diff options
Diffstat (limited to 'vorlesungen/slides/5/approximation.tex')
-rw-r--r-- | vorlesungen/slides/5/approximation.tex | 56 |
1 files changed, 56 insertions, 0 deletions
diff --git a/vorlesungen/slides/5/approximation.tex b/vorlesungen/slides/5/approximation.tex new file mode 100644 index 0000000..a35bae7 --- /dev/null +++ b/vorlesungen/slides/5/approximation.tex @@ -0,0 +1,56 @@ +% +% approximation.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% + +\begin{frame}[t] +\frametitle{Approximation einer reellen Funktion} +\vspace{-18pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.5\textwidth} +\begin{block}{Gegeben} +Eine stetige Funktion $f\colon[a,b]\to\mathbb{R}$ +\end{block} +\end{column} +\begin{column}{0.5\textwidth} +\uncover<2->{% +\begin{block}{Gesucht} +Approximationspolynome $p_n\to f$ gleichmässig auf $[a,b]$ +\end{block}} +\end{column} +\end{columns} +\uncover<3->{% +\begin{block}{Lösungsmöglichkeiten} +\vspace{-3pt} +\begin{center} +\renewcommand{\arraystretch}{1.3} +\begin{tabular}{|p{4.2cm}|l|} +\hline +Familie&Approximationspolynom für $[a,b]=[0,1]$ +\\ +\hline +\uncover<4->{% +\raggedright +Lagrange-Interpolationspolynom} +&\uncover<5->{% +$\displaystyle\begin{aligned} +l(x)&=(x-x_0)(x-x_1)\dots(x-x_n),\quad x_k = \frac{k}{n} +\\ +p_n(x)&= \sum_{k=0}^n f(x_k)\frac{l(x)}{x-x_k} +\end{aligned}$} +\\ +\hline\uncover<6->{% +\raggedright +Approximation mit Bernstein-Polynomen} +&\uncover<7->{$\displaystyle \begin{aligned} +B_{k,n}(t) &= \frac{1}{(b-a)^n}\binom{n}{k}(t-a)^k(b-t)^{n-k} +\\ +B_n(f)(t) &= \sum_{k=0}^n B_{k,n}(t) \cdot f\biggl(\frac{k}{n}\biggr) +\end{aligned}$} +\\ +\hline +\end{tabular} +\end{center} +\end{block}} +\end{frame} |