aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen/slides/7/liealgebra.tex
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--vorlesungen/slides/7/liealgebra.tex170
1 files changed, 85 insertions, 85 deletions
diff --git a/vorlesungen/slides/7/liealgebra.tex b/vorlesungen/slides/7/liealgebra.tex
index 574467b..59c9121 100644
--- a/vorlesungen/slides/7/liealgebra.tex
+++ b/vorlesungen/slides/7/liealgebra.tex
@@ -1,85 +1,85 @@
-%
-% liealgebra.tex -- Lie-Algebra
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\bgroup
-\begin{frame}[t]
-\setlength{\abovedisplayskip}{5pt}
-\setlength{\belowdisplayskip}{5pt}
-\frametitle{Lie-Algebra}
-\ifthenelse{\boolean{presentation}}{\vspace{-15pt}}{\vspace{-8pt}}
-\begin{block}{Vektorraum}
-Tangentialvektoren im Punkt $I$:
-\begin{center}
-\begin{tabular}{>{$}c<{$}|p{6cm}|>{$}c<{$}}
-\text{Lie-Gruppe $G$}&Tangentialvektoren&\text{Lie-Algebra $LG$} \\
-\hline
-\uncover<2->{
-\operatorname{GL}_n(\mathbb{R})
-& beliebige Matrizen
-& M_n(\mathbb{R})
-}
-\\
-\uncover<3->{
-\operatorname{O(n)}
-& antisymmetrische Matrizen
-& \operatorname{o}(n)
-}
-\\
-\uncover<4->{
-\operatorname{SL}_n(\mathbb{R})
-& spurlose Matrizen
-& \operatorname{sl}_2(\mathbb{R})
-}
-\\
-\uncover<5->{
-\operatorname{U(n)}
-& antihermitesche Matrizen
-& \operatorname{u}(n)
-}
-\\
-\uncover<6->{
-\operatorname{SU(n)}
-& spurlose, antihermitesche Matrizen
-& \operatorname{su}(n)
-}
-\end{tabular}
-\end{center}
-\end{block}
-\vspace{-20pt}
-\begin{columns}[t,onlytextwidth]
-\begin{column}{0.40\textwidth}
-\uncover<7->{%
-\begin{block}{Lie-Klammer}
-Kommutator: $[A,B] = AB-BA$
-\end{block}}
-\uncover<8->{%
-\begin{block}{Nachprüfen}
-$[A,B]\in LG$
-für $A,B\in LG$
-\end{block}}
-\end{column}
-\begin{column}{0.56\textwidth}
-\uncover<9->{%
-\begin{block}{Algebraische Eigenschaften}
-\begin{itemize}
-\item<10-> antisymmetrisch: $[A,B]=-[B,A]$
-\item<11-> Jacobi-Identität
-\[
-[A,[B,C]]+
-[B,[C,A]]+
-[C,[A,B]]
-= 0
-\]
-\end{itemize}
-\vspace{-13pt}
-\uncover<12->{%
-{\usebeamercolor[fg]{title}
-Beispiel:} $\mathbb{R}^3$ mit Vektorprodukt $\mathstrut = \operatorname{so}(3)$
-}
-\end{block}}
-\end{column}
-\end{columns}
-\end{frame}
-\egroup
+%
+% liealgebra.tex -- Lie-Algebra
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Lie-Algebra}
+\ifthenelse{\boolean{presentation}}{\vspace{-15pt}}{\vspace{-8pt}}
+\begin{block}{Vektorraum}
+Tangentialvektoren im Punkt $I$:
+\begin{center}
+\begin{tabular}{>{$}c<{$}|p{6cm}|>{$}c<{$}}
+\text{Lie-Gruppe $G$}&Tangentialvektoren&\text{Lie-Algebra $LG$} \\
+\hline
+\uncover<2->{
+\operatorname{GL}_n(\mathbb{R})
+& beliebige Matrizen
+& M_n(\mathbb{R})
+}
+\\
+\uncover<3->{
+\operatorname{O(n)}
+& antisymmetrische Matrizen
+& \operatorname{o}(n)
+}
+\\
+\uncover<4->{
+\operatorname{SL}_n(\mathbb{R})
+& spurlose Matrizen
+& \operatorname{sl}_2(\mathbb{R})
+}
+\\
+\uncover<5->{
+\operatorname{U(n)}
+& antihermitesche Matrizen
+& \operatorname{u}(n)
+}
+\\
+\uncover<6->{
+\operatorname{SU(n)}
+& spurlose, antihermitesche Matrizen
+& \operatorname{su}(n)
+}
+\end{tabular}
+\end{center}
+\end{block}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.40\textwidth}
+\uncover<7->{%
+\begin{block}{Lie-Klammer}
+Kommutator: $[A,B] = AB-BA$
+\end{block}}
+\uncover<8->{%
+\begin{block}{Nachprüfen}
+$[A,B]\in LG$
+für $A,B\in LG$
+\end{block}}
+\end{column}
+\begin{column}{0.56\textwidth}
+\uncover<9->{%
+\begin{block}{Algebraische Eigenschaften}
+\begin{itemize}
+\item<10-> antisymmetrisch: $[A,B]=-[B,A]$
+\item<11-> Jacobi-Identität
+\[
+[A,[B,C]]+
+[B,[C,A]]+
+[C,[A,B]]
+= 0
+\]
+\end{itemize}
+\vspace{-13pt}
+\uncover<12->{%
+{\usebeamercolor[fg]{title}
+Beispiel:} $\mathbb{R}^3$ mit Vektorprodukt $\mathstrut = \operatorname{so}(3)$
+}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup