aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen/slides/8/wavelets
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--vorlesungen/slides/8/wavelets/fourier.tex60
1 files changed, 59 insertions, 1 deletions
diff --git a/vorlesungen/slides/8/wavelets/fourier.tex b/vorlesungen/slides/8/wavelets/fourier.tex
index 4bd507b..6b44fb8 100644
--- a/vorlesungen/slides/8/wavelets/fourier.tex
+++ b/vorlesungen/slides/8/wavelets/fourier.tex
@@ -7,12 +7,70 @@
\begin{frame}[t]
\setlength{\abovedisplayskip}{5pt}
\setlength{\belowdisplayskip}{5pt}
-\frametitle{Fourier}
+\frametitle{Fourier-Transformation}
\vspace{-20pt}
\begin{columns}[t,onlytextwidth]
\begin{column}{0.48\textwidth}
+\begin{block}{Aufgabe}
+Gegeben: Funktion $f$ auf dem Graphen
+\\
+Gesucht: Koeffizienten $\hat{f}$ der Darstellung in der Laplace-Basis
+\end{block}
+\begin{block}{Definition $\chi$-Matrix}
+Eigenwerte $0=\lambda_1<\lambda_2\le \dots \le \lambda_n$ von $L$
+\vspace{-10pt}
+\begin{center}
+\begin{tikzpicture}
+\node at (-1.9,0) [left] {$\chi=\mathstrut$};
+\node at (0,0) {$\left(\raisebox{0pt}[1.7cm][1.7cm]{\hspace{3.5cm}}\right)$};
+
+\fill[color=blue!20] (-1.7,-1.7) rectangle (-1.1,1.7);
+\draw[color=blue] (-1.7,-1.7) rectangle (-1.1,1.7);
+\node at (-1.4,0) [rotate=90] {$v_1=\mathstrut$EV zum EW $\lambda_1$\strut};
+
+\fill[color=blue!20] (-1.0,-1.7) rectangle (-0.4,1.7);
+\draw[color=blue] (-1.0,-1.7) rectangle (-0.4,1.7);
+\node at (-0.7,0) [rotate=90] {$v_2=\mathstrut$EV zum EW $\lambda_2$\strut};
+
+\fill[color=blue!20] (1.1,-1.7) rectangle (1.7,1.7);
+\draw[color=blue] (1.1,-1.7) rectangle (1.7,1.7);
+\node at (1.4,0) [rotate=90] {$v_n=\mathstrut$EV zum EW $\lambda_n$\strut};
+
+\node at (0.4,0) {$\dots$};
+
+\end{tikzpicture}
+\end{center}
+\end{block}
\end{column}
\begin{column}{0.48\textwidth}
+\begin{block}{Transformation}
+$L$ symmetrisch
+\\
+$\Rightarrow$
+Die Eigenvektoren von $L$ können orthonormiert gewählt werden
+\\
+$\Rightarrow$
+Koeffizienten können durch Skalarprodukte ermittelt werden:
+\[
+\hat{f}(k)
+=
+\langle v_k, f\rangle
+\quad\Rightarrow\quad
+\hat{f}
+=
+\chi^tf
+\]
+$\chi$ ist die {\em Fourier-Transformation}
+\end{block}
+\begin{block}{Rücktransformation}
+Eigenvektoren orthonormiert
+\\
+$\Rightarrow$
+$\chi$ orthogonal
+\[
+\chi\chi^t = I
+\]
+\end{block}
\end{column}
\end{columns}
\end{frame}