)}\cdot\varepsilon_{11}
+\]
+berechnen.
+Mit diesen Gleichungen hat man das Gleichungssystem um $E_{OED}$ und $\sigma_{33}$ zu berechnen.
+Die Poisson-Zahl muss als Kennwert gemäss der Bodenklasse gewählt werden.
+Den Versuch kann man auf einem $\sigma$-$\varepsilon$-Diagramm abtragen (siehe Abbildung 1.7).
+Durch die Komprimierung nimmt der Boden mehr Spannung auf, und verformt sich zugleich weniger stark.
+Mit diesem ermittelten $E_{OED}$ kann man nun weitere Berechnungen für die Geotechnik durchführen.
+
+\begin{figure}
+ \centering
+ \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/DiagrammOedometer-Versuch.png}
+ \caption{Diagramm Charakteristik verschiedener Elastizitätsmodule bei gleichem Material}
+ \label{fig:DiagrammOedometer-Versuch}
+\end{figure} \ No newline at end of file
diff --git a/buch/papers/verkehr/Makefile.inc b/buch/papers/verkehr/Makefile.inc
index 7bd8de1..876d0df 100644
--- a/buch/papers/verkehr/Makefile.inc
+++ b/buch/papers/verkehr/Makefile.inc
@@ -3,12 +3,10 @@
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-dependencies-verkehr = \
+dependencies-verkehr = \
papers/verkehr/packages.tex \
- papers/verkehr/main.tex \
- papers/verkehr/references.bib \
- papers/verkehr/teil0.tex \
- papers/verkehr/teil1.tex \
- papers/verkehr/teil2.tex \
- papers/verkehr/teil3.tex
+ papers/verkehr/main.tex \
+ papers/verkehr/section1.tex \
+ papers/verkehr/section2.tex \
+ papers/verkehr/references.bib
diff --git a/buch/papers/verkehr/figures/chart_Vr1.png b/buch/papers/verkehr/figures/chart_Vr1.png
new file mode 100644
index 0000000..14d4eca
--- /dev/null
+++ b/buch/papers/verkehr/figures/chart_Vr1.png
Binary files differ
diff --git a/buch/papers/verkehr/figures/chart_Vr2.png b/buch/papers/verkehr/figures/chart_Vr2.png
new file mode 100644
index 0000000..2d68681
--- /dev/null
+++ b/buch/papers/verkehr/figures/chart_Vr2.png
Binary files differ
diff --git a/buch/papers/verkehr/figures/chart_pathDiff.png b/buch/papers/verkehr/figures/chart_pathDiff.png
new file mode 100644
index 0000000..02bded7
--- /dev/null
+++ b/buch/papers/verkehr/figures/chart_pathDiff.png
Binary files differ
diff --git a/buch/papers/verkehr/figures/dist_display6.png b/buch/papers/verkehr/figures/dist_display6.png
new file mode 100644
index 0000000..3056f43
--- /dev/null
+++ b/buch/papers/verkehr/figures/dist_display6.png
Binary files differ
diff --git a/buch/papers/verkehr/figures/network_aStar.png b/buch/papers/verkehr/figures/network_aStar.png
new file mode 100644
index 0000000..5a681bd
--- /dev/null
+++ b/buch/papers/verkehr/figures/network_aStar.png
Binary files differ
diff --git a/buch/papers/verkehr/figures/network_dij.png b/buch/papers/verkehr/figures/network_dij.png
new file mode 100644
index 0000000..d9348d7
--- /dev/null
+++ b/buch/papers/verkehr/figures/network_dij.png
Binary files differ
diff --git a/buch/papers/verkehr/main.tex b/buch/papers/verkehr/main.tex
index 332ee7e..6348993 100644
--- a/buch/papers/verkehr/main.tex
+++ b/buch/papers/verkehr/main.tex
@@ -4,33 +4,13 @@
% (c) 2020 Hochschule Rapperswil
%
\chapter{Thema\label{chapter:verkehr}}
-\lhead{Thema}
+\lhead{Verkehrsfluss und Verkehrsnetze}
\begin{refsection}
-\chapterauthor{Hans Muster}
+\chapterauthor{Pascal Andreas Schmid und Robine Luchsinger}
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
-
-\input{papers/verkehr/teil0.tex}
-\input{papers/verkehr/teil1.tex}
-\input{papers/verkehr/teil2.tex}
-\input{papers/verkehr/teil3.tex}
+\input{papers/verkehr/section1.tex}
+\input{papers/verkehr/section2.tex}
+\input{papers/verkehr/section3.tex}
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/verkehr/section1.tex b/buch/papers/verkehr/section1.tex
new file mode 100644
index 0000000..6a5dc28
--- /dev/null
+++ b/buch/papers/verkehr/section1.tex
@@ -0,0 +1,70 @@
+\section{Einführung}
+\label{section:verkehr/einfuehrung}
+
+\subsection{Verkehrsnetze}
+Das Verkehrsnetz besteht aus allen Anlagen, auf oder unter der Erdoberfläche, auf denen eine räumliche Fortbewegung von Personen oder auch Gütern stattfindet. Verkehrsnetze sind ein Bestandteil der Verkehrsinfrastruktur, die auf topografischen Karten festgehalten werden. Sie umfassen den Schienenverkehr, alle Strassen und Wege, wie auch Flugplätze und alle dazugehörigen Bauwerke.
+Aus verkehrsgeografischer Sicht besteht das Verkehrsnetz aus Kanten, Knotenpunkten und dem Hinterland. Die Knotenpunkte werden auch hier durch die Kanten verbunden, die den Verkehrsstrom aufnehmen, wobei das Hinterland durch einzelne Knoten versorgt wird. Die Aufteilung in Kanten und Knotenpunkte ermöglicht eine Vereinfachung komplexer Verkehrsnetze, damit sie mittels der Graphentheorie untersucht werden können.
+Grundsätzlich können kurze Wege zwischen den Knotenpunkten das Ziel beim
+Aufbau eines Verkehrsnetzes sein. Es kann aber auch versucht werden, die Bau- und Unterhaltskosten des Verkehrsnetzes in einem gewissen Rahmen zu halten. Aus diesen Vorgaben ergibt sich dann, je nach dem was gewünscht wird, eine grob- oder feinmaschige Struktur des Netzes.
+Ziel ist aber ein möglichst wirtschaftliches und optimales Verkehrsnetz.
+
+\subsection{Suchalgorithmen}
+
+\subsubsection{Dijkstra-Algorithmus}
+Der Algorithmus von Dijkstra ist benannt nach seinem Erfinder dem Mathematik- und Infomratikprofessor Edsger Dijkstra. Den Algorithmus hat er im Jahr 1959 erfunden.
+Der Algorithmus von Dijkstra ist ein Greedy-Algorithmus (gieriger Algorithmus), der schrittweise einen Folgezustand auswählt, damit beim Zeitpunkt der Wahl der grösste Gewinn bzw. das beste Ergebnis erzielt werden kann.
+Trotz der Schnelligkeit der Greedy-Algorithmen, können viele Probleme nicht optimal gelöst werden.
+Vereinfacht wird beim Dijkstra-Algorithmus, ausgehend von einem Startknoten so lange dem kürzesten Pfad gefolgt, bis der Zielknoten erreicht wird. Dabei muss für jeden besuchten Knoten die Kostenfunktion als auch der Pfad dahin (vorheriger Knoten) gespeichert werden.
+Dadurch wird hingegen garantiert, dass, wenn der Zielknoten erreicht wird, auch der kürzeste Pfad gefunden wurde.
+Grundlegende Voraussetzung für den Dijkstra-Algorithmus ist die strikte Positivität der Kantengewichte. Andernfalls würde ein wiederholtes Ablaufen einer Kante mit negativem Gewicht zu einer stetigen Reduktion der Kostenfunktion führen, was zu einer unendlichen Schlaufe führen würde.
+
+\subsubsection{A*-Algorithmus}
+Suchalgorithmen werden nach einfachen (uninformierte) und heuristischen (informierten) Algorithmen unterschieden. Während einfache Algorithmen den Suchraum intuitiv durchsuchen, beziehen heuristische Algorithmen Wissen über den Suchraum mit ein.
+Der A*-Algorithmus geht auf seine Erfinder Peter Hart, Nils Nilsson und Bertram Raphael zurück, die den Algorithmus erstmals im Jahr 1968 beschrieben.
+Der A*-Algorithmus ist ein heuristischer Suchalgorithmus, der den kürzesten Pfad zwischen zwei Knoten in einem Graphen mit positiven Kantengewichten berechnet.
+Im Gegensatz zu einfachen Suchalgorithmen, wird beim A*-Algorithmus eine Schätzfunktion, die sogenannte Heuristik, verwendet. Dies ermöglicht ein zielgerichtetes Suchen und gleichzeitig wird die Laufzeit verringert.
+Ausserdem findet der A*-Algorithmus immer eine optimale Lösung, sofern eine vorhanden ist.
+Der A*-Algorithmus wird als Verallgemeinerung gehandhabt und gilt als Erweiterung des Dijkstra-Algorithmus.
+=======
+
+\subsubsection{Floyd-Warshall-Algorithmus}
+Der Floyd-Warshall-Algorithmus wurde erstmals im Jahr 1962 von seinen Namensgebern Robert Floyd und Stephen Warshall vorgestellt.
+Der Floyd-Warshall-Algorithmus sucht kürzeste Wege innerhalb eines Graphen. Er ermittelt aber nicht nur die Distanz zwischen zwei Knoten, sondern berechnet die kürzesten Wege zwischen allen Knotenpaaren eines gewichteten Graphen. Somit werden die kürzesten , beziehungsweise die optimalsten Wege zwischen allen Paaren von Knoten berechnet, sofern der Graph keinen negativen Kreis (Zyklus) aufweist.
+Ein Kreis in einem Graphen ist ein Weg, bei dem Start- und Endpunkt den gleichen Knoten aufweisen. Dieser wird negativ, wenn die Summe der gewichteten Kanten kleiner als Null wird.
+
+\subsubsection{Euklidische Heuristik}
+Bei Verkehrsnetzen ist die euklidische Distanz eine gängige und zuverlässige Heurstik. Dabei wird zu den effektiven Reisekosten zum aktuellen Knoten die euklidische Distanz bis zum Zielknoten hinzuaddiert. Dadurch wird die Kostenfunktion konsequent nie überschätzt. Dies stellt eine Voraussetzung an eine zulässige Heuristik dar.
+Was bei einem physischen Verkehrsnetz einfach zu bewältigen ist, da Koordinaten von Verkehrsnetzen zur Berechnung der Distanz verwendet werden können, ist bei virtuellen Netzwerken (z.B. Servernetzen) entweder nicht möglich, oder nicht relevant.
+
+\subsection{PageRank-Algorithmus}
+Der PageRank-Algorithmus wurde von den Gründern von Google, Larry Page und Sergey Brin im Jahr 1996 entwickelt und zum Patent angemeldet. Zwei Jahre später gründeten sie ihr Unternehmen Google Inc..
+Beim PageRank-Algorithmus handelt es sich um den Algorithmus von Google, aus dem die Google-Matrix abgeleitet wird.
+Die Google-Matrix ist eine immens grosse Matrix mit Millionen Zeilen und Spalten, die für die schnelle und vor allem exakte Bestimmung der PageRanks (Gewichtung) eine grosse Bedeutung hat.
+Der PageRank-Algorithmus analysiert und gewichtet beispielsweise die Verlinkungsstruktur verschiedener Websites des World Wide Web anhand ihrer Struktur.
+Der PageRank wird umso höher, je mehr hochwertige Links auf eine Webseite verweisen und je höher die Gewichtung einer Webseite ist, desto grösser ist der Effekt.\\
+Dabei handelt es sich um einen iterativen Prozess. Ausgegangen wird von der Adjazenz-Matrix $A$, für welche gilt.
+
+%THEORIE...
+Grundsätzlich setzt sich der PageRank Algorithmus mit der Fragestellung auseinander, wie eine Suchmaschine wie Google Suchresultate bewertet und somit sortieren soll. Öfters aufgerufene Resultate sollen schliesslich höher gewichtet werden. Dabei wird angenommen, dass eine Website populärer ist, je mehr andere Websites darauf verweisen.
+
+\begin{equation}
+A_{i,j}=\left\{ \begin{matrix}
+1 & \text{Kante von $j$ nach $i$} \\ 0 & \text{keine Kante von $j$ nach $i$}
+\end{matrix}
+ \right.
+\label{verkehr:Adja}
+\end{equation}
+
+
+Für ungerichtete Graphen mit $n$ Knoten gilt \begin{equation}A_{i,j}=A_{j,i}\end{equation} und weiter \begin{equation}A_{i,i}=0\quad\forall i\in \left\{1...n\right\}\end{equation}
+Beim PageRank-Algorithmus wird eine abgewandelte Form der Adjazenz-Matrix verwendet.
+Dabei werden die Matrix-Einträge spaltenweise durch die jeweilige Spaltensumme geteilt.
+\begin{equation} P_{i,j}=\frac{A_{i,j}}{\sum_{i=1}^{n}A_{i,j}} \end{equation}
+Anschliessend multipliziert man diese Matrix $P$ mit einem Spaltenvektor $\Vec{r_0}$ mit $n$ Einträgen, für welchen gilt:
+\begin{equation} \Vec{r_0}(i) = \frac{1}{n} \quad\forall i\in \left\{1...n\right\} \end{equation}
+Dieser Vektor stellt ein neutrales Ranking dar. Alle Knoten werden gleich gewichtet.
+Dadurch erhält man wiederum einen $n$-zeiligen Spaltenvektor $\Vec{r_1}$, der das "erste" Ranking darstellt. Durch Multiplikation der ursprünglichen Matrix $P$ mit dem 1. Ranking-Vektor $\Vec{r_1}$ wird auf Basis des ersten Rankings ein zweites erstellt.
+\begin{equation} \Vec{r_2} = P\cdot\Vec{r_1} = P\cdot(P\cdot\Vec{r_0}) = P^2\cdot\Vec{r_0}\end{equation}
+somit
+\begin{equation} \Vec{r_i} = P^i\cdot\Vec{r_0}\end{equation}
+Der Vektor $\Vec{r_i}$ konvergiert zu einem Eigenvektor von $P$ und stellt das abschliessende Ranking dar.
diff --git a/buch/papers/verkehr/section2.tex b/buch/papers/verkehr/section2.tex
new file mode 100644
index 0000000..638d9dd
--- /dev/null
+++ b/buch/papers/verkehr/section2.tex
@@ -0,0 +1,55 @@
+\section{Versuchsreihe}
+\label{section:verkehr/versuchsreihe}
+
+Um zwei der vorgestellten Suchalgorithmen zu vergleichen, wurden zwei Versuchsreihen erstellt. Dazu wurden in einem ersten Schritt zufällige Netzwerke generiert und anschliessend der \emph{Dijkstra}-, sowie der \emph{$A^*$}-Algorithmus auf das Netzwerk angewandt.
+Dieser Vorgang wurde für die zufällig generierten Netzwerke mit einer Knotenzahl von 10, 20 50, 100, 200, 500 und 1000 je zehnmal repetiert.
+Die Anzahl der Knoten im abgesuchten Netzwerk wirkt sich direkt auf die Rechenzeit aus. Der \emph{Dijkstra}-Algorithmus weist eine Zeitkomplexität von $\mathcal{O}(E\log{}V)$ auf, wobei $E$ die Anzahl Kanten (engl. \emph{edges}) und $V$ die Anzahl Knoten (engl. \emph{vertices}) darstellt.
+Für den \emph{A*}-Algorithmus ist die Zeitkomplexität einerseits abhängig von der verwendeten Heuristik, andererseits aber auch vom vorliegenden Netzwerk selbst. Aus diesem Grund lässt sich keine defintive Angabe zu $\mathcal{O}$ machen.
+
+Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- und Zielknoten bei der ersten Versuchsreihe im Netzwerk diametral gegenüber liegen. Dadurch gehen viele Knoten verloren, welcher \emph{Dijkstra} als uninformierter Suchalgorithmus absuchen würde. In der zweiten Veruschsreihe werden hingegen Start- un Zielpunkt zufällig im Netzwerk ausgewählt. Es wird deshalb erwwartet, dass die Unterschiede in der Rechenzeit der beiden Algorithmen in der zweiten Versuchsreihe deutlich ausgeprägter sind.
+
+\subsection{Einfluss der Knotenzahl auf die Rechenzeit}
+\label{verkehr:Knotenzahl}
+
+\begin{figure}
+\centering
+\includegraphics[width=12cm]{papers/verkehr/figures/chart_Vr1.png}
+
+\caption{Gemessene Rechenzeiten der ersten Versuchsreihe in Abhängigkeit der Knotenzahl.}
+\label{verkehr:Vr1}
+\end{figure}
+
+In \ref{verkehr:Vr1} ist ersichtlich, dass der Unterschied in der Rechenzeit zwischen \emph{Dijkstra} und \emph{A*} erst aber einer Knotenzahl von ca. $n=500$ merklich ansteigt. Dieses etwas überraschende Resultat ist darauf zurückzuführen, dass bei steigender Knotenzahl die Abweichung des effektiven kürzesten Pfades von der Distanz der Luftlinie abnimmt.
+Die Effektivität von \emph{A*} mit euklidischer Heuristik ist wiederum grösser, wenn die Abweichung des kürzesten Pfads von der Luftlinie minimal ist.
+Bei Betrachtung von \ref{verkehr:pathDifference} wird dies ersichtlich, wobei die relative Abweichung erstaunlicherweise bei einer Knotenzahl von $n=100$ maximal ist und nach $n=500$ nur noch marginal abnimmt.
+
+\begin{figure}
+\centering
+\includegraphics[width=12cm]{papers/verkehr/figures/chart_pathDiff.png}
+
+\caption{Relative Abweichung des kürzesten Pfads von der Luftlinie.}
+\label{verkehr:pathDifference}
+\end{figure}
+
+
+\subsection{Einfluss der Position der Start- und Zielknoten auf die Rechenzeit}
+
+\begin{figure}
+\centering
+\includegraphics[width=12cm]{papers/verkehr/figures/chart_Vr2.png}\\
+\caption{Gemessene Rechenzeiten der zweiten Versuchsreihe in Abhängigkeit der Knotenzahl.}
+\label{verkehr:Vr2}
+\end{figure}
+
+Zum Vergleich der Resultate in \ref{verkehr:Knotenzahl} zeigt \ref{verkehr:Vr2} die Rechenzeiten der zweiten Versuchsreihe, in welcher die Start- und Zielknoten zufällig im Netzwerk ausgewählt wurden. Einerseits ist eine reduzierte durchschnittliche Rechenzeit festzustellen, was schlicht daran liegt, dass die zufällige Wahl der Knoten dazu führt, dass diese tendenziell weniger weit auseinander liegen.\\
+Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwischen \emph{Dijkstra} und \emph{A*} deutlich früher abzeichnen. Dieses Phänomen lässt sich leicht durch die zielgerichtete Suche des \emph{A*}-Algorithmus erklären.
+
+\begin{figure}
+\centering
+\includegraphics[width=6cm]{papers/verkehr/figures/network_dij.png}\qquad
+\includegraphics[width=6cm]{papers/verkehr/figures/network_aStar.png}
+\caption{Suchpfad in grün mit \emph{Dijkstra} (links), und \emph{A*} (rechts). Besuchte Knoten sind in blau, resp. rot markiert.}
+\label{verkehr:Comparison}
+\end{figure}
+
+In \ref{verkehr:Comparison} ist ersichtlich, dass bei einem im Netzwerk liegenden Startknoten die zielgerichtete Suche von \emph{A*} deutlich ausgeprägter zum Zuge kommt, als wenn dieser am Rand des Netzwerks liegen würde.
diff --git a/buch/papers/verkehr/section3.tex b/buch/papers/verkehr/section3.tex
new file mode 100644
index 0000000..99a0d92
--- /dev/null
+++ b/buch/papers/verkehr/section3.tex
@@ -0,0 +1,8 @@
+\section{Ausblick}
+\subsection{Optimierungsprobleme bei Graphen}
+Das Finden eines kürzesten Pfades, sprich die Minimierung der Summe der Kantengewichte, ist nur eines der Optimierungsprobleme, die sich im Bereich von Grafen aufstellen lassen. Verschiedene, ähnliche Problemstellungen lassen sich teilweise mit denselben Algorithmen lösen.\\
+Im Bereich vom Computernetzwerken könnte zum Beispiel die Minimierung der Knotenzahl zur Datenübbertragung von Interesse sein. Dabei lässt sich dieses Problem einfach dadurch lösen, dass dem \emph{Dijkstra}, oder dem \emph{A*}-Algorithmus anstelle der Graph-Matrix (mit Kantengewichten als Einträgen) die Adjazenz-Matrix als Argument übergeben wird. Der gefundene kürzeste Pfad enstpricht der Anzahl benutzter Kanten, bzw. der Anzahl besuchter Knoten.
+
+\subsection{Wahl der Heuristik}
+Ein grundlegendes Problem bei der Anwendung des \emph{A*} oder ähnlicher informierter Suchalgorithmen ist die Wahl der Heurstik. Bei einem physischen Verkehrsnetz kann bspw. die euklidische Distanz problems ermittelt werde. Bei einem regionalen Netzwerk ist die Annahme eines orthogonalen X-Y-Koordinatenetzes absolut ausreichend. Dies gilt z.B. auch für das Vernessungsnetz der Schweiz\footnote{Die aktuelle Schweizer Referenzsystem LV95 benutzt ein E/N-Koordinatennetz, wobei aufgrund zunehmender Abweichung vom Referenzellipsoid bei grosser Entfernung vom Nullpunkt ein Korrekturfaktor für die Höhe angebracht werden muss.} Bei überregionalen Netzwerken (Beispiel: Flugverbindungen) ist hingegen eine Berechnung im dreidimensionalen Raum, oder vereinfacht als Projektion auf das Geoid notwendig. Anonsten ist der Ablauf bei der Ausführung des Algorithmus allerdings identisch.\\
+In nicht-physischen Netzwerken stellt sich jedoch eine zweite Problematik. Da eine physische Distanz entweder nicht ermittelt werden kann, oder aber nicht ausschlaggebend ist, sind andere Netzwerk-Eigenschaften zur Beurteilung beizuziehen. Die Zuverlässigkeit ist dabei aber in den meisten Fällen nicht vergleichbar hoch, wie bei der euklidischen Heuristik. Oftmals werden deshalb bei derartigen Problem auch Algorithmen angewendet, die eine deutlich optimierte Zeitkomplexität aufweisen, dafür aber nicht mit Sicherheit den effizienstesten Pfad finden.
diff --git a/buch/papers/verkehr/teil0.tex b/buch/papers/verkehr/teil0.tex
deleted file mode 100644
index 5031841..0000000
--- a/buch/papers/verkehr/teil0.tex
+++ /dev/null
@@ -1,22 +0,0 @@
-%
-% einleitung.tex -- Beispiel-File für die Einleitung
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 0\label{verkehr:section:teil0}}
-\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{verkehr:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
-
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
-
-
diff --git a/buch/papers/verkehr/teil1.tex b/buch/papers/verkehr/teil1.tex
deleted file mode 100644
index 855aef8..0000000
--- a/buch/papers/verkehr/teil1.tex
+++ /dev/null
@@ -1,55 +0,0 @@
-%
-% teil1.tex -- Beispiel-File für das Paper
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 1
-\label{verkehr:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{verkehr:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{verkehr:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{verkehr:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{verkehr:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
-
-
diff --git a/buch/papers/verkehr/teil2.tex b/buch/papers/verkehr/teil2.tex
deleted file mode 100644
index 5170ded..0000000
--- a/buch/papers/verkehr/teil2.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{verkehr:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{verkehr:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/verkehr/teil3.tex b/buch/papers/verkehr/teil3.tex
deleted file mode 100644
index 8f79154..0000000
--- a/buch/papers/verkehr/teil3.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil3.tex -- Beispiel-File für Teil 3
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 3
-\label{verkehr:section:teil3}}
-\rhead{Teil 3}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{verkehr:subsection:malorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/test1.tex b/buch/test1.tex
deleted file mode 100644
index 8345230..0000000
--- a/buch/test1.tex
+++ /dev/null
@@ -1,93 +0,0 @@
-%
-% test1.tex -- Test 1
-%
-% (c) 2012 Prof. Dr. Andreas Mueller, HSR
-%
-%\documentclass[a4paper,12pt]{book}
-\documentclass[a4paper,12pt]{article}
-\usepackage{geometry}
-\geometry{papersize={210mm,297mm},total={165mm,260mm}}
-\usepackage{ngerman}
-\usepackage[utf8]{inputenc}
-\usepackage[T1]{fontenc}
-\usepackage{times}
-\usepackage{amsmath}
-\usepackage{amssymb}
-\usepackage{amsfonts}
-\usepackage{amsthm}
-\usepackage{graphicx}
-\usepackage{fancyhdr}
-\usepackage{textcomp}
-\usepackage[all]{xy}
-\usepackage{txfonts}
-\usepackage{alltt}
-\usepackage{verbatim}
-\usepackage{paralist}
-\usepackage{makeidx}
-\usepackage{array}
-\usepackage{hyperref}
-\usepackage{caption}
-\usepackage{subcaption}
-\usepackage{standalone}
-\usepackage{environ}
-\usepackage{tikz}
-\input{../common/linsys.tex}
-\newcounter{beispiel}
-\newenvironment{beispiele}{
-\bgroup\smallskip\parindent0pt\bf Beispiele\egroup
-
-\begin{list}{\arabic{beispiel}.}
- {\usecounter{beispiel}
- \setlength{\labelsep}{5mm}
- \setlength{\rightmargin}{0pt}
-}}{\end{list}}
-\newcounter{uebungsaufgabe}
-% environment fuer uebungsaufgaben
-\newenvironment{uebungsaufgaben}{
-\begin{list}{\arabic{uebungsaufgabe}.}
- {\usecounter{uebungsaufgabe}
- \setlength{\labelwidth}{2cm}
- \setlength{\leftmargin}{0pt}
- \setlength{\labelsep}{5mm}
- \setlength{\rightmargin}{0pt}
- \setlength{\itemindent}{0pt}
-}}{\end{list}\vfill\pagebreak}
-\newenvironment{teilaufgaben}{
-\begin{enumerate}
-\renewcommand{\labelenumi}{\alph{enumi})}
-}{\end{enumerate}}
-% Loesung
-\NewEnviron{loesung}{%
-\begin{proof}[L"osung]%
-\renewcommand{\qedsymbol}{$\bigcirc$}
-\BODY
-\end{proof}}
-\NewEnviron{bewertung}{\relax}
-\NewEnviron{diskussion}{
-\BODY
-}
-\RenewEnviron{loesung}{\relax}
-\RenewEnviron{diskussion}{\relax}
-\newenvironment{hinweis}{%
-\renewcommand{\qedsymbol}{}
-\begin{proof}[Hinweis]}{\end{proof}}
-
-\begin{document}
-{\parindent0pt\hbox to\hsize{%
-Name: \hbox to7cm{\dotfill} Vorname: \dotfill}}
-\vspace{0.5cm}
-
-\section*{Kurztest 1}
-
-\begin{uebungsaufgaben}
-
-\item
-\input chapters/30-endlichekoerper/uebungsaufgaben/3003.tex
-\item
-\input chapters/30-endlichekoerper/uebungsaufgaben/3004.tex
-\item
-\input chapters/30-endlichekoerper/uebungsaufgaben/3005.tex
-
-\end{uebungsaufgaben}
-
-\end{document}
diff --git a/buch/test3.tex b/buch/test3.tex
deleted file mode 100644
index 977f345..0000000
--- a/buch/test3.tex
+++ /dev/null
@@ -1,91 +0,0 @@
-%
-% test3.tex -- Test 3
-%
-% (c) 2021 Prof. Dr. Andreas Mueller, OST
-%
-%\documentclass[a4paper,12pt]{book}
-\documentclass[a4paper,12pt]{article}
-\usepackage{geometry}
-\geometry{papersize={210mm,297mm},total={165mm,260mm}}
-\usepackage{ngerman}
-\usepackage[utf8]{inputenc}
-\usepackage[T1]{fontenc}
-\usepackage{times}
-\usepackage{amsmath}
-\usepackage{amssymb}
-\usepackage{amsfonts}
-\usepackage{amsthm}
-\usepackage{graphicx}
-\usepackage{fancyhdr}
-\usepackage{textcomp}
-\usepackage[all]{xy}
-\usepackage{txfonts}
-\usepackage{alltt}
-\usepackage{verbatim}
-\usepackage{paralist}
-\usepackage{makeidx}
-\usepackage{array}
-\usepackage{hyperref}
-\usepackage{caption}
-\usepackage{subcaption}
-\usepackage{standalone}
-\usepackage{environ}
-\usepackage{tikz}
-\input{../common/linsys.tex}
-\newcounter{beispiel}
-\newenvironment{beispiele}{
-\bgroup\smallskip\parindent0pt\bf Beispiele\egroup
-
-\begin{list}{\arabic{beispiel}.}
- {\usecounter{beispiel}
- \setlength{\labelsep}{5mm}
- \setlength{\rightmargin}{0pt}
-}}{\end{list}}
-\newcounter{uebungsaufgabe}
-% environment fuer uebungsaufgaben
-\newenvironment{uebungsaufgaben}{
-\begin{list}{\arabic{uebungsaufgabe}.}
- {\usecounter{uebungsaufgabe}
- \setlength{\labelwidth}{2cm}
- \setlength{\leftmargin}{0pt}
- \setlength{\labelsep}{5mm}
- \setlength{\rightmargin}{0pt}
- \setlength{\itemindent}{0pt}
-}}{\end{list}\vfill\pagebreak}
-\newenvironment{teilaufgaben}{
-\begin{enumerate}
-\renewcommand{\labelenumi}{\alph{enumi})}
-}{\end{enumerate}}
-% Loesung
-\NewEnviron{loesung}{%
-\begin{proof}[Lösung]%
-\renewcommand{\qedsymbol}{$\bigcirc$}
-\BODY
-\end{proof}}
-\NewEnviron{bewertung}{\relax}
-\NewEnviron{diskussion}{
-\BODY
-}
-\RenewEnviron{loesung}{\relax}
-\RenewEnviron{diskussion}{\relax}
-\newenvironment{hinweis}{%
-\renewcommand{\qedsymbol}{}
-\begin{proof}[Hinweis]}{\end{proof}}
-
-\begin{document}
-{\parindent0pt\hbox to\hsize{%
-Name: \hbox to7cm{\dotfill} Vorname: \dotfill}}
-\vspace{0.5cm}
-
-\section*{Kurztest 3}
-
-\begin{uebungsaufgaben}
-
-\item
-\input chapters/60-gruppen/uebungsaufgaben/6001.tex
-%\item
-%\input chapters/60-gruppen/uebungsaufgaben/6002.tex
-
-\end{uebungsaufgaben}
-
-\end{document}