diff options
Diffstat (limited to '')
-rw-r--r-- | vorlesungen/slides/7/Makefile.inc | 20 | ||||
-rw-r--r-- | vorlesungen/slides/7/ableitung.tex | 62 | ||||
-rw-r--r-- | vorlesungen/slides/7/algebraisch.tex | 105 | ||||
-rw-r--r-- | vorlesungen/slides/7/chapter.tex | 17 | ||||
-rw-r--r-- | vorlesungen/slides/7/dg.tex | 80 | ||||
-rw-r--r-- | vorlesungen/slides/7/drehung.tex | 113 | ||||
-rw-r--r-- | vorlesungen/slides/7/einparameter.tex | 87 | ||||
-rw-r--r-- | vorlesungen/slides/7/kurven.tex | 85 | ||||
-rw-r--r-- | vorlesungen/slides/7/liealgebra.tex | 69 | ||||
-rw-r--r-- | vorlesungen/slides/7/mannigfaltigkeit.tex | 44 | ||||
-rw-r--r-- | vorlesungen/slides/7/parameter.tex | 58 | ||||
-rw-r--r-- | vorlesungen/slides/7/semi.tex | 109 | ||||
-rw-r--r-- | vorlesungen/slides/7/sl2.tex | 216 | ||||
-rw-r--r-- | vorlesungen/slides/7/symmetrien.tex | 133 |
14 files changed, 1198 insertions, 0 deletions
diff --git a/vorlesungen/slides/7/Makefile.inc b/vorlesungen/slides/7/Makefile.inc new file mode 100644 index 0000000..ef004ca --- /dev/null +++ b/vorlesungen/slides/7/Makefile.inc @@ -0,0 +1,20 @@ +# +# Makefile.inc -- additional depencencies +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +chapter5 = \ + ../slides/7/symmetrien.tex \ + ../slides/7/algebraisch.tex \ + ../slides/7/parameter.tex \ + ../slides/7/mannigfaltigkeit.tex \ + ../slides/7/sl2.tex \ + ../slides/7/drehung.tex \ + ../slides/7/semi.tex \ + ../slides/7/kurven.tex \ + ../slides/7/einparameter.tex \ + ../slides/7/ableitung.tex \ + ../slides/7/liealgebra.tex \ + ../slides/7/dg.tex \ + ../slides/7/chapter.tex + diff --git a/vorlesungen/slides/7/ableitung.tex b/vorlesungen/slides/7/ableitung.tex new file mode 100644 index 0000000..b061b9a --- /dev/null +++ b/vorlesungen/slides/7/ableitung.tex @@ -0,0 +1,62 @@ +% +% ableitung.tex -- Ableitung in der Lie-Gruppe +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Ableitung in der Matrix-Gruppe} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Ableitung in $\operatorname{O}(n)$} +$s \mapsto A(s)\in\operatorname{O}(n)$ +\begin{align*} +I +&= +A(s)^tA(s) +\\ +0 += +\frac{d}{ds} I +&= +\frac{d}{ds} (A(s)^t A(s)) +\\ +&= +\dot{A}(s)^tA(s) + A(s)^t \dot{A}(s) +\intertext{An der Stelle $s=0$, d.~h.~$A(0)=I$} +0 +&= +\dot{A}(0)^t ++ +\dot{A}(0) +\\ +\Leftrightarrow +\qquad +\dot{A}(0)^t &= -\dot{A}(0) +\end{align*} +``Tangentialvektoren'' sind antisymmetrische Matrizen +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Ableitung in $\operatorname{SL}_2(\mathbb{R})$} +$s\mapsto A(s)\in\operatorname{SL}_n(\mathbb{R})$ +\begin{align*} +1 &= \det A(t) +\\ +0 += +\frac{d}{dt}1 +&= +\frac{d}{dt} \det A(t) +\intertext{mit dem Entwicklungssatz kann man nachrechnen:} +0&=\operatorname{Spur}\dot{A}(0) +\end{align*} +``Tangentialvektoren'' sind spurlose Matrizen +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/algebraisch.tex b/vorlesungen/slides/7/algebraisch.tex new file mode 100644 index 0000000..5b33566 --- /dev/null +++ b/vorlesungen/slides/7/algebraisch.tex @@ -0,0 +1,105 @@ +% +% algebraisch.tex -- algebraische Definition der Symmetrien +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Erhaltungsgrössen und Algebra} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Längen und Winkel} +Längenmessung mit Skalarprodukt +\begin{align*} +\|\vec{v}\|^2 +&= +\langle \vec{v},\vec{v}\rangle += +\vec{v}\cdot \vec{v} += +\vec{v}^t\vec{v} +\end{align*} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Flächeninhalt/Volumen} +$n$ Vektoren $V=(\vec{v}_1,\dots,\vec{v}_n)$ +\\ +Volumen des Parallelepipeds: $\det V$ +\end{block} +\end{column} +\end{columns} +% +\vspace{-7pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Längenerhaltende Transformationen} +$A\in\operatorname{GL}_n(\mathbb{R})$ +\begin{align*} +\vec{x}^t\vec{y} +&= +(A\vec{x}) +\cdot +(A\vec{y}) += +(A\vec{x})^t +(A\vec{y}) +\\ +\vec{x}^tI\vec{y} +&= +\vec{x}^tA^tA\vec{y} +\Rightarrow I=A^tA +\end{align*} +Begründung: $\vec{e}_i^t B \vec{e}_j = b_{ij}$ +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Volumenerhaltende Transformationen} +$A\in\operatorname{GL}_n(\mathbb{R})$ +\begin{align*} +\det(V) +&= +\det(AV) += +\det(A)\det(V) +\\ +1&=\det(A) +\end{align*} +(Produktsatz für Determinante) +\end{block} +\end{column} +\end{columns} +% +\vspace{-3pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Orthogonale Matrizen} +Längentreue Abbildungen = orthogonale Matrizen: +\[ +O(n) += +\{ +A \in \operatorname{GL}_n(\mathbb{R}) +\;|\; +A^tA=I +\} +\] +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{``Spezielle'' Matrizen} +Volumen-/Orientierungserhaltende Transformationen: +\[ +\operatorname{SL}_n(\mathbb R) += +\{ A \in \operatorname{GL}_n(\mathbb{R}) \;|\; \det A = 1\} +\] +\end{block} +\end{column} +\end{columns} + +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/chapter.tex b/vorlesungen/slides/7/chapter.tex new file mode 100644 index 0000000..44d46a6 --- /dev/null +++ b/vorlesungen/slides/7/chapter.tex @@ -0,0 +1,17 @@ +% +% chapter.tex +% +% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi +% +\folie{7/symmetrien.tex} +\folie{7/algebraisch.tex} +\folie{7/parameter.tex} +\folie{7/mannigfaltigkeit.tex} +\folie{7/sl2.tex} +\folie{7/drehung.tex} +\folie{7/semi.tex} +\folie{7/kurven.tex} +\folie{7/einparameter.tex} +\folie{7/ableitung.tex} +\folie{7/liealgebra.tex} +\folie{7/dg.tex} diff --git a/vorlesungen/slides/7/dg.tex b/vorlesungen/slides/7/dg.tex new file mode 100644 index 0000000..36b1ade --- /dev/null +++ b/vorlesungen/slides/7/dg.tex @@ -0,0 +1,80 @@ +% +% dg.tex -- Differentialgleichung für die Exponentialabbildung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Zurück zur Lie-Gruppe} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Tangentialvektor im Punkt $\gamma(t)$} +Ableitung von $\gamma(t)$ an der Stelle $t$: +\begin{align*} +\dot{\gamma}(t) +&= +\frac{d}{d\tau}\gamma(\tau)\bigg|_{\tau=t} +\\ +&= +\frac{d}{ds} +\gamma(t+s) +\bigg|_{s=0} +\\ +&= +\frac{d}{ds} +\gamma(t)\gamma(s) +\bigg|_{s=0} +\\ +&= +\gamma(t) +\frac{d}{ds} +\gamma(s) +\bigg|_{s=0} += +\gamma(t) \dot{\gamma}(0) +\end{align*} +\end{block} +\vspace{-10pt} +\begin{block}{Differentialgleichung} +\vspace{-10pt} +\[ +\dot{\gamma}(t) = \gamma(t) A +\quad +\text{mit} +\quad +A=\dot{\gamma}(0)\in LG +\] +\end{block} +\end{column} +\begin{column}{0.50\textwidth} +\begin{block}{Lösung} +Exponentialfunktion +\[ +\exp\colon LG\to G : A \mapsto \exp(At) = \sum_{k=0}^\infty \frac{t^k}{k!}A^k +\] +\end{block} +\vspace{-5pt} +\begin{block}{Kontrolle: Tangentialvektor berechnen} +\vspace{-10pt} +\begin{align*} +\frac{d}{dt}e^{At} +&= +\sum_{k=1}^\infty A^k \frac{d}{dt} t^{k}{k!} +\\ +&= +\sum_{k=1}^\infty A^{k-1}\frac{t^{k-1}}{(k-1)!} A +\\ +&= +\sum_{k=0} A^k\frac{t^k}{k!} +A += +e^{At} A +\end{align*} +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/drehung.tex b/vorlesungen/slides/7/drehung.tex new file mode 100644 index 0000000..ae0dbe3 --- /dev/null +++ b/vorlesungen/slides/7/drehung.tex @@ -0,0 +1,113 @@ +% +% drehung.tex -- Drehung aus streckungen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Drehung aus Streckungen und Scherungen} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.38\textwidth} +\begin{block}{Drehung} +\[ +\operatorname{SO}(2) += +\operatorname{SL}_2(\mathbb{R}) \cap \operatorname{O}(2) +\] +\end{block} +\begin{block}{Zusammensetzung} +Eine Drehung muss als Zusammensetzung geschrieben werden können: +\[ +D_{\alpha} += +\begin{pmatrix} +\cos\alpha & -\sin\alpha\\ +\sin\alpha &\phantom{-}\cos\alpha +\end{pmatrix} += +DST +\] +\end{block} +\begin{block}{Beispiel} +\vspace{-12pt} +\[ +D_{60^\circ} += +{\tiny +\begin{pmatrix}2&0\\0&\frac12\end{pmatrix} +\begin{pmatrix}1&-\frac{\sqrt{3}}4\\0&1\end{pmatrix} +\begin{pmatrix}1&0\\\frac{\sqrt{3}}2&1\end{pmatrix} +} +\] +\end{block} +\end{column} +\begin{column}{0.58\textwidth} +\begin{block}{Ansatz} +\vspace{-12pt} +\begin{align*} +DST +&= +\begin{pmatrix} +c^{-1}&0\\ + 0 &c +\end{pmatrix} +\begin{pmatrix} +1&-s\\ +0&1 +\end{pmatrix} +\begin{pmatrix} +1&0\\ +t&1 +\end{pmatrix} +\\ +&= +\begin{pmatrix} +c^{-1}&0\\ + 0 &c +\end{pmatrix} +\begin{pmatrix} +-st&-s\\ + t& 1 +\end{pmatrix} +\\ +&= +\begin{pmatrix} +-stc^{-1}&{\color{darkgreen}sc^{-1}}\\ +{\color{blue}ct}&{\color{red}c} +\end{pmatrix} += +\begin{pmatrix} +\cos\alpha & {\color{darkgreen}- \sin\alpha} \\ +{\color{blue}\sin\alpha} & \phantom{-} {\color{red}\cos\alpha} +\end{pmatrix} +\end{align*} +\end{block} +\vspace{-10pt} +\begin{block}{Koeffizientenvergleich} +\vspace{-15pt} +\begin{align*} +{\color{red} c} +&= +{\color{red}\cos\alpha } +&& +& +{\color{blue} +t}&=\rlap{$\displaystyle\frac{\sin\alpha}{c} = \tan\alpha$} \\ +{\color{darkgreen}sc^{-1}}&={\color{darkgreen}-\sin\alpha} +& +&\Rightarrow& +{\color{darkgreen}s}&={\color{darkgreen}-\sin\alpha}\cos\alpha +\\ +{\color{orange} -stc^{-t}} +&= +\rlap{$\sin\alpha\tan\alpha = \cos\alpha \quad $} +\end{align*} +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/einparameter.tex b/vorlesungen/slides/7/einparameter.tex new file mode 100644 index 0000000..52924bf --- /dev/null +++ b/vorlesungen/slides/7/einparameter.tex @@ -0,0 +1,87 @@ +% +% einparameter.tex -- Einparameter Untergruppen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Einparameter Untergruppen} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +Eine Kurve $\gamma\colon \mathbb{R}\to G\subset\operatorname{GL}_n(\mathbb{R})$, +die gleichzeitig eine Untergruppe von $G$ ist mit +\[ +\gamma(t+s) = \gamma(t)\gamma(s)\quad\forall t,s\in\mathbb{R} +\] +\end{block} +\begin{block}{Drehungen} +Drehmatrizen bilden Einparameter- Untergruppen +\begin{align*} +t \mapsto D_{x,t} +&= +\begin{pmatrix} +1&0&0\\ +0&\cos t&-\sin t\\ +0&\sin t& \cos t +\end{pmatrix} +\\ +D_{x,t}D_{x,s} +&= +D_{x,t+s} +\end{align*} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Scherungen in $\operatorname{SL}_2(\mathbb{R})$} +\vspace{-12pt} +\[ +\begin{pmatrix} +1&s\\ +0&1 +\end{pmatrix} +\begin{pmatrix} +1&t\\ +0&1 +\end{pmatrix} += +\begin{pmatrix} +1&s+t\\ +0&1 +\end{pmatrix} +\] +\end{block} +\vspace{-12pt} +\begin{block}{Skalierungen in $\operatorname{SL}_2(\mathbb{R})$} +\vspace{-12pt} +\[ +\begin{pmatrix} +e^s&0\\0&e^{-s} +\end{pmatrix} +\begin{pmatrix} +e^t&0\\0&e^{-t} +\end{pmatrix} += +\begin{pmatrix} +e^{t+s}&0\\0&e^{-(t+s)} +\end{pmatrix} +\] +\end{block} +\vspace{-12pt} +\begin{block}{Gemischt} +\vspace{-12pt} +\begin{gather*} +A_t = I \cosh t + \begin{pmatrix}1&a\\0&-1\end{pmatrix}\sinh t +\\ +\text{dank}\quad +\begin{pmatrix}1&s\\0&-1\end{pmatrix}^2 +=I +\end{gather*} +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/kurven.tex b/vorlesungen/slides/7/kurven.tex new file mode 100644 index 0000000..196fa2a --- /dev/null +++ b/vorlesungen/slides/7/kurven.tex @@ -0,0 +1,85 @@ +% +% kurven.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Kurven und Tangenten} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Kurven} +Kurve in $\mathbb{R}^n$: +\vspace{-12pt} +\[ +\gamma +\colon +I=[a,b] \to \mathbb{R}^n +: +t\mapsto \gamma(t) += +\begin{pmatrix} +x_1(t)\\ +x_2(t)\\ +\vdots\\ +x_n(t) +\end{pmatrix} +\] +\vspace{-15pt} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\coordinate (A) at (1,0.5); +\coordinate (B) at (4,0.5); +\coordinate (C) at (2,2.2); +\coordinate (D) at (5,2); +\coordinate (E) at ($(C)+(80:2)$); + +\draw[color=red,line width=1.4pt] + (A) to[in=-160] (B) to[out=20,in=-100] (C) to[out=80] (D); +\fill[color=red] (C) circle[radius=0.06]; +\node[color=red] at (C) [left] {$\gamma(t)$}; + +\draw[->,color=blue,line width=1.4pt,shorten <= 0.06cm] (C) -- (E); +\node[color=blue] at (E) [right] {$\dot{\gamma}(t)$}; + +\draw[->] (-0.1,0) -- (5.9,0) coordinate[label={$x_1$}]; +\draw[->] (0,-0.1) -- (0,4.3) coordinate[label={right:$x_2$}]; +\end{tikzpicture} +\end{center} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Tangenten} +Ableitung +\[ +\frac{d}{dt}\gamma(t) += +\dot{\gamma}(t) += +\begin{pmatrix} +\dot{x}_1(t)\\ +\dot{x}_2(t)\\ +\vdots\\ +\dot{x}_n(t) +\end{pmatrix} +\] +Lineare Approximation: +\[ +\gamma(t+h) += +\gamma(t) ++ +\dot{\gamma}(t) \cdot h ++ +o(h) +\] +Sinnvoll, weil sowohl $\gamma(t)$ und $\dot{\gamma}(t)$ +in $\mathbb{R}^n$ liegen +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/liealgebra.tex b/vorlesungen/slides/7/liealgebra.tex new file mode 100644 index 0000000..16a7aa0 --- /dev/null +++ b/vorlesungen/slides/7/liealgebra.tex @@ -0,0 +1,69 @@ +% +% liealgebra.tex -- Lie-Algebra +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Lie-Algebra} +\vspace{-20pt} +\begin{block}{Vektorraum} +Tangentialvektoren im Punkt $I$: +\begin{center} +\begin{tabular}{>{$}c<{$}|p{6cm}|>{$}c<{$}} +\text{Lie-Gruppe $G$}&Tangentialvektoren&\text{Lie-Algebra $LG$} \\ +\hline +\operatorname{GL}_n(\mathbb{R}) +& beliebige Matrizen +& M_n(\mathbb{R}) +\\ +\operatorname{O(n)} +& antisymmetrische Matrizen +& \operatorname{o}(n) +\\ +\operatorname{SL}_n(\mathbb{R}) +& spurlose Matrizen +& \operatorname{sl}_2(\mathbb{R}) +\\ +\operatorname{U(n)} +& antihermitesche Matrizen +& \operatorname{u}(n) +\\ +\operatorname{SU(n)} +& spurlose, antihermitesche Matrizen +& \operatorname{su}(n) +\end{tabular} +\end{center} +\end{block} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.40\textwidth} +\begin{block}{Lie-Klammer} +Kommutator: $[A,B] = AB-BA$ +\end{block} +\begin{block}{Nachprüfen} +$[A,B]\in LG$ +für $A,B\in LG$ +\end{block} +\end{column} +\begin{column}{0.56\textwidth} +\begin{block}{Algebraische