diff options
Diffstat (limited to 'vorlesungen/slides/4')
-rw-r--r-- | vorlesungen/slides/4/Makefile.inc | 72 | ||||
-rw-r--r-- | vorlesungen/slides/4/chapter.tex | 62 | ||||
-rw-r--r-- | vorlesungen/slides/4/galois/aufloesbarkeit.tex | 240 | ||||
-rw-r--r-- | vorlesungen/slides/4/galois/automorphismus.tex | 236 | ||||
-rw-r--r-- | vorlesungen/slides/4/galois/erweiterung.tex | 130 | ||||
-rw-r--r-- | vorlesungen/slides/4/galois/images/Makefile | 24 | ||||
-rw-r--r-- | vorlesungen/slides/4/galois/images/common.inc | 178 | ||||
-rw-r--r-- | vorlesungen/slides/4/galois/images/wuerfel.pov | 18 | ||||
-rw-r--r-- | vorlesungen/slides/4/galois/images/wuerfel2.pov | 18 | ||||
-rw-r--r-- | vorlesungen/slides/4/galois/konstruktion.tex | 294 | ||||
-rw-r--r-- | vorlesungen/slides/4/galois/quadratur.tex | 132 | ||||
-rw-r--r-- | vorlesungen/slides/4/galois/radikale.tex | 138 | ||||
-rw-r--r-- | vorlesungen/slides/4/galois/sn.tex | 174 | ||||
-rw-r--r-- | vorlesungen/slides/4/galois/winkeldreiteilung.tex | 188 | ||||
-rw-r--r-- | vorlesungen/slides/4/galois/wuerfel.tex | 128 |
15 files changed, 1016 insertions, 1016 deletions
diff --git a/vorlesungen/slides/4/Makefile.inc b/vorlesungen/slides/4/Makefile.inc index 1ab27fa..5aac429 100644 --- a/vorlesungen/slides/4/Makefile.inc +++ b/vorlesungen/slides/4/Makefile.inc @@ -1,36 +1,36 @@ -
-#
-# Makefile.inc -- additional depencencies
-#
-# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-#
-chapter4 = \
- ../slides/4/ggt.tex \
- ../slides/4/euklidmatrix.tex \
- ../slides/4/euklidbeispiel.tex \
- ../slides/4/euklidtabelle.tex \
- ../slides/4/fp.tex \
- ../slides/4/division.tex \
- ../slides/4/gauss.tex \
- ../slides/4/dh.tex \
- ../slides/4/divisionpoly.tex \
- ../slides/4/euklidpoly.tex \
- ../slides/4/polynomefp.tex \
- ../slides/4/schieberegister.tex \
- ../slides/4/charakteristik.tex \
- ../slides/4/char2.tex \
- ../slides/4/frobenius.tex \
- ../slides/4/qundr.tex \
- ../slides/4/alpha.tex \
- ../slides/4/galois/erweiterung.tex \
- ../slides/4/galois/automorphismus.tex \
- ../slides/4/galois/konstruktion.tex \
- ../slides/4/galois/wuerfel.tex \
- ../slides/4/galois/winkeldreiteilung.tex \
- ../slides/4/galois/quadratur.tex \
- ../slides/4/galois/radikale.tex \
- ../slides/4/galois/aufloesbarkeit.tex \
- ../slides/4/galois/sn.tex \
- ../slides/4/chapter.tex
-
-
+ +# +# Makefile.inc -- additional depencencies +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +chapter4 = \ + ../slides/4/ggt.tex \ + ../slides/4/euklidmatrix.tex \ + ../slides/4/euklidbeispiel.tex \ + ../slides/4/euklidtabelle.tex \ + ../slides/4/fp.tex \ + ../slides/4/division.tex \ + ../slides/4/gauss.tex \ + ../slides/4/dh.tex \ + ../slides/4/divisionpoly.tex \ + ../slides/4/euklidpoly.tex \ + ../slides/4/polynomefp.tex \ + ../slides/4/schieberegister.tex \ + ../slides/4/charakteristik.tex \ + ../slides/4/char2.tex \ + ../slides/4/frobenius.tex \ + ../slides/4/qundr.tex \ + ../slides/4/alpha.tex \ + ../slides/4/galois/erweiterung.tex \ + ../slides/4/galois/automorphismus.tex \ + ../slides/4/galois/konstruktion.tex \ + ../slides/4/galois/wuerfel.tex \ + ../slides/4/galois/winkeldreiteilung.tex \ + ../slides/4/galois/quadratur.tex \ + ../slides/4/galois/radikale.tex \ + ../slides/4/galois/aufloesbarkeit.tex \ + ../slides/4/galois/sn.tex \ + ../slides/4/chapter.tex + + diff --git a/vorlesungen/slides/4/chapter.tex b/vorlesungen/slides/4/chapter.tex index 3015e7c..0691e39 100644 --- a/vorlesungen/slides/4/chapter.tex +++ b/vorlesungen/slides/4/chapter.tex @@ -1,31 +1,31 @@ -%
-% chapter.tex
-%
-% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi
-%
-\folie{4/ggt.tex}
-\folie{4/euklidmatrix.tex}
-\folie{4/euklidbeispiel.tex}
-\folie{4/euklidtabelle.tex}
-\folie{4/fp.tex}
-\folie{4/division.tex}
-\folie{4/gauss.tex}
-\folie{4/dh.tex}
-\folie{4/divisionpoly.tex}
-\folie{4/euklidpoly.tex}
-\folie{4/polynomefp.tex}
-\folie{4/alpha.tex}
-\folie{4/schieberegister.tex}
-\folie{4/charakteristik.tex}
-\folie{4/char2.tex}
-\folie{4/frobenius.tex}
-\folie{4/qundr.tex}
-\folie{4/galois/erweiterung.tex}
-\folie{4/galois/automorphismus.tex}
-\folie{4/galois/konstruktion.tex}
-\folie{4/galois/wuerfel.tex}
-\folie{4/galois/winkeldreiteilung.tex}
-\folie{4/galois/quadratur.tex}
-\folie{4/galois/radikale.tex}
-\folie{4/galois/aufloesbarkeit.tex}
-\folie{4/galois/sn.tex}
+% +% chapter.tex +% +% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi +% +\folie{4/ggt.tex} +\folie{4/euklidmatrix.tex} +\folie{4/euklidbeispiel.tex} +\folie{4/euklidtabelle.tex} +\folie{4/fp.tex} +\folie{4/division.tex} +\folie{4/gauss.tex} +\folie{4/dh.tex} +\folie{4/divisionpoly.tex} +\folie{4/euklidpoly.tex} +\folie{4/polynomefp.tex} +\folie{4/alpha.tex} +\folie{4/schieberegister.tex} +\folie{4/charakteristik.tex} +\folie{4/char2.tex} +\folie{4/frobenius.tex} +\folie{4/qundr.tex} +\folie{4/galois/erweiterung.tex} +\folie{4/galois/automorphismus.tex} +\folie{4/galois/konstruktion.tex} +\folie{4/galois/wuerfel.tex} +\folie{4/galois/winkeldreiteilung.tex} +\folie{4/galois/quadratur.tex} +\folie{4/galois/radikale.tex} +\folie{4/galois/aufloesbarkeit.tex} +\folie{4/galois/sn.tex} diff --git a/vorlesungen/slides/4/galois/aufloesbarkeit.tex b/vorlesungen/slides/4/galois/aufloesbarkeit.tex index 3d52b00..ef5902b 100644 --- a/vorlesungen/slides/4/galois/aufloesbarkeit.tex +++ b/vorlesungen/slides/4/galois/aufloesbarkeit.tex @@ -1,120 +1,120 @@ -%
-% aufloesbarkeit.tex
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\begin{frame}[t]
-\setlength{\abovedisplayskip}{5pt}
-\setlength{\belowdisplayskip}{5pt}
-\frametitle{Auflösbarkeit}
-\vspace{-20pt}
-\begin{columns}[t,onlytextwidth]
-\begin{column}{0.48\textwidth}
-\uncover<2->{%
-\begin{block}{Radikalerweiterung}
-Automorphismen $f\in \operatorname{Gal}(\Bbbk(\alpha)/\Bbbk)$
-einer Radikalerweiterung
-\[
-\Bbbk \subset \Bbbk(\alpha)
-\]
-sind festgelegt durch Wahl von $f(\alpha)$.
-
-\begin{itemize}
-\item<3-> Warum: Alle $f(\alpha^k)$ sind auch festgelegt
-\item<4-> $f(\alpha)$ muss eine andere Nullstelle des Minimalpolynoms sein
-\end{itemize}
-
-\end{block}}
-\uncover<8->{%
-\begin{block}{Irreduzibles Polynom $m(X)\in\mathbb{Q}[X]$}
-$\mathbb{Q}\subset \Bbbk$,
-$n$ verschiedene Nullstellen $\mathbb{C}$:
-\[
-\uncover<9->{
-\operatorname{Gal}(\Bbbk/\mathbb{Q})
-\cong
-S_n}
-\uncover<10->{
-\quad
-\text{auflösbar?}}
-\]
-\end{block}}
-\end{column}
-\begin{column}{0.48\textwidth}
-\begin{block}{\uncover<5->{Galois-Gruppen}}
-\begin{center}
-\begin{tikzpicture}[>=latex,thick]
-\def\s{1.2}
-
-\uncover<2->{
-\fill[color=blue!20] (-1.1,-0.3) rectangle (0.3,{5*\s+0.3});
-\node[color=blue] at (-0.7,{2.5*\s}) [rotate=90] {Radikalerweiterungen};
-}
-
-\node at (0,0) {$\mathbb{Q}$};
-\node at (0,{1*\s}) {$E_1$};
-\node at (0,{2*\s}) {$E_2$};
-\node at (0,{3*\s}) {$E_3$};
-\node at (0,{4*\s}) {$\vdots\mathstrut$};
-\node at (0,{5*\s}) {$\Bbbk$};
-\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{0*\s}) -- (0,{1*\s});
-\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{1*\s}) -- (0,{2*\s});
-\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{2*\s}) -- (0,{3*\s});
-\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{3*\s}) -- (0,{4*\s});
-\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{4*\s}) -- (0,{5*\s});
-
-\begin{scope}[xshift=0.5cm]
-\uncover<7->{
-\fill[color=red!20] (0,{0*\s-0.3}) rectangle (4.8,{5*\s+0.3});
-\node[color=red] at (4.5,{2.5*\s}) [rotate=90] {Auflösung der Galois-Gruppe};
-}
-\uncover<5->{
-\node at (0,{0*\s}) [right] {$\operatorname{Gal}(\Bbbk/\mathbb{Q})$};
-\node at (0,{1*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_1)$};
-\node at (0,{2*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_2)$};
-\node at (0,{3*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_3)$};
-\node at (1,{4*\s}) {$\vdots\mathstrut$};
-\node at (0,{5*\s}) [right] {$\operatorname{Gal}(\Bbbk/\Bbbk)$};
-\node at (1,{0.5*\s}) {$\cap\mathstrut$};
-\node at (1,{1.5*\s}) {$\cap\mathstrut$};
-\node at (1,{2.5*\s}) {$\cap\mathstrut$};
-\node at (1,{3.5*\s}) {$\cap\mathstrut$};
-\node at (1,{4.5*\s}) {$\cap\mathstrut$};
-}
-
-\uncover<6->{
-\begin{scope}[xshift=2.5cm]
-\node at (0,{0*\s}) {$G_n$};
-\node at (0,{1*\s}) {$G_{n-1}$};
-\node at (0,{2*\s}) {$G_{n-2}$};
-\node at (0,{3*\s}) {$G_{n-3}$};
-\node at (0,{5*\s}) {$G_0=\{e\}$};
-\node at (0,{0.5*\s}) {$\cap\mathstrut$};
-\node at (0,{1.5*\s}) {$\cap\mathstrut$};
-\node at (0,{2.5*\s}) {$\cap\mathstrut$};
-\node at (0,{3.5*\s}) {$\cap\mathstrut$};
-\node at (0,{4.5*\s}) {$\cap\mathstrut$};
-}
-
-\uncover<7->{
-\node[color=red] at (0.2,{0.5*\s+0.1}) [right] {\tiny $G_n/G_{n-1}$};
-\node[color=red] at (0.2,{0.5*\s-0.1}) [right] {\tiny abelsch};
-
-\node[color=red] at (0.2,{1.5*\s+0.1}) [right] {\tiny $G_{n-1}/G_{n-2}$};
-\node[color=red] at (0.2,{1.5*\s-0.1}) [right] {\tiny abelsch};
-
-\node[color=red] at (0.2,{2.5*\s+0.1}) [right] {\tiny $G_{n-2}/G_{n-3}$};
-\node[color=red] at (0.2,{2.5*\s-0.1}) [right] {\tiny abelsch};
-}
-
-\end{scope}
-\end{scope}
-
-
-
-\end{tikzpicture}
-\end{center}
-\end{block}
-\end{column}
-\end{columns}
-\end{frame}
+% +% aufloesbarkeit.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Auflösbarkeit} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\uncover<2->{% +\begin{block}{Radikalerweiterung} +Automorphismen $f\in \operatorname{Gal}(\Bbbk(\alpha)/\Bbbk)$ +einer Radikalerweiterung +\[ +\Bbbk \subset \Bbbk(\alpha) +\] +sind festgelegt durch Wahl von $f(\alpha)$. + +\begin{itemize} +\item<3-> Warum: Alle $f(\alpha^k)$ sind auch festgelegt +\item<4-> $f(\alpha)$ muss eine andere Nullstelle des Minimalpolynoms sein +\end{itemize} + +\end{block}} +\uncover<8->{% +\begin{block}{Irreduzibles Polynom $m(X)\in\mathbb{Q}[X]$} +$\mathbb{Q}\subset \Bbbk$, +$n$ verschiedene Nullstellen $\mathbb{C}$: +\[ +\uncover<9->{ +\operatorname{Gal}(\Bbbk/\mathbb{Q}) +\cong +S_n} +\uncover<10->{ +\quad +\text{auflösbar?}} +\] +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{\uncover<5->{Galois-Gruppen}} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\def\s{1.2} + +\uncover<2->{ +\fill[color=blue!20] (-1.1,-0.3) rectangle (0.3,{5*\s+0.3}); +\node[color=blue] at (-0.7,{2.5*\s}) [rotate=90] {Radikalerweiterungen}; +} + +\node at (0,0) {$\mathbb{Q}$}; +\node at (0,{1*\s}) {$E_1$}; +\node at (0,{2*\s}) {$E_2$}; +\node at (0,{3*\s}) {$E_3$}; +\node at (0,{4*\s}) {$\vdots\mathstrut$}; +\node at (0,{5*\s}) {$\Bbbk$}; +\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{0*\s}) -- (0,{1*\s}); +\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{1*\s}) -- (0,{2*\s}); +\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{2*\s}) -- (0,{3*\s}); +\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{3*\s}) -- (0,{4*\s}); +\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{4*\s}) -- (0,{5*\s}); + +\begin{scope}[xshift=0.5cm] +\uncover<7->{ +\fill[color=red!20] (0,{0*\s-0.3}) rectangle (4.8,{5*\s+0.3}); +\node[color=red] at (4.5,{2.5*\s}) [rotate=90] {Auflösung der Galois-Gruppe}; +} +\uncover<5->{ +\node at (0,{0*\s}) [right] {$\operatorname{Gal}(\Bbbk/\mathbb{Q})$}; +\node at (0,{1*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_1)$}; +\node at (0,{2*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_2)$}; +\node at (0,{3*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_3)$}; +\node at (1,{4*\s}) {$\vdots\mathstrut$}; +\node at (0,{5*\s}) [right] {$\operatorname{Gal}(\Bbbk/\Bbbk)$}; +\node at (1,{0.5*\s}) {$\cap\mathstrut$}; +\node at (1,{1.5*\s}) {$\cap\mathstrut$}; +\node at (1,{2.5*\s}) {$\cap\mathstrut$}; +\node at (1,{3.5*\s}) {$\cap\mathstrut$}; +\node at (1,{4.5*\s}) {$\cap\mathstrut$}; +} + +\uncover<6->{ +\begin{scope}[xshift=2.5cm] +\node at (0,{0*\s}) {$G_n$}; +\node at (0,{1*\s}) {$G_{n-1}$}; +\node at (0,{2*\s}) {$G_{n-2}$}; +\node at (0,{3*\s}) {$G_{n-3}$}; +\node at (0,{5*\s}) {$G_0=\{e\}$}; +\node at (0,{0.5*\s}) {$\cap\mathstrut$}; +\node at (0,{1.5*\s}) {$\cap\mathstrut$}; +\node at (0,{2.5*\s}) {$\cap\mathstrut$}; +\node at (0,{3.5*\s}) {$\cap\mathstrut$}; +\node at (0,{4.5*\s}) {$\cap\mathstrut$}; +} + +\uncover<7->{ +\node[color=red] at (0.2,{0.5*\s+0.1}) [right] {\tiny $G_n/G_{n-1}$}; +\node[color=red] at (0.2,{0.5*\s-0.1}) [right] {\tiny abelsch}; + +\node[color=red] at (0.2,{1.5*\s+0.1}) [right] {\tiny $G_{n-1}/G_{n-2}$}; +\node[color=red] at (0.2,{1.5*\s-0.1}) [right] {\tiny abelsch}; + +\node[color=red] at (0.2,{2.5*\s+0.1}) [right] {\tiny $G_{n-2}/G_{n-3}$}; +\node[color=red] at (0.2,{2.5*\s-0.1}) [right] {\tiny abelsch}; +} + +\end{scope} +\end{scope} + + + +\end{tikzpicture} +\end{center} +\end{block} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/4/galois/automorphismus.tex b/vorlesungen/slides/4/galois/automorphismus.tex index e59f9b9..6051813 100644 --- a/vorlesungen/slides/4/galois/automorphismus.tex +++ b/vorlesungen/slides/4/galois/automorphismus.tex @@ -1,118 +1,118 @@ -%
-% automorphismus.tex
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\begin{frame}[t]
-\setlength{\abovedisplayskip}{4pt}
-\setlength{\belowdisplayskip}{4pt}
-\frametitle{Galois-Gruppe}
-\vspace{-20pt}
-\begin{columns}[t,onlytextwidth]
-\begin{column}{0.40\textwidth}
-\begin{center}
-\begin{tikzpicture}[>=latex,thick]
-\def\s{3.0}
-\begin{scope}[xshift=-1.5cm]
-\node at (0,{\s+0.1}) [above] {Körpererweiterung\strut};
-\node at (0,{\s}) {$G$};
-\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{-\s}) -- (0,0);
-\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{\s}) -- (0,0);
-\node at (0,{-0.5*\s}) [left] {$[F:E]$};
-\node at (0,{0.5*\s}) [left] {$[G:F]$};
-\node at (0,0) {$F$};
-\node at (0,{-\s}) {$E$};
-\end{scope}
-\uncover<3->{
-\begin{scope}[xshift=1.8cm]
-\node at (0,{\s+0.1}) [above] {Gruppe\strut};
-\fill (0,{-\s}) circle[radius=0.06];
-\fill (0,0) circle[radius=0.06];
-\fill (0,{\s}) circle[radius=0.06];
-\draw[shorten >= 0.1cm,shorten <= 0.1cm]
- (0,{-\s}) to[out=100,in=-100] (0,{\s});
-\draw[shorten >= 0.1cm,shorten <= 0.1cm]
- (0,{-\s}) to[out=80,in=-80] (0,0);
-\draw[shorten >= 0.1cm,shorten <= 0.1cm]
- (0,0) to[out=80,in=-80] (0,{\s});
-\node at (-0.6,0) [rotate=90] {$\operatorname{Gal}(G/E)$};
-\node at (0.45,{0.5*\s}) [rotate=90] {$\operatorname{Gal}(G/F)$};
-\node at (0.45,{-0.5*\s}) [rotate=90] {$\operatorname{Gal}(F/E)$};
-\end{scope}
-\draw[->,color=red!20,line width=14pt] (-1.4,{0.6*\s}) -- (1.4,{0.6*\s});
-\node[color=red] at (0,{0.6*\s}) {$\operatorname{Gal}$};
-}
-\uncover<4->{
-\draw[<-,color=blue!20,line width=14pt] (-1.4,{-0.6*\s}) -- (1.4,{-0.6*\s});
-\node[color=blue] at (0,{-0.6*\s}) {$\operatorname{Fix}, F^H$};
-}
-\end{tikzpicture}
-\end{center}
-\end{column}
-\begin{column}{0.56\textwidth}
-\uncover<2->{%
-\begin{block}{Automorphismus}
-\vspace{-10pt}
-\[
-\operatorname{Aut}(F)
-=
-\left\{
-f\colon F\to F
-\left|
-\begin{aligned}
-f(x+y)&=f(x)+f(y)\\
-f(xy)&=f(x)f(y)
-\end{aligned}
-\right.
-\right\}
-\]
-\end{block}}
-\vspace{-10pt}
-\uncover<3->{%
-\begin{block}{Galois-Gruppe}
-Automorphismen, die $E$ festlassen
-\[
-{\color{red}
-\operatorname{Gal}(F/E)
-}
-=
-\left\{
-\varphi\in\operatorname{Aut}(F)\;|\; \varphi(x)=x\forall x\in E
-\right\}
-\]
-\end{block}}
-\vspace{-10pt}
-\uncover<4->{%
-\begin{block}{Fixkörper}
-$H\subset \operatorname{Aut}(F)$:
-\begin{align*}
-{\color{blue}F^H}
-&=
-\{x\in F\;|\; hx = x\forall h\in H\}
-=\operatorname{Fix}(H)
-\end{align*}
-\end{block}}
-\vspace{-13pt}
-\uncover<5->{%
-\begin{block}{Beispiel}
-\begin{itemize}
-\item<6->
-\(
-\operatorname{Gal}(\mathbb{C}/\mathbb{R})
-=
-\{
-\operatorname{id}_{\mathbb{C}},
-\operatorname{conj}\colon z\mapsto\overline{z}
-\}
-\)
-\item<7->
-\(
-\mathbb{C}^{\operatorname{conj}}
-=
-\mathbb{R}
-\)
-\end{itemize}
-\end{block}}
-\end{column}
-\end{columns}
-\end{frame}
+% +% automorphismus.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\setlength{\abovedisplayskip}{4pt} +\setlength{\belowdisplayskip}{4pt} +\frametitle{Galois-Gruppe} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.40\textwidth} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\def\s{3.0} +\begin{scope}[xshift=-1.5cm] +\node at (0,{\s+0.1}) [above] {Körpererweiterung\strut}; +\node at (0,{\s}) {$G$}; +\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{-\s}) -- (0,0); +\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{\s}) -- (0,0); +\node at (0,{-0.5*\s}) [left] {$[F:E]$}; +\node at (0,{0.5*\s}) [left] {$[G:F]$}; +\node at (0,0) {$F$}; +\node at (0,{-\s}) {$E$}; +\end{scope} +\uncover<3->{ +\begin{scope}[xshift=1.8cm] +\node at (0,{\s+0.1}) [above] {Gruppe\strut}; +\fill (0,{-\s}) circle[radius=0.06]; +\fill (0,0) circle[radius=0.06]; +\fill (0,{\s}) circle[radius=0.06]; +\draw[shorten >= 0.1cm,shorten <= 0.1cm] + (0,{-\s}) to[out=100,in=-100] (0,{\s}); +\draw[shorten >= 0.1cm,shorten <= 0.1cm] + (0,{-\s}) to[out=80,in=-80] (0,0); +\draw[shorten >= 0.1cm,shorten <= 0.1cm] + (0,0) to[out=80,in=-80] (0,{\s}); +\node at (-0.6,0) [rotate=90] {$\operatorname{Gal}(G/E)$}; +\node at (0.45,{0.5*\s}) [rotate=90] {$\operatorname{Gal}(G/F)$}; +\node at (0.45,{-0.5*\s}) [rotate=90] {$\operatorname{Gal}(F/E)$}; +\end{scope} +\draw[->,color=red!20,line width=14pt] (-1.4,{0.6*\s}) -- (1.4,{0.6*\s}); +\node[color=red] at (0,{0.6*\s}) {$\operatorname{Gal}$}; +} +\uncover<4->{ +\draw[<-,color=blue!20,line width=14pt] (-1.4,{-0.6*\s}) -- (1.4,{-0.6*\s}); +\node[color=blue] at (0,{-0.6*\s}) {$\operatorname{Fix}, F^H$}; +} +\end{tikzpicture} +\end{center} +\end{column} +\begin{column}{0.56\textwidth} +\uncover<2->{% +\begin{block}{Automorphismus} +\vspace{-10pt} +\[ +\operatorname{Aut}(F) += +\left\{ +f\colon F\to F +\left| +\begin{aligned} +f(x+y)&=f(x)+f(y)\\ +f(xy)&=f(x)f(y) +\end{aligned} +\right. +\right\} +\] +\end{block}} +\vspace{-10pt} +\uncover<3->{% +\begin{block}{Galois-Gruppe} +Automorphismen, die $E$ festlassen +\[ +{\color{red} +\operatorname{Gal}(F/E) +} += +\left\{ +\varphi\in\operatorname{Aut}(F)\;|\; \varphi(x)=x\forall x\in E +\right\} +\] +\end{block}} +\vspace{-10pt} +\uncover<4->{% +\begin{block}{Fixkörper} +$H\subset \operatorname{Aut}(F)$: +\begin{align*} +{\color{blue}F^H} +&= +\{x\in F\;|\; hx = x\forall h\in H\} +=\operatorname{Fix}(H) +\end{align*} +\end{block}} +\vspace{-13pt} +\uncover<5->{% +\begin{block}{Beispiel} +\begin{itemize} +\item<6-> +\( +\operatorname{Gal}(\mathbb{C}/\mathbb{R}) += +\{ +\operatorname{id}_{\mathbb{C}}, +\operatorname{conj}\colon z\mapsto\overline{z} +\} +\) +\item<7-> +\( +\mathbb{C}^{\operatorname{conj}} += +\mathbb{R} +\) +\end{itemize} +\end{block}} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/4/galois/erweiterung.tex b/vorlesungen/slides/4/galois/erweiterung.tex index 20b278e..6909849 100644 --- a/vorlesungen/slides/4/galois/erweiterung.tex +++ b/vorlesungen/slides/4/galois/erweiterung.tex @@ -1,65 +1,65 @@ -%
-% erweiterung.tex
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\begin{frame}[t]
-\setlength{\abovedisplayskip}{5pt}
-\setlength{\belowdisplayskip}{5pt}
-\frametitle{Körpererweiterungen}
-\vspace{-20pt}
-\begin{columns}[t,onlytextwidth]
-\begin{column}{0.48\textwidth}
-\begin{block}{Körpererweiterung}
-$E,F$ Körper: $E\subset F$
-\end{block}
-\uncover<6->{%
-\begin{block}{Vektorraum}
-$F$ ist ein Vektorraum über $E$
-\end{block}}
-\uncover<7->{%
-\begin{block}{Endliche Körpererweiterung}
-$\dim_E F < \infty$
-\end{block}}
-\uncover<8->{%
-\begin{block}{Adjunktion eines $\alpha$}
-$\Bbbk(\alpha)$ kleinster Körper, der $\Bbbk$ und
-$\alpha$ enthält.
-\end{block}}
-\uncover<9->{%
-\begin{block}{Algebraische Erweiterung}
-$\alpha$ algebraisch über $\Bbbk$, i.~e.~Nullstelle von
-$m(X)\in\Bbbk[X]$
-\end{block}}
-\end{column}
-\begin{column}{0.48\textwidth}
-\uncover<2->{%
-\begin{block}{Beispiele}
-\begin{enumerate}
-\item<3->
-$\mathbb{R} \subset \mathbb{R}(i) = \mathbb{C}$
-\item<4->
-$\mathbb{Q}\subset \mathbb{Q}(\sqrt{2})$
-\item<5->
-$\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[4]{2})$
-\end{enumerate}
-\end{block}}
-\uncover<7->{%
-\begin{block}{Grad}
-$E\subset F$ heisst Körpererweiterung vom Grad $n$, falls
-\[
-\dim_E F = n =: [F:E]
-\]
-\uncover<8->{%
-Gleichbedeutend: $\deg m(X) = n$}
-\uncover<10->{%
-\[
-E\subset F\subset G
-\Rightarrow
-[G:E] = [G:F]\cdot [F:E]
-\]
-(in unseren Fällen)}
-\end{block}}
-\end{column}
-\end{columns}
-\end{frame}
+% +% erweiterung.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Körpererweiterungen} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Körpererweiterung} +$E,F$ Körper: $E\subset F$ +\end{block} +\uncover<6->{% +\begin{block}{Vektorraum} +$F$ ist ein Vektorraum über $E$ +\end{block}} +\uncover<7->{% +\begin{block}{Endliche Körpererweiterung} +$\dim_E F < \infty$ +\end{block}} +\uncover<8->{% +\begin{block}{Adjunktion eines $\alpha$} +$\Bbbk(\alpha)$ kleinster Körper, der $\Bbbk$ und +$\alpha$ enthält. +\end{block}} +\uncover<9->{% +\begin{block}{Algebraische Erweiterung} +$\alpha$ algebraisch über $\Bbbk$, i.~e.~Nullstelle von +$m(X)\in\Bbbk[X]$ +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<2->{% +\begin{block}{Beispiele} +\begin{enumerate} +\item<3-> +$\mathbb{R} \subset \mathbb{R}(i) = \mathbb{C}$ +\item<4-> +$\mathbb{Q}\subset \mathbb{Q}(\sqrt{2})$ +\item<5-> +$\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[4]{2})$ +\end{enumerate} +\end{block}} +\uncover<7->{% +\begin{block}{Grad} +$E\subset F$ heisst Körpererweiterung vom Grad $n$, falls +\[ +\dim_E F = n =: [F:E] +\] +\uncover<8->{% +Gleichbedeutend: $\deg m(X) = n$} +\uncover<10->{% +\[ +E\subset F\subset G +\Rightarrow +[G:E] = [G:F]\cdot [F:E] +\] +(in unseren Fällen)} +\end{block}} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/4/galois/images/Makefile b/vorlesungen/slides/4/galois/images/Makefile index fd197ce..444944e 100644 --- a/vorlesungen/slides/4/galois/images/Makefile +++ b/vorlesungen/slides/4/galois/images/Makefile @@ -1,12 +1,12 @@ -#
-# Makefile
-#
-# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-#
-all: wuerfel2.png wuerfel.png
-
-wuerfel.png: wuerfel.pov common.inc
- povray +A0.1 -W1080 -H1080 -Owuerfel.png wuerfel.pov
-
-wuerfel2.png: wuerfel2.pov common.inc
- povray +A0.1 -W1080 -H1080 -Owuerfel2.png wuerfel2.pov
+# +# Makefile +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +all: wuerfel2.png wuerfel.png + +wuerfel.png: wuerfel.pov common.inc + povray +A0.1 -W1080 -H1080 -Owuerfel.png wuerfel.pov + +wuerfel2.png: wuerfel2.pov common.inc + povray +A0.1 -W1080 -H1080 -Owuerfel2.png wuerfel2.pov diff --git a/vorlesungen/slides/4/galois/images/common.inc b/vorlesungen/slides/4/galois/images/common.inc index 44ee4c8..6cfcabe 100644 --- a/vorlesungen/slides/4/galois/images/common.inc +++ b/vorlesungen/slides/4/galois/images/common.inc @@ -1,89 +1,89 @@ -//
-// common.inc
-//
-// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-//
-#version 3.7;
-#include "colors.inc"
-#include "textures.inc"
-#include "stones.inc"
-
-global_settings {
- assumed_gamma 1
-}
-
-#declare imagescale = 0.133;
-#declare O = <0, 0, 0>;
-#declare E = <1, 1, 1>;
-#declare a = pow(2, 1/3);
-#declare at = 0.02;
-
-camera {
- location <3, 2, 12>
- look_at E * (a / 2) * 0.93
- right x * imagescale
- up y * imagescale
-}
-
-light_source {
- <11, 20, 16> color White
- area_light <1,0,0> <0,0,1>, 10, 10
- adaptive 1
- jitter
-}
-
-sky_sphere {
- pigment {
- color rgb<1,1,1>
- }
-}
-
-#macro wuerfelgitter(A, AT)
- cylinder { O, <A, 0, 0>, AT }
- cylinder { O, <0, A, 0>, AT }
- cylinder { O, <0, 0, A>, AT }
- cylinder { <A, 0, 0>, <A, A, 0>, AT }
- cylinder { <A, 0, 0>, <A, 0, A>, AT }
- cylinder { <0, A, 0>, <A, A, 0>, AT }
- cylinder { <0, A, 0>, <0, A, A>, AT }
- cylinder { <0, 0, A>, <A, 0, A>, AT }
- cylinder { <0, 0, A>, <0, A, A>, AT }
- cylinder { <A, A, 0>, <A, A, A>, AT }
- cylinder { <A, 0, A>, <A, A, A>, AT }
- cylinder { <0, A, A>, <A, A, A>, AT }
- sphere { <0, 0, 0>, AT }
- sphere { <A, 0, 0>, AT }
- sphere { <0, A, 0>, AT }
- sphere { <0, 0, A>, AT }
- sphere { <A, A, 0>, AT }
- sphere { <A, 0, A>, AT }
- sphere { <0, A, A>, AT }
- sphere { <A, A, A>, AT }
-#end
-
-#macro wuerfel()
- union {
- box { O, E }
- wuerfelgitter(1, 0.5*at)
- texture {
- T_Grnt24
- }
- finish {
- specular 0.9
- metallic
- }
- }
-#end
-
-#macro wuerfel2()
- union {
- wuerfelgitter(a, at)
- pigment {
- color rgb<0.8,0.4,0.4>
- }
- finish {
- specular 0.9
- metallic
- }
- }
-#end
+// +// common.inc +// +// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#version 3.7; +#include "colors.inc" +#include "textures.inc" +#include "stones.inc" + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.133; +#declare O = <0, 0, 0>; +#declare E = <1, 1, 1>; +#declare a = pow(2, 1/3); +#declare at = 0.02; + +camera { + location <3, 2, 12> + look_at E * (a / 2) * 0.93 + right x * imagescale + up y * imagescale +} + +light_source { + <11, 20, 16> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + +#macro wuerfelgitter(A, AT) + cylinder { O, <A, 0, 0>, AT } + cylinder { O, <0, A, 0>, AT } + cylinder { O, <0, 0, A>, AT } + cylinder { <A, 0, 0>, <A, A, 0>, AT } + cylinder { <A, 0, 0>, <A, 0, A>, AT } + cylinder { <0, A, 0>, <A, A, 0>, AT } + cylinder { <0, A, 0>, <0, A, A>, AT } + cylinder { <0, 0, A>, <A, 0, A>, AT } + cylinder { <0, 0, A>, <0, A, A>, AT } + cylinder { <A, A, 0>, <A, A, A>, AT } + cylinder { <A, 0, A>, <A, A, A>, AT } + cylinder { <0, A, A>, <A, A, A>, AT } + sphere { <0, 0, 0>, AT } + sphere { <A, 0, 0>, AT } + sphere { <0, A, 0>, AT } + sphere { <0, 0, A>, AT } + sphere { <A, A, 0>, AT } + sphere { <A, 0, A>, AT } + sphere { <0, A, A>, AT } + sphere { <A, A, A>, AT } +#end + +#macro wuerfel() + union { + box { O, E } + wuerfelgitter(1, 0.5*at) + texture { + T_Grnt24 + } + finish { + specular 0.9 + metallic + } + } +#end + +#macro wuerfel2() + union { + wuerfelgitter(a, at) + pigment { + color rgb<0.8,0.4,0.4> + } + finish { + specular 0.9 + metallic + } + } +#end diff --git a/vorlesungen/slides/4/galois/images/wuerfel.pov b/vorlesungen/slides/4/galois/images/wuerfel.pov index a0466f3..a5db465 100644 --- a/vorlesungen/slides/4/galois/images/wuerfel.pov +++ b/vorlesungen/slides/4/galois/images/wuerfel.pov @@ -1,9 +1,9 @@ -//
-// wuerfel.pov
-//
-// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-//
-#include "common.inc"
-
-wuerfel()
-
+// +// wuerfel.pov +// +// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +wuerfel() + diff --git a/vorlesungen/slides/4/galois/images/wuerfel2.pov b/vorlesungen/slides/4/galois/images/wuerfel2.pov index a11bab0..ac32b2f 100644 --- a/vorlesungen/slides/4/galois/images/wuerfel2.pov +++ b/vorlesungen/slides/4/galois/images/wuerfel2.pov @@ -1,9 +1,9 @@ -//
-// wuerfel.pov
-//
-// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-//
-#include "common.inc"
-
-wuerfel()
-wuerfel2()
+// +// wuerfel.pov +// +// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +wuerfel() +wuerfel2() diff --git a/vorlesungen/slides/4/galois/konstruktion.tex b/vorlesungen/slides/4/galois/konstruktion.tex index b461d44..094b570 100644 --- a/vorlesungen/slides/4/galois/konstruktion.tex +++ b/vorlesungen/slides/4/galois/konstruktion.tex @@ -1,147 +1,147 @@ -%
-% konstruktion.tex
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\begin{frame}[t]
-\frametitle{Konstruktion mit Zirkel und Lineal}
-\vspace{-20pt}
-\begin{columns}[t,onlytextwidth]
-\begin{column}{0.48\textwidth}
-\begin{block}{Strahlensatz}
-\uncover<6->{%
-Jedes beliebige rationale Streckenverhältnis $\frac{p}{q}$
-kann mit Zirkel und Lineal konstruiert werden.}
-\end{block}
-\end{column}
-\begin{column}{0.48\textwidth}
-\uncover<7->{%
-\begin{block}{Kreis--Gerade}
-Aus $c$ und $a$ konstruiere $b=\sqrt{c^2-a^2}$
-\uncover<13->{%
-$\Rightarrow$ jede beliebige Quadratwurzel kann konstruiert werden}
-\end{block}}
-\end{column}
-\end{columns}
-\begin{columns}[t,onlytextwidth]
-\begin{column}{0.48\textwidth}
-\begin{center}
-\begin{tikzpicture}[>=latex,thick]
-\def\s{0.5}
-\def\t{0.45}
-
-\coordinate (A) at (0,0);
-\coordinate (B) at ({10*\t},0);
-
-\uncover<2->{
- \draw (0,0) -- (30:{10.5*\s});
-}
-
-\uncover<3->{
- \foreach \x in {0,...,10}{
- \fill (30:{\x*\s}) circle[radius=0.03];
- }
- \foreach \x in {0,1,2,3,4,7,8,9}{
- \node at (30:{\x*\s}) [above] {\tiny $\x$};
- }
- \node at (30:{10*\s}) [above right] {$q=10$};
-}
-
-\uncover<4->{
- \foreach \x in {1,...,10}{
- \fill (0:{\x*\t}) circle[radius=0.03];
- \draw[->,line width=0.2pt] (30:{\x*\s}) -- (0:{\x*\t});
- }
-}
-
-\draw (A) -- (0:{10.5*\t});
-\node at (A) [below left] {$A$};
-\node at (B) [below right] {$B$};
-\fill (A) circle[radius=0.05];
-\fill (B) circle[radius=0.05];
-
-\uncover<5->{
- \node at (30:{6*\s}) [above left] {$p=6$};
- \draw[line width=0.2pt] (0,0) -- (0,-0.4);
- \draw[line width=0.2pt] ({6*\t},0) -- ({6*\t},-0.4);
- \draw[<->] (0,-0.3) -- ({6*\t},-0.3);
- \node at ({3*\t},-0.4) [below]
- {$\displaystyle\frac{p}{q}\cdot\overline{AB}$};
-}
-
-\end{tikzpicture}
-\end{center}
-\end{column}
-\begin{column}{0.48\textwidth}
-\uncover<8->{%
-\begin{center}
-\begin{tikzpicture}[>=latex,thick]
-
-%\foreach \x in {8,...,14}{
-% \only<\x>{\node at (4,4) {$\x$};}
-%}
-
-\def\r{4}
-\def\a{50}
-
-\coordinate (A) at ({\r*cos(\a)},0);
-
-\uncover<10->{
- \fill[color=gray] (\r,0) -- (\r,0.3) arc (90:180:0.3) -- cycle;
- \fill[color=gray]
- (95:\r) -- ($(95:\r)+(185:0.3)$) arc (185:275:0.3) -- cycle;
-}
-
-\draw[->] (0,0) -- (95:\r);
-\node at (95:{0.5*\r}) [left] {$c$};
-
-\begin{scope}
- \clip (-1,-0.3) rectangle (4.5,4.1);
- \uncover<10->{
- \draw (-1,0) -- (5,0);
- \draw[->] (0,0) -- (\r,0);
- \draw (0,0) circle[radius=\r];
- \draw ({\r*cos(\a)},-1) -- ({\r*cos(\a)},5);
- }
-\end{scope}
-
-\uncover<11->{
- \fill[color=blue!20] (0,0) -- (A) -- (\a:\r) -- cycle;
-}
-
-\uncover<9->{
- \fill[color=gray!80] (A) -- ($(A)+(0,0.5)$) arc (90:180:0.5) -- cycle;
- \fill[color=gray!120] ($(A)+(-0.2,0.2)$) circle[radius=0.07];
- \draw ({\r*cos(\a)},-0.3) -- ({\r*cos(\a)},4.1);
-}
-
-\uncover<11->{
- \draw[color=blue,line width=1.4pt] (0,0) -- (\a:\r);
- \node[color=blue] at (\a:{0.5*\r}) [above left] {$c$};
-}
-
-\draw[color=blue,line width=1.4pt] (0,0) -- ({\r*cos(\a)},0);
-\fill[color=blue] (0,0) circle[radius=0.04];
-\fill[color=blue] (A) circle[radius=0.04];
-\node[color=blue] at ({0.5*\r*cos(\a)},0) [below] {$a$};
-
-\uncover<12->{
- \fill[color=white,opacity=0.8]
- ({\r*cos(\a)+0.1},{0.5*\r*sin(\a)-0.25})
- rectangle
- ({\r*cos(\a)+2},{0.5*\r*sin(\a)+0.25});
-
- \node[color=red] at ({\r*cos(\a)},{0.5*\r*sin(\a)}) [right]
- {$b=\sqrt{c^2-a^2}$};
- \draw[color=red,line width=1.4pt] ({\r*cos(\a)},0) -- (\a:\r);
- \fill[color=red] (\a:\r) circle[radius=0.05];
- \fill[color=red] (A) circle[radius=0.05];
-}
-
-\end{tikzpicture}
-\end{center}}
-\end{column}
-\end{columns}
-\uncover<14->{{\usebeamercolor[fg]{title}Folgerung:}
-Konstruierbar sind Körpererweiterungen $[F:E] = 2^l$}
-\end{frame}
+% +% konstruktion.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\frametitle{Konstruktion mit Zirkel und Lineal} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Strahlensatz} +\uncover<6->{% +Jedes beliebige rationale Streckenverhältnis $\frac{p}{q}$ +kann mit Zirkel und Lineal konstruiert werden.} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<7->{% +\begin{block}{Kreis--Gerade} +Aus $c$ und $a$ konstruiere $b=\sqrt{c^2-a^2}$ +\uncover<13->{% +$\Rightarrow$ jede beliebige Quadratwurzel kann konstruiert werden} +\end{block}} +\end{column} +\end{columns} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\def\s{0.5} +\def\t{0.45} + +\coordinate (A) at (0,0); +\coordinate (B) at ({10*\t},0); + +\uncover<2->{ + \draw (0,0) -- (30:{10.5*\s}); +} + +\uncover<3->{ + \foreach \x in {0,...,10}{ + \fill (30:{\x*\s}) circle[radius=0.03]; + } + \foreach \x in {0,1,2,3,4,7,8,9}{ + \node at (30:{\x*\s}) [above] {\tiny $\x$}; + } + \node at (30:{10*\s}) [above right] {$q=10$}; +} + +\uncover<4->{ + \foreach \x in {1,...,10}{ + \fill (0:{\x*\t}) circle[radius=0.03]; + \draw[->,line width=0.2pt] (30:{\x*\s}) -- (0:{\x*\t}); + } +} + +\draw (A) -- (0:{10.5*\t}); +\node at (A) [below left] {$A$}; +\node at (B) [below right] {$B$}; +\fill (A) circle[radius=0.05]; +\fill (B) circle[radius=0.05]; + +\uncover<5->{ + \node at (30:{6*\s}) [above left] {$p=6$}; + \draw[line width=0.2pt] (0,0) -- (0,-0.4); + \draw[line width=0.2pt] ({6*\t},0) -- ({6*\t},-0.4); + \draw[<->] (0,-0.3) -- ({6*\t},-0.3); + \node at ({3*\t},-0.4) [below] + {$\displaystyle\frac{p}{q}\cdot\overline{AB}$}; +} + +\end{tikzpicture} +\end{center} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<8->{% +\begin{center} +\begin{tikzpicture}[>=latex,thick] + +%\foreach \x in {8,...,14}{ +% \only<\x>{\node at (4,4) {$\x$};} +%} + +\def\r{4} +\def\a{50} + +\coordinate (A) at ({\r*cos(\a)},0); + +\uncover<10->{ + \fill[color=gray] (\r,0) -- (\r,0.3) arc (90:180:0.3) -- cycle; + \fill[color=gray] + (95:\r) -- ($(95:\r)+(185:0.3)$) arc (185:275:0.3) -- cycle; +} + +\draw[->] (0,0) -- (95:\r); +\node at (95:{0.5*\r}) [left] {$c$}; + +\begin{scope} + \clip (-1,-0.3) rectangle (4.5,4.1); + \uncover<10->{ + \draw (-1,0) -- (5,0); + \draw[->] (0,0) -- (\r,0); + \draw (0,0) circle[radius=\r]; + \draw ({\r*cos(\a)},-1) -- ({\r*cos(\a)},5); + } +\end{scope} + +\uncover<11->{ + \fill[color=blue!20] (0,0) -- (A) -- (\a:\r) -- cycle; +} + +\uncover<9->{ + \fill[color=gray!80] (A) -- ($(A)+(0,0.5)$) arc (90:180:0.5) -- cycle; + \fill[color=gray!120] ($(A)+(-0.2,0.2)$) circle[radius=0.07]; + \draw ({\r*cos(\a)},-0.3) -- ({\r*cos(\a)},4.1); +} + +\uncover<11->{ + \draw[color=blue,line width=1.4pt] (0,0) -- (\a:\r); + \node[color=blue] at (\a:{0.5*\r}) [above left] {$c$}; +} + +\draw[color=blue,line width=1.4pt] (0,0) -- ({\r*cos(\a)},0); +\fill[color=blue] (0,0) circle[radius=0.04]; +\fill[color=blue] (A) circle[radius=0.04]; +\node[color=blue] at ({0.5*\r*cos(\a)},0) [below] {$a$}; + +\uncover<12->{ + \fill[color=white,opacity=0.8] + ({\r*cos(\a)+0.1},{0.5*\r*sin(\a)-0.25}) + rectangle + ({\r*cos(\a)+2},{0.5*\r*sin(\a)+0.25}); + + \node[color=red] at ({\r*cos(\a)},{0.5*\r*sin(\a)}) [right] + {$b=\sqrt{c^2-a^2}$}; + \draw[color=red,line width=1.4pt] ({\r*cos(\a)},0) -- (\a:\r); + \fill[color=red] (\a:\r) circle[radius=0.05]; + \fill[color=red] (A) circle[radius=0.05]; +} + +\end{tikzpicture} +\end{center}} +\end{column} +\end{columns} +\uncover<14->{{\usebeamercolor[fg]{title}Folgerung:} +Konstruierbar sind Körpererweiterungen $[F:E] = 2^l$} +\end{frame} diff --git a/vorlesungen/slides/4/galois/quadratur.tex b/vorlesungen/slides/4/galois/quadratur.tex index f9510ba..f5763b9 100644 --- a/vorlesungen/slides/4/galois/quadratur.tex +++ b/vorlesungen/slides/4/galois/quadratur.tex @@ -1,66 +1,66 @@ -%
-% quadratur.tex
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\begin{frame}[t]
-\frametitle{Quadratur des Kreises}
-\vspace{-20pt}
-\begin{columns}[t,onlytextwidth]
-\begin{column}{0.44\textwidth}
-\begin{center}
-\uncover<2->{%
-\begin{tikzpicture}[>=latex,thick]
-
-\def\r{2.8}
-\pgfmathparse{sqrt(3.14159)*\r/2}
-\xdef\s{\pgfmathresult}
-
-\fill[color=blue!20] (-\s,-\s) rectangle (\s,\s);
-\fill[color=red!40,opacity=0.5] (0,0) circle[radius=\r];
-
-\uncover<3->{
- \draw[->,color=red] (0,0) -- (50:\r);
- \fill[color=red] (0,0) circle[radius=0.04];
- \node[color=red] at (50:{0.5*\r}) [below right] {$r$};
-}
-
-\uncover<4->{
- \draw[line width=0.3pt] (-\s,-\s) -- (-\s,{-\s-0.7});
- \draw[line width=0.3pt] (\s,-\s) -- (\s,{-\s-0.7});
- \draw[<->,color=blue] (-\s,{-\s-0.6}) -- (\s,{-\s-0.6});
- \node[color=blue] at (0,{-\s-0.6}) [below] {$l$};
-}
-
-\uncover<5->{
- \node at (0,{-\s/2}) {${\color{red}\pi r^2}={\color{blue}l^2}
- \;\Rightarrow\;
- {\color{blue}l}={\color{red}\sqrt{\pi}r}$};
-}
-
-\end{tikzpicture}}
-\end{center}
-\end{column}
-\begin{column}{0.52\textwidth}
-\begin{block}{Aufgabe}
-Konstruiere ein zu einem Kreis flächengleiches Quadrat
-\end{block}
-\uncover<6->{%
-\begin{block}{Modifizierte Aufgabe}
-Konstruiere eine Strecke, deren Länge Lösung der Gleichung
-$x^2-\pi=0$ ist.
-\end{block}}
-\uncover<7->{%
-\begin{proof}[Unmöglichkeitsbeweis mit Widerspruch]
-\begin{itemize}
-\item<8-> Lösung in einem Erweiterungskörper
-\item<9-> Lösung ist Nullstelle eines Polynoms
-\item<10-> Lösung ist algebraisch
-\item<11-> $\pi$ ist {\bf nicht} algebraisch
-\uncover<12->{(Lindemann 1882\only<13>{, Weierstrass 1885})}
-\qedhere
-\end{itemize}
-\end{proof}}
-\end{column}
-\end{columns}
-\end{frame}
+% +% quadratur.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\frametitle{Quadratur des Kreises} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.44\textwidth} +\begin{center} +\uncover<2->{% +\begin{tikzpicture}[>=latex,thick] + +\def\r{2.8} +\pgfmathparse{sqrt(3.14159)*\r/2} +\xdef\s{\pgfmathresult} + +\fill[color=blue!20] (-\s,-\s) rectangle (\s,\s); +\fill[color=red!40,opacity=0.5] (0,0) circle[radius=\r]; + +\uncover<3->{ + \draw[->,color=red] (0,0) -- (50:\r); + \fill[color=red] (0,0) circle[radius=0.04]; + \node[color=red] at (50:{0.5*\r}) [below right] {$r$}; +} + +\uncover<4->{ + \draw[line width=0.3pt] (-\s,-\s) -- (-\s,{-\s-0.7}); + \draw[line width=0.3pt] (\s,-\s) -- (\s,{-\s-0.7}); + \draw[<->,color=blue] (-\s,{-\s-0.6}) -- (\s,{-\s-0.6}); + \node[color=blue] at (0,{-\s-0.6}) [below] {$l$}; +} + +\uncover<5->{ + \node at (0,{-\s/2}) {${\color{red}\pi r^2}={\color{blue}l^2} + \;\Rightarrow\; + {\color{blue}l}={\color{red}\sqrt{\pi}r}$}; +} + +\end{tikzpicture}} +\end{center} +\end{column} +\begin{column}{0.52\textwidth} +\begin{block}{Aufgabe} +Konstruiere ein zu einem Kreis flächengleiches Quadrat +\end{block} +\uncover<6->{% +\begin{block}{Modifizierte Aufgabe} +Konstruiere eine Strecke, deren Länge Lösung der Gleichung +$x^2-\pi=0$ ist. +\end{block}} +\uncover<7->{% +\begin{proof}[Unmöglichkeitsbeweis mit Widerspruch] +\begin{itemize} +\item<8-> Lösung in einem Erweiterungskörper +\item<9-> Lösung ist Nullstelle eines Polynoms +\item<10-> Lösung ist algebraisch +\item<11-> $\pi$ ist {\bf nicht} algebraisch +\uncover<12->{(Lindemann 1882\only<13>{, Weierstrass 1885})} +\qedhere +\end{itemize} +\end{proof}} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/4/galois/radikale.tex b/vorlesungen/slides/4/galois/radikale.tex index cb08dca..e9e4ce8 100644 --- a/vorlesungen/slides/4/galois/radikale.tex +++ b/vorlesungen/slides/4/galois/radikale.tex @@ -1,69 +1,69 @@ -%
-% radikale.tex
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\begin{frame}[t]
-\setlength{\abovedisplayskip}{5pt}
-\setlength{\belowdisplayskip}{5pt}
-\frametitle{Lösung durch Radikale}
-\vspace{-20pt}
-\begin{columns}[t,onlytextwidth]
-\begin{column}{0.48\textwidth}
-\begin{block}{Problemstellung}
-Finde Nullstellen eines Polynomes
-\[
-p(X)
-=
-a_nX^n + a_{n-1}X^{n-1}
-+\dots+
-a_1X+a_0
-\]
-$p\in\mathbb{Q}[X]$
-\end{block}
-\uncover<2->{%
-\begin{block}{Radikale}
-Geschachtelte Wurzelausdrücke
-\[
-\sqrt[3]{
--\frac{q}2 +\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}
-}
-+
-\sqrt[3]{
--\frac{q}2 -\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}
-}
-\]
-\uncover<3->{(Lösung von $x^3+px+q=0$)}
-\end{block}}
-\uncover<4->{%
-\begin{block}{Lösbar durch Radikale}
-Nullstelle von $p(X)$ ist ein Radikal
-\end{block}}
-\end{column}
-\begin{column}{0.48\textwidth}
-\uncover<5->{%
-\begin{block}{Algebraische Formulierung}
-Gegeben ein irreduzibles Polynom $p\in\mathbb{Q}[X]$,
-finde eine Körpererweiterung $\mathbb{Q}\subset\Bbbk$, derart,
-dass $p$ in $\Bbbk$ eine Nullstelle hat\uncover<6->{:
-$\Bbbk = \mathbb{Q}[X]/(p)$}
-\end{block}}
-\uncover<7->{%
-\begin{block}{Radikalerweiterung}
-Körpererweiterung $\Bbbk\subset\Bbbk'$ um $\alpha$ mit einer der Eigenschaften
-\begin{itemize}
-\item<8-> $\alpha$ ist eine Einheitswurzel
-\item<9-> $\alpha^k\in\Bbbk$
-\end{itemize}
-\end{block}}
-\vspace{-5pt}
-\uncover<10->{%
-\begin{block}{Lösbar durch Radikale}
-Radikalerweiterungen
-\[
-\mathbb{Q} \subset \Bbbk \subset \Bbbk' \subset \dots \subset \Bbbk'' \ni \alpha
-\]
-\end{block}}
-\end{column}
-\end{columns}
-\end{frame}
+% +% radikale.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Lösung durch Radikale} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Problemstellung} +Finde Nullstellen eines Polynomes +\[ +p(X) += +a_nX^n + a_{n-1}X^{n-1} ++\dots+ +a_1X+a_0 +\] +$p\in\mathbb{Q}[X]$ +\end{block} +\uncover<2->{% +\begin{block}{Radikale} +Geschachtelte Wurzelausdrücke +\[ +\sqrt[3]{ +-\frac{q}2 +\sqrt{\frac{q^2}{4}+\frac{p^3}{27}} +} ++ +\sqrt[3]{ +-\frac{q}2 -\sqrt{\frac{q^2}{4}+\frac{p^3}{27}} +} +\] +\uncover<3->{(Lösung von $x^3+px+q=0$)} +\end{block}} +\uncover<4->{% +\begin{block}{Lösbar durch Radikale} +Nullstelle von $p(X)$ ist ein Radikal +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<5->{% +\begin{block}{Algebraische Formulierung} +Gegeben ein irreduzibles Polynom $p\in\mathbb{Q}[X]$, +finde eine Körpererweiterung $\mathbb{Q}\subset\Bbbk$, derart, +dass $p$ in $\Bbbk$ eine Nullstelle hat\uncover<6->{: +$\Bbbk = \mathbb{Q}[X]/(p)$} +\end{block}} +\uncover<7->{% +\begin{block}{Radikalerweiterung} +Körpererweiterung $\Bbbk\subset\Bbbk'$ um $\alpha$ mit einer der Eigenschaften +\begin{itemize} +\item<8-> $\alpha$ ist eine Einheitswurzel +\item<9-> $\alpha^k\in\Bbbk$ +\end{itemize} +\end{block}} +\vspace{-5pt} +\uncover<10->{% +\begin{block}{Lösbar durch Radikale} +Radikalerweiterungen +\[ +\mathbb{Q} \subset \Bbbk \subset \Bbbk' \subset \dots \subset \Bbbk'' \ni \alpha +\] +\end{block}} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/4/galois/sn.tex b/vorlesungen/slides/4/galois/sn.tex index f340825..1cae3fa 100644 --- a/vorlesungen/slides/4/galois/sn.tex +++ b/vorlesungen/slides/4/galois/sn.tex @@ -1,87 +1,87 @@ -%
-% sn.tex
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\begin{frame}[t]
-\setlength{\abovedisplayskip}{5pt}
-\setlength{\belowdisplayskip}{5pt}
-\frametitle{Nichtauflösbarkeit von $S_n$}
-\vspace{-20pt}
-\begin{columns}[t,onlytextwidth]
-\begin{column}{0.48\textwidth}
-\begin{block}{Die symmetrische Gruppe $S_n$}
-Permutationen auf $n$ Elementen
-\[
-\sigma
-=
-\begin{pmatrix}
-1&2&3&\dots&n\\
-\sigma(1)&\sigma(2)&\sigma(3)&\dots&\sigma(n)
-\end{pmatrix}
-\]
-\end{block}
-\vspace{-10pt}
-\uncover<2->{%
-\begin{block}{Signum}
-$t(\sigma)=\mathstrut$ Anzahl Transpositionen
-\[
-\operatorname{sgn}(\sigma)
-=
-(-1)^{t(\sigma)}
-=
-\begin{cases}
-\phantom{-}1&\text{$t(\sigma)$ gerade}
-\\
--1&\text{$t(\sigma)$ ungerade}
-\end{cases}
-\]
-Homomorphismus!
-\end{block}}
-\uncover<3->{%
-\begin{block}{Die alternierende Gruppe $A_n$}
-\vspace{-12pt}
-\[
-A_n = \ker \operatorname{sgn}
-=
-\{\sigma\in S_n\;|\;\operatorname{sgn}(\sigma)=1\}
-\]
-\end{block}}
-\end{column}
-\begin{column}{0.48\textwidth}
-\uncover<4->{%
-\begin{block}{Normale Untergruppe}
-\begin{itemize}
-\item
-$H\triangleleft G$ wenn $gHg^{-1}\subset G\;\forall g\in G$
-\item
-$G/N$ ist wohldefiniert
-\end{itemize}
-\end{block}}
-\vspace{-10pt}
-\uncover<5->{%
-\begin{block}{Einfache Gruppe}
-$G$ einfach $\Leftrightarrow$
-\[
-H\triangleleft G
-\;
-\Rightarrow
-\;
-\text{$H=\{e\}$ oder $H=G$}
-\]
-\end{block}}
-\vspace{-10pt}
-\uncover<6->{%
-\begin{block}{$n\ge 5 \Rightarrow A_n \text{ einfach}$}
-\begin{enumerate}
-\item<7-> Zeigen, dass $A_5$ einfach ist
-\item<8-> Vollständige Induktion: $A_n$ einfach $\Rightarrow A_{n+1}$ einfach
-\end{enumerate}
-\uncover<9->{%
-$\Rightarrow$ i.~A.~keine Lösung der
-einer Polynomgleichung vom Grad $\ge 5$ durch Radikale
-}
-\end{block}}
-\end{column}
-\end{columns}
-\end{frame}
+% +% sn.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Nichtauflösbarkeit von $S_n$} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Die symmetrische Gruppe $S_n$} +Permutationen auf $n$ Elementen +\[ +\sigma += +\begin{pmatrix} +1&2&3&\dots&n\\ +\sigma(1)&\sigma(2)&\sigma(3)&\dots&\sigma(n) +\end{pmatrix} +\] +\end{block} +\vspace{-10pt} +\uncover<2->{% +\begin{block}{Signum} +$t(\sigma)=\mathstrut$ Anzahl Transpositionen +\[ +\operatorname{sgn}(\sigma) += +(-1)^{t(\sigma)} += +\begin{cases} +\phantom{-}1&\text{$t(\sigma)$ gerade} +\\ +-1&\text{$t(\sigma)$ ungerade} +\end{cases} +\] +Homomorphismus! +\end{block}} +\uncover<3->{% +\begin{block}{Die alternierende Gruppe $A_n$} +\vspace{-12pt} +\[ +A_n = \ker \operatorname{sgn} += +\{\sigma\in S_n\;|\;\operatorname{sgn}(\sigma)=1\} +\] +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<4->{% +\begin{block}{Normale Untergruppe} +\begin{itemize} +\item +$H\triangleleft G$ wenn $gHg^{-1}\subset G\;\forall g\in G$ +\item +$G/N$ ist wohldefiniert +\end{itemize} +\end{block}} +\vspace{-10pt} +\uncover<5->{% +\begin{block}{Einfache Gruppe} +$G$ einfach $\Leftrightarrow$ +\[ +H\triangleleft G +\; +\Rightarrow +\; +\text{$H=\{e\}$ oder $H=G$} +\] +\end{block}} +\vspace{-10pt} +\uncover<6->{% +\begin{block}{$n\ge 5 \Rightarrow A_n \text{ einfach}$} +\begin{enumerate} +\item<7-> Zeigen, dass $A_5$ einfach ist +\item<8-> Vollständige Induktion: $A_n$ einfach $\Rightarrow A_{n+1}$ einfach +\end{enumerate} +\uncover<9->{% +$\Rightarrow$ i.~A.~keine Lösung der +einer Polynomgleichung vom Grad $\ge 5$ durch Radikale +} +\end{block}} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/4/galois/winkeldreiteilung.tex b/vorlesungen/slides/4/galois/winkeldreiteilung.tex index 28c07fe..54b941b 100644 --- a/vorlesungen/slides/4/galois/winkeldreiteilung.tex +++ b/vorlesungen/slides/4/galois/winkeldreiteilung.tex @@ -1,94 +1,94 @@ -%
-% winkeldreiteilung.tex
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\begin{frame}[t]
-\setlength{\abovedisplayskip}{5pt}
-\setlength{\belowdisplayskip}{5pt}
-\frametitle{Winkeldreiteilung}
-\vspace{-20pt}
-\begin{columns}[t,onlytextwidth]
-\begin{column}{0.43\textwidth}
-\begin{center}
-\begin{tikzpicture}[>=latex,thick]
-\def\r{5}
-\def\a{25}
-
-\uncover<3->{
- \draw[line width=0.7pt] (\r,0) arc (0:90:\r);
-}
-
-\fill[color=blue!20] (0,0) -- (\r,0) arc(0:{3*\a}:\r) -- cycle;
-\node[color=blue] at ({1.5*\a}:{1.05*\r}) {$\alpha$};
-
-\draw[color=blue,line width=1.3pt] (\r,0) arc (0:{3*\a}:\r);
-
-\uncover<2->{
- \fill[color=red!40,opacity=0.5] (0,0) -- (\r,0) arc(0:\a:\r) -- cycle;
- \draw[color=red,line width=1.4pt] (\r,0) arc (0:\a:\r);
- \node[color=red] at ({0.5*\a}:{0.7*\r})
- {$\displaystyle\frac{\alpha}{3}$};
-}
-
-\uncover<3->{
- \fill[color=blue] ({3*\a}:\r) circle[radius=0.05];
- \draw[color=blue] ({3*\a}:\r) -- ({\r*cos(3*\a)},-0.1);
-
- \fill[color=red] ({\a}:\r) circle[radius=0.05];
- \draw[color=red] ({\a}:\r) -- ({\r*cos(\a)},-0.1);
-
- \draw[->] (-0.1,0) -- ({\r+0.4},0) coordinate[label={$x$}];
- \draw[->] (0,-0.1) -- (0,{\r+0.4}) coordinate[label={right:$y$}];
-}
-
-
-\uncover<4->{
-\node at ({0.5*\r},-0.5) [below] {$\displaystyle
-\cos{\color{blue}\alpha}
-=
-4\cos^3{\color{red}\frac{\alpha}3} -3 \cos {\color{red}\frac{\alpha}3}
-$};
-}
-
-\uncover<5->{
- \node[color=blue] at ({\r*cos(3*\a)},0) [below] {$a\mathstrut$};
- \node[color=red] at ({\r*cos(\a)},0) [below] {$x\mathstrut$};
-}
-
-\end{tikzpicture}
-\end{center}
-\end{column}
-\begin{column}{0.53\textwidth}
-\begin{block}{Aufgabe}
-Teile einen Winkel in drei gleiche Teile
-\end{block}
-\vspace{-2pt}
-\uncover<6->{%
-\begin{block}{Algebraisierte Aufgabe}
-Konstruiere $x$ aus $a$ derart, dass
-\[
-p(x)
-=
-x^3-\frac34 x -a = 0
-\]
-\uncover<7->{%
-$a=0$:}
-\uncover<8->{$p(x) = x(x^2-\frac{3}{4})\uncover<9->{\Rightarrow x = \frac{\sqrt{3}}2}$}
-\end{block}}
-\vspace{-2pt}
-\uncover<10->{%
-\begin{proof}[Unmöglichkeitsbeweis]
-\begin{itemize}
-\item<11->
-$a\ne 0$ $\Rightarrow$ $p(x)$ irreduzibel
-\item<12->
-$p(x)$ definiert eine Körpererweiterung vom Grad $3$
-\item<13->
-Konstruierbar sind nur Körpererweiterungen vom Grad $2^l$
-\qedhere
-\end{itemize}
-\end{proof}}
-\end{column}
-\end{columns}
-\end{frame}
+% +% winkeldreiteilung.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Winkeldreiteilung} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.43\textwidth} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\def\r{5} +\def\a{25} + +\uncover<3->{ + \draw[line width=0.7pt] (\r,0) arc (0:90:\r); +} + +\fill[color=blue!20] (0,0) -- (\r,0) arc(0:{3*\a}:\r) -- cycle; +\node[color=blue] at ({1.5*\a}:{1.05*\r}) {$\alpha$}; + +\draw[color=blue,line width=1.3pt] (\r,0) arc (0:{3*\a}:\r); + +\uncover<2->{ + \fill[color=red!40,opacity=0.5] (0,0) -- (\r,0) arc(0:\a:\r) -- cycle; + \draw[color=red,line width=1.4pt] (\r,0) arc (0:\a:\r); + \node[color=red] at ({0.5*\a}:{0.7*\r}) + {$\displaystyle\frac{\alpha}{3}$}; +} + +\uncover<3->{ + \fill[color=blue] ({3*\a}:\r) circle[radius=0.05]; + \draw[color=blue] ({3*\a}:\r) -- ({\r*cos(3*\a)},-0.1); + + \fill[color=red] ({\a}:\r) circle[radius=0.05]; + \draw[color=red] ({\a}:\r) -- ({\r*cos(\a)},-0.1); + + \draw[->] (-0.1,0) -- ({\r+0.4},0) coordinate[label={$x$}]; + \draw[->] (0,-0.1) -- (0,{\r+0.4}) coordinate[label={right:$y$}]; +} + + +\uncover<4->{ +\node at ({0.5*\r},-0.5) [below] {$\displaystyle +\cos{\color{blue}\alpha} += +4\cos^3{\color{red}\frac{\alpha}3} -3 \cos {\color{red}\frac{\alpha}3} +$}; +} + +\uncover<5->{ + \node[color=blue] at ({\r*cos(3*\a)},0) [below] {$a\mathstrut$}; + \node[color=red] at ({\r*cos(\a)},0) [below] {$x\mathstrut$}; +} + +\end{tikzpicture} +\end{center} +\end{column} +\begin{column}{0.53\textwidth} +\begin{block}{Aufgabe} +Teile einen Winkel in drei gleiche Teile +\end{block} +\vspace{-2pt} +\uncover<6->{% +\begin{block}{Algebraisierte Aufgabe} +Konstruiere $x$ aus $a$ derart, dass +\[ +p(x) += +x^3-\frac34 x -a = 0 +\] +\uncover<7->{% +$a=0$:} +\uncover<8->{$p(x) = x(x^2-\frac{3}{4})\uncover<9->{\Rightarrow x = \frac{\sqrt{3}}2}$} +\end{block}} +\vspace{-2pt} +\uncover<10->{% +\begin{proof}[Unmöglichkeitsbeweis] +\begin{itemize} +\item<11-> +$a\ne 0$ $\Rightarrow$ $p(x)$ irreduzibel +\item<12-> +$p(x)$ definiert eine Körpererweiterung vom Grad $3$ +\item<13-> +Konstruierbar sind nur Körpererweiterungen vom Grad $2^l$ +\qedhere +\end{itemize} +\end{proof}} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/4/galois/wuerfel.tex b/vorlesungen/slides/4/galois/wuerfel.tex index 907d60a..ada6079 100644 --- a/vorlesungen/slides/4/galois/wuerfel.tex +++ b/vorlesungen/slides/4/galois/wuerfel.tex @@ -1,64 +1,64 @@ -%
-% wuerfel.tex
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\begin{frame}[t]
-\frametitle{Würfelverdoppelung}
-\vspace{-20pt}
-\begin{columns}[t,onlytextwidth]
-\begin{column}{0.48\textwidth}
-\begin{center}
-\begin{tikzpicture}[>=latex,thick]
-\node at (0,0) {\includegraphics[width=6.0cm]{../slides/4/galois/images/wuerfel.png}};
-\uncover<2->{
-\node at (0,0) {\includegraphics[width=6.0cm]{../slides/4/galois/images/wuerfel2.png}};
-}
-
-\uncover<3->{
- \draw[<->,color=blue] (-1.25,-2.4) -- (2.55,-2.25);
- \node[color=blue] at (0.75,-2.3) [above] {$a$};
-}
-
-\uncover<4->{
- \begin{scope}[yshift=0.03cm]
- \draw[color=red] (-2.13,-2.89) -- (-2.13,-3.19);
- \draw[color=red] (2.85,-2.7) -- (2.85,-3.0);
- \draw[<->,color=red] (-2.13,-3.09) -- (2.85,-2.9);
- \end{scope}
- \node[color=red] at (0.36,-2.9) [below] {$b$};
-}
-
-\uncover<5->{
-\node at (0,-4) {$
- 2{\color{blue}a}^3={\color{red}b}^3
- \uncover<6->{\;\Rightarrow\;
- \frac{b}{a} = \sqrt[3]{2}}$};
-}
-
-\end{tikzpicture}
-\end{center}
-\end{column}
-\begin{column}{0.52\textwidth}
-\begin{block}{Aufgabe}
-Konstruiere einen Würfel mit doppeltem Volumen
-\end{block}
-\uncover<7->{%
-\begin{block}{Algebraisierte Aufgabe}
-Konstruiere eine Nullstelle von $p(x)=x^3-2$
-\end{block}}
-\uncover<8->{%
-\begin{proof}[Unmöglichkeitsbeweis]
-\begin{itemize}
-\item<9->
-$p(x)$ irreduzibel
-\item<10->
-$p(x)$ definiert eine Körpererweiterung vom Grad $3$
-\item<11->
-Nur Körpererweiterungen vom Grad $2^l$ sind konstruierbar
-\qedhere
-\end{itemize}
-\end{proof}}
-\end{column}
-\end{columns}
-\end{frame}
+% +% wuerfel.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\frametitle{Würfelverdoppelung} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\node at (0,0) {\includegraphics[width=6.0cm]{../slides/4/galois/images/wuerfel.png}}; +\uncover<2->{ +\node at (0,0) {\includegraphics[width=6.0cm]{../slides/4/galois/images/wuerfel2.png}}; +} + +\uncover<3->{ + \draw[<->,color=blue] (-1.25,-2.4) -- (2.55,-2.25); + \node[color=blue] at (0.75,-2.3) [above] {$a$}; +} + +\uncover<4->{ + \begin{scope}[yshift=0.03cm] + \draw[color=red] (-2.13,-2.89) -- (-2.13,-3.19); + \draw[color=red] (2.85,-2.7) -- (2.85,-3.0); + \draw[<->,color=red] (-2.13,-3.09) -- (2.85,-2.9); + \end{scope} + \node[color=red] at (0.36,-2.9) [below] {$b$}; +} + +\uncover<5->{ +\node at (0,-4) {$ + 2{\color{blue}a}^3={\color{red}b}^3 + \uncover<6->{\;\Rightarrow\; + \frac{b}{a} = \sqrt[3]{2}}$}; +} + +\end{tikzpicture} +\end{center} +\end{column} +\begin{column}{0.52\textwidth} +\begin{block}{Aufgabe} +Konstruiere einen Würfel mit doppeltem Volumen +\end{block} +\uncover<7->{% +\begin{block}{Algebraisierte Aufgabe} +Konstruiere eine Nullstelle von $p(x)=x^3-2$ +\end{block}} +\uncover<8->{% +\begin{proof}[Unmöglichkeitsbeweis] +\begin{itemize} +\item<9-> +$p(x)$ irreduzibel +\item<10-> +$p(x)$ definiert eine Körpererweiterung vom Grad $3$ +\item<11-> +Nur Körpererweiterungen vom Grad $2^l$ sind konstruierbar +\qedhere +\end{itemize} +\end{proof}} +\end{column} +\end{columns} +\end{frame} |