Eigenschaften} +\begin{itemize} +\item antisymmetrisch: $[A,B]=-[B,A]$ +\item Jacobi-Identität +\[ +[A,[B,C]]+ +[B,[C,A]]+ +[C,[A,B]] += 0 +\] +\end{itemize} +{\usebeamercolor[fg]{title} +Beispiel:} $\mathbb{R}^3$ mit Vektorprodukt $\mathstrut = \operatorname{so}(3)$ +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/mannigfaltigkeit.tex b/vorlesungen/slides/7/mannigfaltigkeit.tex new file mode 100644 index 0000000..7809ea5 --- /dev/null +++ b/vorlesungen/slides/7/mannigfaltigkeit.tex @@ -0,0 +1,44 @@ +% +% mannigfaltigkeit.tex -- Mannigfaltigkeit +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Mannigfaltigkeit} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{center} +\includegraphics[width=\textwidth]{../../buch/chapters/60-gruppen/images/karten.pdf} +\end{center} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +\begin{itemize} +\item Karte: Abbildung $\varphi_\alpha\colon U_\alpha\to\mathbb{R}^n$ +\item differenzierbare Kartenwechsel: Koordinatenumrechnung im Überschneidungsgebiet +\[ +\varphi_\beta\circ\varphi_\alpha^{-1} +\colon +\varphi_\alpha(U_\alpha\cap U_\beta) +\to +\varphi_\beta(U_\alpha\cap U_\beta) +\] +\item Atlas: Menge von Karten, die die ganze Mannigfaltigkeit überdecken +\end{itemize} +\end{block} +\vspace{-7pt} +\begin{block}{Lokal$\mathstrut\cong\mathbb{R}^n$} +Differenzierbare Mannigfaltigkeiten sehen lokal wie $\mathbb{R}^n$ aus +\end{block} +\vspace{-3pt} +\begin{block}{Lie-Gruppe} +Gruppe und Mannigfaltigkeit +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/parameter.tex b/vorlesungen/slides/7/parameter.tex new file mode 100644 index 0000000..ec129bb --- /dev/null +++ b/vorlesungen/slides/7/parameter.tex @@ -0,0 +1,58 @@ +% +% parameter.tex -- Parametrisierung der Matrizen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Drehungen Parametrisieren} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.4\textwidth} +\begin{block}{Drehung um Achsen} +\begin{align*} +D_{x,\alpha} +&= +\begin{pmatrix} +1&0&0\\0&\cos\alpha&-\sin\alpha\\0&\sin\alpha&\cos\alpha +\end{pmatrix} +\\ +D_{y,\beta} +&= +\begin{pmatrix} +\cos\beta&0&-\sin\beta\\0&1&0\\\sin\beta&0&\cos\beta +\end{pmatrix} +\\ +D_{z,\gamma} +&= +\begin{pmatrix} +\cos\gamma&-\sin\gamma&0\\\sin\gamma&\cos\gamma&0\\0&0&1 +\end{pmatrix} +\end{align*} +\end{block} +\end{column} +\begin{column}{0.56\textwidth} +\begin{block}{Drehung um $\vec{\omega}$} +$\omega=|\vec{\omega}|=\mathstrut$Drehwinkel +\\ +$\vec{k}=\vec{\omega}^0=\mathstrut$Drehachse +\[ +\vec{x} +\mapsto +\cos\omega +\vec{x} ++ +(\vec{k}\times\vec{x})\sin\omega ++ +\vec{k}(\vec{k}\cdot\vec{x}) (1-\cos\omega) +\] +XXX TODO: Bild für Rodriguez Formel +\end{block} +\end{column} +\end{columns} +{\usebeamercolor[fg]{title}Dimension:} $\operatorname{SO}(3)$ ist eine +dreidimensionale Gruppe +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/semi.tex b/vorlesungen/slides/7/semi.tex new file mode 100644 index 0000000..46f6d03 --- /dev/null +++ b/vorlesungen/slides/7/semi.tex @@ -0,0 +1,109 @@ +% +% semi.tex -- Beispiele: semidirekte Produkte +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Drehung/Skalierung und Verschiebung} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Skalierung und Verschiebung} +Gruppe $G=\{(e^s,t)\;|\;s,t\in\mathbb{R}\}$ +\\ +Wirkung auf $\mathbb{R}$: +\[ +x\mapsto \underbrace{e^s\cdot x}_{\text{Skalierung}} \mathstrut+ t +\] +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Drehung und Verschiebung} +Gruppe +$G= +\{ (\alpha,\vec{t}) +\;|\; +\alpha\in\mathbb{R},\vec{t}\in\mathbb{R}^2 +\}$ +Wirkung auf $\mathbb{R}^2$: +\[ +\vec{x}\mapsto \underbrace{D_\alpha \vec{x}}_{\text{Drehung}} \mathstrut+ \vec{t} +\] +\end{block} +\end{column} +\end{columns} +\vspace{-15pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Verknüpfung} +\vspace{-15pt} +\begin{align*} +(e^{s_1},t_1)(e^{s_2},t_2)x +&= +(e^{s_1},t_1)(e^{s_2}x+t_2) +\\ +&= +e^{s_1+s_2}x + e^{s_1}t_2+t_1 +\\ +(e^{s_1},t_1)(e^{s_2},t_2) +&= +(e^{s_1}e^{s_2},t_1+e^{s_1}t_2) +\end{align*} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Verknüpfung} +\vspace{-15pt} +\begin{align*} +(\alpha_1,\vec{t}_1) +(\alpha_2,\vec{t}_2) +\vec{x} +&= +(\alpha_1,\vec{t}_1)(D_{\alpha_2}\vec{x}+\vec{t}_2) +\\ +&=D_{\alpha_1+\alpha_2}\vec{x} + D_{\alpha_1}\vec{t}_2+\vec{t}_1 +\\ +(\alpha_1,\vec{t}_1) +(\alpha_2,\vec{t}_2) +&= +(\alpha_1+\alpha_2, D_{\alpha_1}\vec{t}_2+\vec{t}_1) +\end{align*} +\end{block} +\end{column} +\end{columns} +\vspace{-10pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Matrixschreibweise} +\vspace{-12pt} +\[ +g=(e^s,t) = +\begin{pmatrix} +e^s&t\\ +0&1 +\end{pmatrix} +\quad\text{auf}\quad +\begin{pmatrix}x\\1\end{pmatrix} +\] +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Matrixschreibweise} +\vspace{-12pt} +\[ +g=(\alpha,\vec{t}) = +\begin{pmatrix} +D_{\alpha}&\vec{t}\\ +0&1 +\end{pmatrix} +\quad\text{auf}\quad +\begin{pmatrix}\vec{x}\\1\end{pmatrix} +\] +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/sl2.tex b/vorlesungen/slides/7/sl2.tex new file mode 100644 index 0000000..3480460 --- /dev/null +++ b/vorlesungen/slides/7/sl2.tex @@ -0,0 +1,216 @@ +% +% sl2.tex -- Beispiel: Parametrisierung von SL_2(R) +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t,fragile] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{$\operatorname{SL}_2(\mathbb{R})\subset\operatorname{GL}_n(\mathbb{R})$} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.44\textwidth} +\begin{block}{Determinante} +\[ +A=\begin{pmatrix} +a&b\\ +c&d +\end{pmatrix} +\;\Rightarrow\; +\det A = ad-bc +\] +\end{block} +\end{column} +\begin{column}{0.52\textwidth} +\begin{block}{Dimension} +\[ +4\; \text{Variablen} +- +1\; \text{Bedingung} += +3\; \text{Dimensionen} +\] +\end{block} +\end{column} +\end{columns} +\vspace{-10pt} +\uncover<3->{% +\begin{columns}[t,onlytextwidth] +\def\s{0.94} +\begin{column}{0.33\textwidth} +\begin{center} +\begin{tikzpicture}[>=latex,thick,scale=\s] +\begin{scope} + \clip (-2.1,-2.1) rectangle (2.3,2.3); + \fill[color=blue!20] (-1,-1) rectangle (1,1); + \foreach \x in {-2,...,2}{ + \draw[color=blue,line width=0.3pt] (\x,-3) -- (\x,3); + } + \foreach \y in {-2,...,2}{ + \draw[color=blue,line width=0.3pt] (-3,\y) -- (3,\y); + } + \foreach \d in {4,...,10}{ + \only<\d>{ + \pgfmathparse{1+(\d-4)/10} + \xdef\t{\pgfmathresult} + \fill[color=red!40,opacity=0.5] + ({-\t},{-1/\t}) rectangle (\t,{1/\t}); + \foreach \x in {-2,...,2}{ + \draw[color=red,line width=0.3pt] + ({\x*\t},-3) -- ({\x*\t},3); + } + \foreach \y in {-3,...,3}{ + \draw[color=red,line width=0.3pt] + (-3,{\y/\t}) -- (3,{\y/\t}); + } + } + } + \uncover<11->{ + \xdef\t{1.6} + \fill[color=red!40,opacity=0.5] + ({-\t},{-1/\t}) rectangle (\t,{1/\t}); + \foreach \x in {-2,...,2}{ + \draw[color=red,line width=0.3pt] + ({\x*\t},-3) -- ({\x*\t},3); + } + \foreach \y in {-3,...,3}{ + \draw[color=red,line width=0.3pt] + (-3,{\y/\t}) -- (3,{\y/\t}); + } + } +\end{scope} +\draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}]; +\draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}]; +\uncover<3->{% + \fill[color=white,opacity=0.8] (-1.5,-2.8) rectangle (1.5,-1.3); + \node at (0,-2.1) {$ + D + = + \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} + $}; +} +\end{tikzpicture} +\end{center} +\end{column} +\begin{column}{0.33\textwidth} +\begin{center} +\begin{tikzpicture}[>=latex,thick,scale=\s] +\fill[color=blue!20] (-1,-1) rectangle (1,1); +\begin{scope} + \clip (-2.1,-2.1) rectangle (2.3,2.3); + \foreach \x in {-2,...,2}{ + \draw[color=blue,line width=0.3pt] (\x,-3) -- (\x,3); + } + \foreach \y in {-2,...,2}{ + \draw[color=blue,line width=0.3pt] (-3,\y) -- (3,\y); + } + \foreach \d in {11,...,17}{ + \only<\d>{ + \pgfmathparse{(\d-11)/10} + \xdef\t{\pgfmathresult} + \fill[color=red!40,opacity=0.5] + ({-1+\t*(-1)},{-1}) + -- + ({1+\t*(-1)},{-1}) + -- + ({1+\t},{1}) + -- + ({-1+\t},{1}) + -- cycle; + \foreach \x in {-3,...,3}{ + \draw[color=red,line width=0.3pt] + ({\x+\t*(-3)},-3) -- ({\x+\t*(3)},3); + } + \foreach \y in {-3,...,3}{ + \draw[color=red,line width=0.3pt] + ({-3+\t*\y},\y) -- ({3+\t*\y},\y); + } + } + } + \uncover<18->{ + \xdef\t{0.6} + \fill[color=red!40,opacity=0.5] + ({-1+\t*(-1)},{-1}) + -- + ({1+\t*(-1)},{-1}) + -- + ({1+\t},{1}) + -- + ({-1+\t},{1}) + -- cycle; + \foreach \x in {-3,...,3}{ + \draw[color=red,line width=0.3pt] + ({\x+\t*(-3)},-3) -- ({\x+\t*(3)},3); + } + \foreach \y in {-3,...,3}{ + \draw[color=red,line width=0.3pt] + ({-3+\t*\y},\y) -- ({3+\t*\y},\y); + } + } +\end{scope} +\draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}]; +\draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}]; +\uncover<11->{ + \fill[color=white,opacity=0.8] (-1.5,-2.8) rectangle (1.5,-1.3); + \node at (0,-2.1) {$ + S + = + \begin{pmatrix} 1&s\\ 0&1\end{pmatrix} + $}; +} +\end{tikzpicture} +\end{center} +\end{column} +\begin{column}{0.33\textwidth} +\begin{center} +\begin{tikzpicture}[>=latex,thick,scale=\s] +\fill[color=blue!20] (-1,-1) rectangle (1,1); +\begin{scope} + \clip (-2.1,-2.1) rectangle (2.3,2.3); + \foreach \x in {-2,...,2}{ + \draw[color=blue,line width=0.3pt] (\x,-3) -- (\x,3); + } + \foreach \y in {-2,...,2}{ + \draw[color=blue,line width=0.3pt] (-3,\y) -- (3,\y); + } + \foreach \d in {18,...,24}{ + \only<\d>{ + \pgfmathparse{(\d-18)/10} + \xdef\t{\pgfmathresult} + \fill[color=red!40,opacity=0.5] + (-1,{\t*(-1)-1}) + -- + (1,{\t*1-1}) + -- + (1,{\t*1+1}) + -- + (-1,{\t*(-1)+1}) + -- cycle; + \foreach \x in {-3,...,3}{ + \draw[color=red,line width=0.3pt] + (\x,{\x*\t-3}) -- (\x,{\x*\t+3}); + } + \foreach \y in {-3,...,3}{ + \draw[color=red,line width=0.3pt] + (-3,{-3*\t+\y}) -- (3,{3*\t+\y}); + } + } + } +\end{scope} +\draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}]; +\draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}]; +\uncover<18->{% +\fill[color=white,opacity=0.8] (-1.5,-2.8) rectangle (1.5,-1.3); + \node at (0,-2.1) {$ + T + = + \begin{pmatrix} 1&0\\t&1\end{pmatrix} + $}; +} +\end{tikzpicture} +\end{center} +\end{column} +\end{columns}} +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/symmetrien.tex b/vorlesungen/slides/7/symmetrien.tex new file mode 100644 index 0000000..79f9ef7 --- /dev/null +++ b/vorlesungen/slides/7/symmetrien.tex @@ -0,0 +1,133 @@ +% +% symmetrien.tex -- Symmetrien +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Symmetrien} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Diskrete Symmetrien} +\begin{itemize} +\item +Ebenen-Spiegelung: +\[ +{\tiny +\begin{pmatrix*}[r] x_1\\x_2\\x_3 \end{pmatrix*} +} +\mapsto +{\tiny +\begin{pmatrix*}[r]-x_1\\x_2\\x_3 \end{pmatrix*}, +} +\; +\vec{x} +\mapsto +\vec{x} -2 (\vec{n}\cdot\vec{x}) \vec{n} +\] +\vspace{-10pt} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\def\a{10} +\def\b{50} +\def\r{2} +\coordinate (O) at (0,0); +\coordinate (A) at (\b:\r); +\coordinate (B) at ({180+2*\a-\b}:\r); +\coordinate (C) at ({90+\a}:{\r*cos(90+\a-\b)}); +\coordinate (N) at (\a:2); +\coordinate (D) at (\a:{\r*cos(\b-\a)}); +\clip (-2.5,-0.45) rectangle (2.5,1.95); + +\fill[color=darkgreen!20] (O) -- ({\a-90}:0.2) arc ({\a-90}:\a:0.2) -- cycle; +\draw[->,color=darkgreen] (O) -- (N); +\node[color=darkgreen] at (N) [above] {$\vec{n}$}; + + +\fill[color=blue!20] (C) -- ($(C)+(\a:0.2)$) arc (\a:{90+\a}:0.2) -- cycle; +\fill[color=red] (O) circle[radius=0.06]; +\draw[color=red] ({\a-90}:2) -- ({\a+90}:2); +\fill[color=blue] (C) circle[radius=0.06]; +\draw[color=blue,line width=0.1pt] (A) -- (D); +\node[color=darkgreen] at (D) [below,rotate=\a] {$(\vec{n}\cdot\vec{x})\vec{n}$}; +\draw[color=blue,line width=0.5pt] (A)--(B); + +\node[color=blue] at (A) [above right] {$\vec{x}$}; +\node[color=blue] at (B) [above left] {$\vec{x}'$}; + +\node[color=red] at (O) [below left] {$O$}; + +\draw[->,color=blue,shorten <= 0.06cm] (O) -- (A); +\draw[->,color=blue,shorten <= 0.06cm] (O) -- (B); + +\end{tikzpicture} +\end{center} +\vspace{-5pt} +$\vec{n}$ ein Einheitsnormalenvektor auf der Ebene, $|\vec{n}|=1$ +\item +Punkt-Spiegelung: +\[ +{\tiny +\begin{pmatrix*}[r] x_1\\x_2\\x_3 \end{pmatrix*} +} +\mapsto +- +{\tiny +\begin{pmatrix*}[r]x_1\\x_2\\x_3 \end{pmatrix*} +} +\] +\end{itemize} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Kontinuierliche Symmetrien} +\begin{itemize} +\item Translation: +\( +\vec{x} \mapsto \vec{x} + \vec{t} +\) +\item Drehung: +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\def\a{25} +\def\r{1.3} +\coordinate (O) at (0,0); +\begin{scope} +\clip (-1.1,-0.1) rectangle (2.3,2.3); +\draw[color=red] (O) circle[radius=2]; +\fill[color=blue!20] (O) -- (0:\r) arc (0:\a:\r) -- cycle; +\fill[color=blue!20] (O) -- (90:\r) arc (90:{90+\a}:\r) -- cycle; +\node at ({0.5*\a}:1) {$\alpha$}; +\node at ({90+0.5*\a}:1) {$\alpha$}; +\draw[->,color=blue] (O) -- (\a:2); +\draw[->,color=darkgreen] (O) -- ({90+\a}:2); +\end{scope} +\draw[->] (-1.1,0) -- (2.3,0) coordinate[label={$x$}]; +\draw[->] (0,-0.1) -- (0,2.3) coordinate[label={right:$y$}]; +\end{tikzpicture} +\end{center} +\[ +\begin{pmatrix}x\\y\end{pmatrix} +\mapsto +\begin{pmatrix} +{\color{blue}\cos\alpha}&{\color{darkgreen}-\sin\alpha}\\ +{\color{blue}\sin\alpha}&{\color{darkgreen}\phantom{-}\cos\alpha} +\end{pmatrix} +\begin{pmatrix}x\\y\end{pmatrix} +\] +\end{itemize} +\end{block} +\vspace{-10pt} +\begin{block}{Definition} +Längen/Winkel bleiben erhalten +\\ +$\Rightarrow$ $\exists$ Erhaltungsgrösse +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup |