diff options
Diffstat (limited to '')
33 files changed, 2184 insertions, 0 deletions
diff --git a/vorlesungen/slides/2/Makefile.inc b/vorlesungen/slides/2/Makefile.inc index c857fec..cbd4dfe 100644 --- a/vorlesungen/slides/2/Makefile.inc +++ b/vorlesungen/slides/2/Makefile.inc @@ -17,5 +17,19 @@ chapter2 = \ ../slides/2/frobeniusanwendung.tex \ ../slides/2/quotient.tex \ ../slides/2/quotientv.tex \ + ../slides/2/hilbertraum/definition.tex \ + ../slides/2/hilbertraum/l2beispiel.tex \ + ../slides/2/hilbertraum/basis.tex \ + ../slides/2/hilbertraum/plancherel.tex \ + ../slides/2/hilbertraum/l2.tex \ + ../slides/2/hilbertraum/riesz.tex \ + ../slides/2/hilbertraum/rieszbeispiel.tex \ + ../slides/2/hilbertraum/adjungiert.tex \ + ../slides/2/hilbertraum/spektral.tex \ + ../slides/2/hilbertraum/sturm.tex \ + ../slides/2/hilbertraum/laplace.tex \ + ../slides/2/hilbertraum/qm.tex \ + ../slides/2/hilbertraum/energie.tex \ + ../slides/2/hilbertraum/sobolev.tex \ ../slides/2/chapter.tex diff --git a/vorlesungen/slides/2/chapter.tex b/vorlesungen/slides/2/chapter.tex index 49e656a..d3714c3 100644 --- a/vorlesungen/slides/2/chapter.tex +++ b/vorlesungen/slides/2/chapter.tex @@ -15,3 +15,17 @@ \folie{2/frobeniusanwendung.tex} \folie{2/quotient.tex} \folie{2/quotientv.tex} +\folie{2/hilbertraum/definition.tex} +\folie{2/hilbertraum/l2beispiel.tex} +\folie{2/hilbertraum/basis.tex} +\folie{2/hilbertraum/plancherel.tex} +\folie{2/hilbertraum/l2.tex} +\folie{2/hilbertraum/riesz.tex} +\folie{2/hilbertraum/rieszbeispiel.tex} +\folie{2/hilbertraum/adjungiert.tex} +\folie{2/hilbertraum/spektral.tex} +\folie{2/hilbertraum/sturm.tex} +\folie{2/hilbertraum/laplace.tex} +\folie{2/hilbertraum/qm.tex} +\folie{2/hilbertraum/energie.tex} +\folie{2/hilbertraum/sobolev.tex} diff --git a/vorlesungen/slides/2/hilbertraum/adjungiert.tex b/vorlesungen/slides/2/hilbertraum/adjungiert.tex new file mode 100644 index 0000000..da41576 --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/adjungiert.tex @@ -0,0 +1,83 @@ +% +% adjungiert.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Adjungierter Operator} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +\begin{itemize} +\item<2-> +$A\colon H\to L$ lineare Abbildung zwischen Hilberträumen, $y\in L$ +\item<3-> +\[ +H\to\mathbb{C} +: +x\mapsto \langle y, Ax\rangle_L +\] +ist eine lineare Abbildung $H\to\mathbb{C}$ +\item<4-> +Nach dem Darstellungssatz gibt es $v\in H$ mit +\[ +\langle y,Ax\rangle_L = \langle v,x\rangle_H +\quad +\forall x\in H +\] +\end{itemize} +\uncover<5->{% +Die Abbildung +\[ +L\to H +: +y\mapsto v =: A^*y +\] +heisst {\em adjungierte Abbildung}} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<6->{% +\begin{block}{Endlichdimensional (Matrizen)} +\[ +A^* = \overline{A}^t +\] +\end{block}} +\vspace{-8pt} +\uncover<7->{% +\begin{block}{Selbstabbildungen} +Für Operatoren $A\colon H\to H$ ist $A^*\colon H\to H$ +\[ +\langle x,Ay\rangle += +\langle A^*x, y\rangle +\quad +\forall x,y\in H +\] +\end{block}} +\vspace{-8pt} +\uncover<9->{% +\begin{block}{Selbstadjungierte Operatoren} +\[ +A=A^* +\uncover<10->{\;\Leftrightarrow\; +\langle x,Ay \rangle += +\langle A^*x,y \rangle} +\uncover<11->{= +\langle Ax,y \rangle} +\] +\uncover<12->{Matrizen: +\begin{itemize} +\item<13-> hermitesch +\item<14-> für reelle Hilberträume: symmetrisch +\end{itemize}} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/2/hilbertraum/basis.tex b/vorlesungen/slides/2/hilbertraum/basis.tex new file mode 100644 index 0000000..022fa07 --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/basis.tex @@ -0,0 +1,65 @@ +% +% basis.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Hilbert-Basis} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +Eine Menge $\mathcal{B}=\{b_k|k>0\}$ ist eine Hilbertbasis, wenn +\begin{itemize} +\item<2-> $\mathcal{B}$ ist orthonormiert: $\langle b_k,b_l\rangle=\delta_{kl}$ +\item<3-> Der Unterraum $\langle b_k|k>0\rangle\subset H$ ist +dicht: +Jeder Vektor von $H$ kann beliebig genau durch Linearkombinationen von $b_k$ +approximiert werden. +\end{itemize} +\uncover<4->{% +Ein Hilbertraum mit einer Hilbertbasis heisst {\em separabel}} +\end{block} +\uncover<5->{% +\begin{block}{Endlichdimensional} +Der Algorithmus bricht nach endlich vielen Schritten ab. +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<6->{% +\begin{block}{Konstruktion} +Iterativ: $\mathcal{B}_0=\emptyset$ +\begin{enumerate} +\item<7-> $V_k = \langle \mathcal{B}_k \rangle$ +\item<8-> Wenn $V_k\ne H$, wähle einen Vektor +\begin{align*} +x\in V_k^{\perp} +&= +\{ +x\in H\;|\; x\perp V_k +\} +\\ +&= +\{x\in H\;|\; +x\perp y\;\forall y\in V_k +\} +\end{align*} +\item<9-> $b_{k+1} = x/\|x\|$ +\[ +\mathcal{B}_{k+1} = \mathcal{B}_k\cup \{b_{k+1}\} +\] +\end{enumerate} +\uncover<10->{% +Wenn $H$ separabel ist, dann ist +\[ +\mathcal{B} = \bigcup_{k} \mathcal{B}_k +\] +eine Hilbertbasis für $H$} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/2/hilbertraum/definition.tex b/vorlesungen/slides/2/hilbertraum/definition.tex new file mode 100644 index 0000000..d101637 --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/definition.tex @@ -0,0 +1,63 @@ +% +% definition.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Hilbertraum --- Definition} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{$\mathbb{C}$-Hilbertraum $H$} +\begin{enumerate} +\item<2-> $\mathbb{C}$-Vektorraum, muss nicht endlichdimensional sein +\item<3-> Sesquilineares Skalarprodukt +\[ +\langle \cdot,\cdot\rangle +\colon H \to \mathbb{C}: (x,y) \mapsto \langle x,y\rangle +\] +Dazugehörige Norm: +\[ +\|x\| = \sqrt{\langle x,x\rangle} +\] +\item<4-> Vollständigkeit: jede Cauchy-Folge konvergiert +\end{enumerate} +\uncover<5->{% +Ohne Vollständigkeit: {\em Prähilbertraum}} +\end{block} +\uncover<6->{% +\begin{block}{$\mathbb{R}$-Hilbertraum} +Vollständiger $\mathbb{R}$-Vektorraum mit bilinearem Skalarprodukt +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<7->{% +\begin{block}{Vollständigkeit} +\begin{itemize} +\item<8-> $(x_n)_{n\in\mathbb{N}}$ ist eine Cauchy-Folge: +Für alle $\varepsilon>0$ gibt es $N>0$ derart, dass +\[ +\| x_n-x_m\| < \varepsilon\quad\forall n,m>N +\] +\item<9-> Grenzwert existiert: $\exists x\in H$ derart, dass es für alle +$\varepsilon >0$ ein $N>0$ gibt derart, dass +\[ +\|x_n-x\|<\varepsilon\quad\forall n>N +\] +\end{itemize} +\end{block}} +\uncover<10->{% +\begin{block}{Cauchy-Schwarz-Ungleichung} +\[ +|\langle x,y\rangle| +\le \|x\| \cdot \|y\| +\] +Gleichheit für linear abhängige $x$ und $y$ +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/2/hilbertraum/energie.tex b/vorlesungen/slides/2/hilbertraum/energie.tex new file mode 100644 index 0000000..202a7c5 --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/energie.tex @@ -0,0 +1,67 @@ +% +% energie.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Energie --- Zeitentwicklung --- Schrödinger} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.30\textwidth} +\uncover<2->{% +\begin{block}{Totale Energie} +Hamilton-Funktion +\begin{align*} +H +&= +\frac12mv^2 + V(x) +\\ +&= +\frac{p^2}{2m} + V(x) +\end{align*} +\end{block}} +\uncover<3->{% +\begin{block}{Quantisierungsregel} +\begin{align*} +\text{Variable}&\to \text{Operator} +\\ +x_k & \to x_k +\\ +p_k & \to \frac{\hbar}{i} \frac{\partial}{\partial x_k} +\end{align*} +\end{block}} +\end{column} +\begin{column}{0.66\textwidth} +\uncover<4->{% +\begin{block}{Energie-Operator} +\[ +H += +-\frac{\hbar^2}{2m}\Delta + V(x) +\] +\end{block}} +\uncover<5->{% +\begin{block}{Eigenwertgleichung} +\[ +-\frac{\hbar^2}{2m}\Delta\psi(x,t) + V(x)\psi(x,t) = E\psi(x,t) +\] +Zeitunabhängige Schrödingergleichung +\end{block}} +\uncover<6->{% +\begin{block}{Zeitabhängigkeit = Schrödingergleichung} +\[ +-\frac{\hbar}{i} +\frac{\partial}{\partial t} +\psi(x,t) += +-\frac{\hbar^2}{2m}\Delta\psi(x,t) + V(x)\psi(x,t) +\] +\uncover<7->{Eigenwertgleichung durch Separation von $t$} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/2/hilbertraum/l2.tex b/vorlesungen/slides/2/hilbertraum/l2.tex new file mode 100644 index 0000000..bd744ab --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/l2.tex @@ -0,0 +1,61 @@ +% +% l2.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{$L^2$-Hilbertraum} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +\begin{itemize} +\item<2-> +Vektorraum: Funktionen +\[ +f\colon [a,b] \to \mathbb{C} +\] +\item<3-> +Sesquilineares Skalarprodukt +\[ +\langle f,g\rangle += +\int_a^b \overline{f(x)}\, g(x) \,dx +\] +\item<4-> +Norm: +\[ +\|f\|^2 = \int_a^b |f(x)|^2\,dx +\] +\item<5-> +Vollständigkeit? +\uncover<6->{$\rightarrow$ +Lebesgue Konvergenz-Satz} +\end{itemize} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<7->{% +\begin{block}{Vollständigkeit} +\begin{itemize} +\item +Funktioniert nicht für Riemann-Integral +\item<8-> +Erweiterung des Integrals auf das sogenannte Lebesgue-Integral (nach +Henri Lebesgue) +\item<9-> +Abzählbare Mengen spielen keine Rolle $\rightarrow$ Nullmengen +\item<10-> +Funktionen $\rightarrow$ Klassen von Funktionen, die sich auf einer Nullmenge +unterscheiden +\item<11-> +Konvergenz-Satz von Lebesgue $\rightarrow$ es funktioniert +\end{itemize} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/2/hilbertraum/l2beispiel.tex b/vorlesungen/slides/2/hilbertraum/l2beispiel.tex new file mode 100644 index 0000000..3ae44af --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/l2beispiel.tex @@ -0,0 +1,82 @@ +% +% l2beispiel.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Beispiele: $\mathbb{R},\mathbb{R}^2,\dots,\mathbb{R}^n,\dots,l^2$} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +\begin{itemize} +\item<2-> Quadratsummierbare Folgen von komplexen Zahlen +\[ +l^2 += +\biggl\{ +(x_k)_{k\in\mathbb{N}}\,\bigg|\, \sum_{k=0}^\infty |x_k|^2 < \infty +\biggr\} +\] +\item<3-> Skalarprodukt: +\begin{align*} +\langle x,y\rangle +&= +\sum_{k=0}^\infty \overline{x}_ky_k, +& +\uncover<4->{\|x\|^2 = \sum_{k=0}^\infty |x_k|^2} +\end{align*} +\item<5-> Vollständigkeit, +Konvergenz: Cauchy-Schwarz-Ungleichung +\[ +\biggl| +\sum_{k=0}^\infty \overline{x}_ky_k +\biggr| +\le +\sum_{k=0}^\infty |x_k|^2 +\sum_{l=0}^\infty |y_l|^2 +\] +\end{itemize} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<6->{% +\begin{block}{Standardbasisvektoren} +\begin{align*} +e_i +&= +(0,\dots,0,\underset{\underset{\textstyle i}{\textstyle\uparrow}}{1},0,\dots) +\\ +\uncover<7->{(e_i)_k &= \delta_{ik}} +\end{align*} +\uncover<8->{sind orthonormiert: +\begin{align*} +\langle e_i,e_j\rangle +&= +\sum_k \overline{\delta}_{ik}\delta_{jk} +\uncover<9->{= +\delta_{ij}} +\end{align*}} +\end{block}} +\vspace{-16pt} +\uncover<10->{% +\begin{block}{Analyse} +$x_k$ kann mit Skalarprodukten gefunden werden: +\begin{align*} +\hat{x}_i += +\langle e_i,x\rangle +&\uncover<11->{= +\sum_{k=0}^\infty \overline{\delta}_{ik} x_k} +\uncover<12->{= +x_i} +\end{align*} +\uncover<13->{(Fourier-Koeffizienten)} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/2/hilbertraum/laplace.tex b/vorlesungen/slides/2/hilbertraum/laplace.tex new file mode 100644 index 0000000..8f6b196 --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/laplace.tex @@ -0,0 +1,66 @@ +% +% laplace.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Höhere Dimension} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.44\textwidth} +\begin{block}{Problem} +Gegeben: $\Omega\subset\mathbb{R}^n$ ein Gebiet +\\ +Gesucht: Lösungen von $\Delta u=0$ mit $u_{|\partial\Omega}=0$ +\end{block} +\uncover<2->{% +\begin{block}{Funktionen} +Hilbertraum $H$ der Funktionen $f:\overline{\Omega}\to\mathbb{C}$ +mit $f_{|\partial\Omega}=0$ +\end{block}} +\uncover<3->{% +\begin{block}{Skalarprodukt} +\[ +\langle f,g\rangle += +\int_{\Omega} \overline{f}(x) g(x)\,d\mu(x) +\] +\end{block}} +\uncover<4->{% +\begin{block}{Laplace-Operator} +\[ +\Delta \psi = \operatorname{div}\operatorname{grad}\psi +\] +\end{block}} +\end{column} +\begin{column}{0.52\textwidth} +\uncover<5->{% +\begin{block}{Selbstadjungiert} +\begin{align*} +\langle f,\Delta g\rangle +&\uncover<6->{= +\int_{\Omega} \overline{f}(x)\operatorname{div}\operatorname{grad}g(x)\,d\mu(x)} +\\ +&\uncover<7->{= +\int_{\partial\Omega} +\underbrace{\overline{f}(x)}_{\displaystyle=0}\operatorname{grad}g(x)\,d\nu(x)} +\\ +&\uncover<7->{\qquad +- +\int_{\Omega} +\operatorname{grad}\overline{f}(x)\cdot \operatorname{grad}g(x) +\,d\mu(x)} +\\ +&\uncover<8->{=\int_{\Omega}\operatorname{div}\operatorname{grad}\overline{f}(x)g(x)\,d\mu(x)} +\\ +&\uncover<9->{= +\langle \Delta f,g\rangle} +\end{align*} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/2/hilbertraum/plancherel.tex b/vorlesungen/slides/2/hilbertraum/plancherel.tex new file mode 100644 index 0000000..73dd46b --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/plancherel.tex @@ -0,0 +1,102 @@ +% +% plancherel.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Plancherel-Gleichung} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Hilbertraum mit Hilbert-Basis} +$H$ Hilbertraum mit Hilbert-Basis +$\mathcal{B}=\{b_k\;|\; k>0\}$, $x\in H$ +\end{block} +\uncover<2->{% +\begin{block}{Analyse: Fourier-Koeffizienten} +\begin{align*} +a_k = \hat{x}_k &=\langle b_k, x\rangle +\\ +\uncover<3->{\hat{x}&=\mathcal{F}x} +\end{align*} +\end{block}} +\vspace{-10pt} +\uncover<4->{% +\begin{block}{Synthese: Fourier-Reihe} +\begin{align*} +\tilde{x} +&= +\sum_k a_k b_k +\uncover<5->{= +\sum_k \langle x,b_k\rangle b_k} +\end{align*} +\end{block}} +\vspace{-6pt} +\uncover<6->{% +\begin{block}{Analyse von $\tilde{x}$} +\begin{align*} +\langle b_l,\tilde{x}\rangle +&= +\biggl\langle +b_l,\sum_{k}\langle b_k,x\rangle b_k +\biggr\rangle +\uncover<7->{= +\sum_k \langle b_k,x\rangle\langle b_l,b_k\rangle} +\uncover<8->{= +\sum_k \langle b_k,x\rangle\delta_{kl}} +\uncover<9->{= +\langle b_l,x\rangle} +\uncover<10->{= +\hat{x}_l} +\end{align*} +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<11->{% +\begin{block}{Plancherel-Gleichung} +\begin{align*} +\|\tilde{x}\|^2 +&= +\langle \tilde{x},\tilde{x}\rangle += +\biggl\langle +\sum_k \hat{x}_kb_k, +\sum_l \hat{x}_lb_l +\biggr\rangle +\\ +&\uncover<12->{= +\sum_{k,l} \overline{\hat{x}}_k\hat{x}_l\langle b_k,b_l\rangle} +\uncover<13->{= +\sum_{k,l} \overline{\hat{x}}_k\hat{x}_l\delta_{kl}} +\\ +\uncover<14->{ +\|\tilde{x}\|^2 +&= +\sum_k |\hat{x}_k|^2} +\uncover<15->{= +\|\hat{x}\|_{l^2}^2} +\uncover<16->{= +\|\mathcal{F}x\|_{l^2}^2} +\end{align*} +\end{block}} +\vspace{-12pt} +\uncover<17->{% +\begin{block}{Isometrie} +\begin{align*} +\mathcal{F} +\colon +H \to l^2 +\colon +x\mapsto \hat{x} +\end{align*} +\uncover<18->{Alle separablen Hilberträume sind isometrisch zu $l^2$ via +%Fourier-Transformation +$\mathcal{F}$} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/2/hilbertraum/qm.tex b/vorlesungen/slides/2/hilbertraum/qm.tex new file mode 100644 index 0000000..a108121 --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/qm.tex @@ -0,0 +1,90 @@ +% +% qm.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Anwendung: Quantenmechanik} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Zustände (Wellenfunktion)} +$L^2$-Funktionen auf $\mathbb{R}^3$ +\[ +\psi\colon\mathbb{R}^3\to\mathbb{C} +\] +\end{block} +\vspace{-6pt} +\uncover<2->{% +\begin{block}{Wahrscheinlichkeitsinterpretation} +\[ +|\psi(x)|^2 = \left\{ +\begin{minipage}{4.6cm}\raggedright +Wahrscheinlichkeitsdichte für Position $x$ des Teilchens +\end{minipage}\right. +\] +\end{block}} +\vspace{-6pt} +\uncover<3->{% +\begin{block}{Skalarprodukt} +\[ +\langle\psi,\psi\rangle += +\int_{\mathbb{R}^3} |\psi(x)|^2\,dx = 1 +\] +\end{block}} +\vspace{-6pt} +\uncover<4->{% +\begin{block}{Messgrösse $A$} +Selbstadjungierter Operator $A$ +\\ +\uncover<5->{$\rightarrow$ +Hilbertbasis $|i\rangle$ von EV von $A$} +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<6->{% +\begin{block}{Überlagerung} +\begin{align*} +|\psi\rangle +&= +\sum_i +w_i|i\rangle +\\ +\uncover<7->{\langle \psi|\psi\rangle +&= +\sum_i |w_i|^2 \qquad\text{(Plancherel)}} +\end{align*} +\uncover<8->{% +$|w_i|^2=|\langle \psi|i\rangle|^2$ Wahrscheinlichkeit für Zustand $|i\rangle$ +} +\end{block}} +\uncover<9->{% +\begin{block}{Erwartungswert} +\begin{align*} +E(A) +&\uncover<10->{= +\sum_i |w_i|^2 \alpha_i} +\uncover<11->{= +\sum_i \overline{w}_i\alpha_i w_i } +\hspace{5cm} +\\ +&\only<12>{= +\sum_{i,j} \overline{w}_j\alpha_i w_i \langle j|i\rangle} +\uncover<13->{= +\sum_{i} \overline{w}_j\langle j| \sum_i \alpha_i w_i |i\rangle} +\\ +&\uncover<14->{= +\sum_{i,j} \overline{w}_j w_i \langle j| +A|i\rangle} +\uncover<15->{= +\langle \psi| A |\psi\rangle} +\end{align*} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/2/hilbertraum/riesz.tex b/vorlesungen/slides/2/hilbertraum/riesz.tex new file mode 100644 index 0000000..437fb3c --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/riesz.tex @@ -0,0 +1,76 @@ +% +% riesz.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Darstellungssatz von Riesz} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Dualraum} +$V$ ein Vektorraum, $V^*$ der Raum aller Linearformen +\[ +f\colon V\to \mathbb{C} +\] +\end{block} +\uncover<3->{% +\begin{block}{Beispiel: $l^\infty$} +$l^\infty=\text{beschränkte Folgen in $\mathbb{C}$}$, +Linearformen: +\begin{align*} +\uncover<4->{ +f(x) +&= +\sum_{i=0}^\infty f_ix_i} +\\ +\uncover<5->{ +\|f\| +&= +\sup_{\|x\|_{\infty}\le 1} +|f(x)|} +\uncover<6->{= +\sum_{k\in\mathbb{N}} |f_k|} +\\ +\uncover<7->{ +\Rightarrow +l^{\infty*} +&= +l^1} +\uncover<9->{\qquad(\ne l^2)} +\\ +\uncover<8->{ +&=\{\text{summierbare Folgen in $\mathbb{C}$}\} +} +\end{align*} + +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<2->{% +\begin{block}{Beispiel: $\mathbb{C}^n$} +${\mathbb{C}^n}^* = \mathbb{C}^n$ +\end{block}} +\uncover<10->{% +\begin{theorem}[Riesz] +Zu einer stetigen Linearform $f\colon H\to\mathbb{C}$ gibt es $v\in H$ mit +\[ +f(x) = \langle v,x\rangle +\quad\forall x\in H +\] +und $\|f\| = \|v\|$ +\end{theorem}} +\uncover<11->{% +\begin{block}{Dualraum von $H$} +$H^*=H$ +\end{block}}% +\uncover<12->{% +Der Hilbertraum ist die ``intuitiv richtige, unendlichdimensionale'' +Verallgemeinerung von $\mathbb{C}^n$} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex b/vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex new file mode 100644 index 0000000..de9383f --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex @@ -0,0 +1,107 @@ +% +% rieszbeispiel.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Linearform auf $L^2$-Funktionen} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Linearform auf $\mathbb{C}^n$} +\begin{align*} +{\color{blue}x}&=\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}, +& +f({\color{blue}x}) +&= +\begin{pmatrix}f_1&f_2&\dots&f_n\end{pmatrix} {\color{blue}x} +\\ +\uncover<2->{ +{\color{red}v}&= +\rlap{$ +\begin{pmatrix} +\overline{f}_1&\overline{f}_2&\dots&\overline{f}_n +\end{pmatrix}^t +\uncover<3->{\;\Rightarrow\; +f({\color{blue}x})=\langle {\color{red}v},{\color{blue}x}\rangle} +$}} +\end{align*} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<4->{% +\begin{block}{Linearform auf $L^2([a,b])$} +\begin{align*} +{\color{red}x}&\in L^2([a,b]) +\\ +\uncover<5->{ +f&\colon L^2([a,b]) \to \mathbb{C} +: {\color{red}x} \mapsto f({\color{red}x})} +\intertext{\uncover<6->{Riesz-Darstellungssatz: $\exists {\color{blue}v}\in L^2([a,b])$}} +\uncover<7->{f({\color{red}x}) +&= +\int_a^b {\color{blue}\overline{v}(t)}{\color{red}x(t)}\,dt} +\end{align*} +\end{block}} +\end{column} +\end{columns} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\begin{scope}[xshift=-3.5cm] +\def\s{0.058} +\foreach \n in {0,...,5}{ +\uncover<3->{ + \draw[color=red,line width=3pt] + ({\n+\s},{1/(\n+0.5)}) -- ({\n+\s},0); + \node[color=red] at ({\n},{-0.2+1/(\n+0.5)}) + [above right] {$v_\n\mathstrut$}; +} + \draw[color=blue,line width=3pt] + ({\n-\s},{0.4+0.55*sin(200*\n)+0.25*\n}) -- ({\n-\s},0); + \node[color=blue] at ({\n},{-0.2+0.4+0.55*sin(200*\n)+0.25*\n}) + [above left] {$x_\n\mathstrut$}; +} +\draw[->] (-0.6,0) -- (6,0) coordinate[label={$n$}]; +\draw[->] (-0.5,-0.1) -- (-0.5,2.5) coordinate[label={right:$x$}]; +\foreach \n in {0,...,5}{ + \fill (\n,0) circle[radius=0.08]; + \node at (\n,0) [below] {$\n$\strut}; +} +\node at (5.6,0) [below] {$\cdots$\strut}; +\end{scope} +\uncover<4->{ +\begin{scope}[xshift=3.5cm] +\uncover<7->{ +\fill[color=red!40,opacity=0.5] + plot[domain=0:5,samples=100] (\x,{1/(\x+0.5)}) + -- + (5,0) -- (0,0) -- cycle; +} +\fill[color=blue!40,opacity=0.5] + plot[domain=0:5,samples=100] (\x,{0.4+0.55*sin(200*\x)+0.25*\x}) + -- (5,0) -- (0,0) -- cycle; +\uncover<7->{ +\draw[color=red,line width=1.4pt] + plot[domain=0:5,samples=100] (\x,{1/(\x+0.5)}); +\node[color=red] at (0,2) [right] {$x(t)$}; +} + +\draw[color=blue,line width=1.4pt] + plot[domain=0:5,samples=100] (\x,{0.4+0.55*sin(200*\x)+0.25*\x}); +\node[color=blue] at (4.5,2) [right]{$v(t)$}; + +\draw[->] (-0.6,0) -- (6.0,0) coordinate[label={$t$}]; +\draw[->] (-0.5,-0.1) -- (-0.5,2.5) coordinate[label={right:$x$}]; +\draw (0.0,-0.1) -- (0.0,0.1); +\node at (0.0,0) [below] {$a$\strut}; +\draw (5.0,-0.1) -- (5.0,0.1); +\node at (5.0,0) [below] {$b$\strut}; +\end{scope} +} +\end{tikzpicture} +\end{center} +\end{frame} +\egroup diff --git a/vorlesungen/slides/2/hilbertraum/sobolev.tex b/vorlesungen/slides/2/hilbertraum/sobolev.tex new file mode 100644 index 0000000..828d34d --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/sobolev.tex @@ -0,0 +1,51 @@ +% +% sobolev.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Sobolev-Raum} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Vektorrraum $W$} +Funktionen $f\colon \Omega\to\mathbb{C}$ +\begin{itemize} +\item<2-> +$f\in L^2(\Omega)$ +\item<3-> +$\nabla f\in L^2(\Omega)$ +\item<4-> +homogene Randbedingungen: +$f_{|\partial \Omega}=0$ +\end{itemize} +\end{block} +\uncover<5->{% +\begin{block}{Skalarprodukt} +\begin{align*} +\langle f,g\rangle_W +&\uncover<6->{= +\int_\Omega \overline{\nabla f}(x)\cdot\nabla g(x)\,d\mu(x)} +\\ +&\uncover<7->{\qquad + \int_{\Omega} \overline{f}(x)\,g(x)\,d\mu(x)} +\\ +&\uncover<8->{=\langle f,-\Delta g + g\rangle_{L^2(\Omega)}} +\end{align*} +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<9->{% +\begin{block}{Vollständigkeit} +\dots +\end{block}} +\uncover<10->{% +\begin{block}{Anwendung} +``Ein Hilbertraum für jedes partielle Differentialgleichungsproblem'' +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/2/hilbertraum/spektral.tex b/vorlesungen/slides/2/hilbertraum/spektral.tex new file mode 100644 index 0000000..b561b69 --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/spektral.tex @@ -0,0 +1,91 @@ +% +% spektral.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Spektraltheorie für selbstadjungierte Operatoren} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Voraussetzungen} +\begin{itemize} +\item +Hilbertraum $H$ +\item +$A\colon H\to H$ linear +\end{itemize} +\end{block} +\uncover<2->{% +\begin{block}{Eigenwerte} +$x\in H$ ein EV von $A$ zum EW $\lambda\ne 0$ +\begin{align*} +\uncover<3->{\langle x,x\rangle +&= +\frac1{\lambda} +\langle x,\lambda x\rangle} +\uncover<3->{= +\frac1{\lambda} +\langle x,Ax\rangle} +\\ +&\uncover<4->{= +\frac1{\lambda} +\langle Ax,x\rangle} +\uncover<5->{= +\frac{\overline{\lambda}}{\lambda} +\langle x,x\rangle} +\\ +\uncover<6->{\frac{\overline{\lambda}}{\lambda}&=1 +\quad\Rightarrow\quad +\overline{\lambda} = \lambda} +\uncover<7->{\quad\Rightarrow\quad +\lambda\in\mathbb{R}} +\end{align*} +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<8->{% +\begin{block}{Orthogonalität} +$u,v$ EV zu EW $\mu,\lambda\in \mathbb{R}\setminus\{0\}$, $\overline{\mu}=\mu\ne\lambda$ +\begin{align*} +\uncover<9->{ +\langle u,v\rangle +&= +\frac{1}{\mu} +\langle \mu u,v\rangle} +\uncover<10->{= +\frac{1}{\mu} +\langle Au,v\rangle} +\\ +&\uncover<11->{= +\frac{1}{\mu} +\langle u,Av\rangle} +\uncover<12->{= +\frac{1}{\mu} +\langle u,\lambda v\rangle} +\uncover<13->{= +\frac{\lambda}{\mu} +\langle u,v\rangle} +\\ +\uncover<14->{\Rightarrow +\; +0 +&= +\underbrace{\biggl(\frac{\lambda}{\mu}-1\biggr)}_{\displaystyle \ne 0} +\langle u,v\rangle} +\uncover<15->{\;\Rightarrow\; +\langle u,v\rangle = 0} +\end{align*} +\uncover<16->{EV zu verschiedenen EW sind orthogonal} +\end{block}} +\end{column} +\end{columns} +\uncover<17->{% +\begin{block}{Spektralsatz} +Es gibt eine Hilbertbasis von $H$ aus Eigenvektoren von $A$ +\end{block}} +\end{frame} +\egroup diff --git a/vorlesungen/slides/2/hilbertraum/sturm.tex b/vorlesungen/slides/2/hilbertraum/sturm.tex new file mode 100644 index 0000000..a6865ab --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/sturm.tex @@ -0,0 +1,58 @@ +% +% sturm.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Sturm-Liouville-Problem} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Wellengleichung} +Saite mit variabler Massedichte führt auf die DGL +\[ +-y''(t) + q(t) y(t) = \lambda y(t), +\quad +q(t) > 0 +\] +mit Randbedingungen $y(0)=y(1)=0$ +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<2->{% +\begin{block}{Sturm-Liouville-Operator} +\[ +A=-\frac{d^2}{dt^2} + q(t) = -D^2 + p +\] +auf differenzierbaren Funktionen $\Omega=[0,1]\to\mathbb{C}$ mit Randwerten +\[ +f(0)=f(1)=0 +\] +\end{block}} +\end{column} +\end{columns} +\uncover<3->{% +\begin{block}{Selbstadjungiert} +\begin{align*} +\langle f,Ag \rangle +&\uncover<4->{= +\langle f,-D^2 g\rangle + \langle f,qg\rangle += +- +\int_0^1 \overline{f}(t) \frac{d^2}{dt^2}g(t)\,dt ++\langle f,qg\rangle} +\\ +&\uncover<5->{=-\underbrace{[\overline{f}(t)g'(t)]_0^1}_{\displaystyle=0} ++\int_0^1 \overline{f}'(t)g'(t)\,dt ++\langle f,qg\rangle} +\uncover<6->{=-\int_0^1 \overline{f}''(t)g(t)\,dt ++\langle qf,g\rangle} +\\ +&\uncover<7->{=\langle Af,g\rangle} +\end{align*} +\end{block}} +\end{frame} +\egroup diff --git a/vorlesungen/slides/8/Makefile.inc b/vorlesungen/slides/8/Makefile.inc index 81f91d0..6ac5665 100644 --- a/vorlesungen/slides/8/Makefile.inc +++ b/vorlesungen/slides/8/Makefile.inc @@ -35,5 +35,18 @@ chapter8 = \ ../slides/8/subgraph.tex \ ../slides/8/chrwilf.tex \ ../slides/8/weitere.tex \ + ../slides/8/wavelets/funktionen.tex \ + ../slides/8/wavelets/laplacebasis.tex \ + ../slides/8/wavelets/vektoren.tex \ + ../slides/8/wavelets/fourier.tex \ + ../slides/8/wavelets/lokalisierungsvergleich.tex \ + ../slides/8/wavelets/frequenzlokalisierung.tex \ + ../slides/8/wavelets/dilatation.tex \ + ../slides/8/wavelets/matrixdilatation.tex \ + ../slides/8/wavelets/gundh.tex \ + ../slides/8/wavelets/dilbei.tex \ + ../slides/8/wavelets/frame.tex \ + ../slides/8/wavelets/framekonstanten.tex \ + ../slides/8/wavelets/beispiel.tex \ ../slides/8/chapter.tex diff --git a/vorlesungen/slides/8/chapter.tex b/vorlesungen/slides/8/chapter.tex index 7511e3e..69b7231 100644 --- a/vorlesungen/slides/8/chapter.tex +++ b/vorlesungen/slides/8/chapter.tex @@ -38,3 +38,16 @@ \folie{8/chrwilf.tex} \folie{8/weitere.tex} +\folie{8/wavelets/funktionen.tex} +\folie{8/wavelets/laplacebasis.tex} +\folie{8/wavelets/fourier.tex} +\folie{8/wavelets/lokalisierungsvergleich.tex} +\folie{8/wavelets/frequenzlokalisierung.tex} +\folie{8/wavelets/dilatation.tex} +\folie{8/wavelets/matrixdilatation.tex} +\folie{8/wavelets/gundh.tex} +\folie{8/wavelets/frame.tex} +\folie{8/wavelets/dilbei.tex} +\folie{8/wavelets/framekonstanten.tex} +\folie{8/wavelets/beispiel.tex} + diff --git a/vorlesungen/slides/8/wavelets/Makefile b/vorlesungen/slides/8/wavelets/Makefile new file mode 100644 index 0000000..3b4a5ce --- /dev/null +++ b/vorlesungen/slides/8/wavelets/Makefile @@ -0,0 +1,8 @@ +# +# Makefile +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# + +vektoren.tex: ev.m + octave ev.m diff --git a/vorlesungen/slides/8/wavelets/beispiel.tex b/vorlesungen/slides/8/wavelets/beispiel.tex new file mode 100644 index 0000000..dcc33d4 --- /dev/null +++ b/vorlesungen/slides/8/wavelets/beispiel.tex @@ -0,0 +1,44 @@ +% +% beispiel.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\def\bild#1#2{ +\node at (0,0) [rotate=-90] +{\includegraphics[width=#1\textwidth]{../../../SeminarWavelets/buch/papers/sgwt/images/#2}}; +} +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Wavelets auf einer Kugel} +\vspace{-10pt} +\begin{center} +\begin{tikzpicture}[>=latex,thick] + +\only<1>{ \bild{0.6}{wavelets-phi-sphere-334.pdf} } + +\only<2>{ \bild{0.6}{wavelets-psi-5-sphere-334.pdf} } +\only<3>{ \bild{0.6}{wavelets-psi-4-sphere-334.pdf} } +\only<4>{ \bild{0.6}{wavelets-psi-3-sphere-334.pdf} } +\only<5>{ \bild{0.6}{wavelets-psi-2-sphere-334.pdf} } +\only<6>{ \bild{0.6}{wavelets-psi-1-sphere-334.pdf} } + +\only<1>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_1$}; } +\only<2>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_2$}; } +\only<3>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_3$}; } +\only<4>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_4$}; } +\only<5>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_5$}; } +\only<6>{ \node at (-7.6,2.8) [right] {Tiefpass mit $h$}; } + +\only<1>{ \node at (-7.6,2) [right] {$D_{g,1/a_1}\chi_*$}; } +\only<2>{ \node at (-7.6,2) [right] {$D_{g,1/a_2}\chi_*$}; } +\only<3>{ \node at (-7.6,2) [right] {$D_{g,1/a_3}\chi_*$}; } +\only<4>{ \node at (-7.6,2) [right] {$D_{g,1/a_4}\chi_*$}; } +\only<5>{ \node at (-7.6,2) [right] {$D_{g,1/a_5}\chi_*$}; } +\only<6>{ \node at (-7.6,2) [right] {$D_{h}\chi_*$}; } + +\end{tikzpicture} +\end{center} +\end{frame} +\egroup diff --git a/vorlesungen/slides/8/wavelets/dilatation.tex b/vorlesungen/slides/8/wavelets/dilatation.tex new file mode 100644 index 0000000..881f760 --- /dev/null +++ b/vorlesungen/slides/8/wavelets/dilatation.tex @@ -0,0 +1,62 @@ +% +% template.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Dilatation} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Dilatation in $\mathbb{R}$} +$f\colon \mathbb{R}\to\mathbb{R}$ +Definition im Ortsraum: +\[ +(D_af)(x) += +\frac{1}{\sqrt{|a|}} +f\biggl(\frac{x}{a}\biggr) +\] +\uncover<2->{% +Dilatation im Frequenzraum: +\[ +\widehat{D_af}(\omega) += +D_{1/a}\hat{f}(\omega) +\]} +\uncover<3->{% +Spektrum wird mit $1/a$ skaliert!} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<4->{% +\begin{block}{``Dilatation'' auf einem Graphen} +\begin{itemize} +\item<5-> Dilatation auf dem Graphen gibt es nicht +\item<6-> Dilatation im Spektrum $\{\lambda_1,\dots,\lambda_n\}$ gibt es nicht +\item<7-> ``Spektrale Dilatation'' verwenden +\begin{enumerate} +\item<8-> Start: $e_k$ +\item<9-> Fourier-Transformation: $\chi^te_k$ +\item<10-> Spektrum skalieren: mit +$D_{1/a}g$ filtern +\item<11-> Rücktransformation +\[ +D_{g,a}e_k += +\chi +\uncover<12->{\operatorname{diag}(\tilde{D}_{1/a}g(\lambda_*)) +\chi^t e_k} +\] +\end{enumerate} +\end{itemize} + + +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/8/wavelets/dilbei.tex b/vorlesungen/slides/8/wavelets/dilbei.tex new file mode 100644 index 0000000..fc66a0a --- /dev/null +++ b/vorlesungen/slides/8/wavelets/dilbei.tex @@ -0,0 +1,46 @@ +% +% beispiel.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\def\bild#1#2{ +\node at (0,0) [rotate=-90] +{\includegraphics[width=#1\textwidth]{../../../SeminarWavelets/buch/papers/sgwt/images/#2}}; +} +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Wavelets einer Strecke} +\vspace{-10pt} +\begin{center} +\begin{tikzpicture}[>=latex,thick] + +\only<1>{ \bild{0.6}{wavelets-psi-line-5-10.pdf} } +\only<2>{ \bild{0.6}{wavelets-psi-line-4-10.pdf} } +\only<3>{ \bild{0.6}{wavelets-psi-line-3-10.pdf} } +\only<4>{ \bild{0.6}{wavelets-psi-line-2-10.pdf} } +\only<5>{ \bild{0.6}{wavelets-psi-line-1-10.pdf} } + +\only<6>{ \bild{0.6}{wavelets-phi-line-10.pdf} } + +\only<1>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_1$}; } +\only<2>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_2$}; } +\only<3>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_3$}; } +\only<4>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_4$}; } +\only<5>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_5$}; } +\only<6>{ \node at (-7.6,2.8) [right] {Tiefpass mit $h$}; } + + +\only<1>{ \node at (-7.6,2) [right] {$D_{g,1/a_1}\chi_*$}; } +\only<2>{ \node at (-7.6,2) [right] {$D_{g,1/a_2}\chi_*$}; } +\only<3>{ \node at (-7.6,2) [right] {$D_{g,1/a_3}\chi_*$}; } +\only<4>{ \node at (-7.6,2) [right] {$D_{g,1/a_4}\chi_*$}; } +\only<5>{ \node at (-7.6,2) [right] {$D_{g,1/a_5}\chi_*$}; } + +\only<6>{ \node at (-7.6,2) [right] {$D_{h}\chi_*$}; } + +\end{tikzpicture} +\end{center} +\end{frame} +\egroup diff --git a/vorlesungen/slides/8/wavelets/ev.m b/vorlesungen/slides/8/wavelets/ev.m new file mode 100644 index 0000000..7f4dd55 --- /dev/null +++ b/vorlesungen/slides/8/wavelets/ev.m @@ -0,0 +1,97 @@ +# +# ev.m +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# + +L = [ + 2, -1, 0, -1, 0; + -1, 4, -1, -1, -1; + 0, -1, 2, 0, -1; + -1, -1, 0, 3, -1; + 0, -1, -1, -1, 3 +]; + +[v, lambda] = eig(L); + +function knoten(fn, wert, punkt) + if (wert > 0) + farbe = sprintf("red!%02d", round(100 * wert)); + else + farbe = sprintf("blue!%02d", round(-100 * wert)); + end + fprintf(fn, "\t\\fill[color=%s] %s circle[radius=0.25];\n", + farbe, punkt); + fprintf(fn, "\t\\draw %s circle[radius=0.25];\n", punkt); +endfunction + +function vektor(fn, v, name, lambda) + fprintf(fn, "\\def\\%s{\n", name); + fprintf(fn, "\t\\coordinate (A) at ({0*\\a},0);\n"); + fprintf(fn, "\t\\coordinate (B) at ({1*\\a},0);\n"); + fprintf(fn, "\t\\coordinate (C) at ({2*\\a},0);\n"); + fprintf(fn, "\t\\coordinate (D) at ({0.5*\\a},{-\\b});\n"); + fprintf(fn, "\t\\coordinate (E) at ({1.5*\\a},{-\\b});\n"); + fprintf(fn, "\t\\draw (A) -- (B);\n"); + fprintf(fn, "\t\\draw (A) -- (D);\n"); + fprintf(fn, "\t\\draw (B) -- (C);\n"); + fprintf(fn, "\t\\draw (B) -- (D);\n"); + fprintf(fn, "\t\\draw (B) -- (E);\n"); + fprintf(fn, "\t\\draw (C) -- (E);\n"); + fprintf(fn, "\t\\draw (D) -- (E);\n"); + fprintf(fn, "\t\\node at (-2.8,{-0.5*\\b}) [right] {$\\lambda=%.4f$};\n", + round(1000 * abs(lambda)) / 10000); + w = v / max(abs(v)); + knoten(fn, w(1,1), "(A)"); + knoten(fn, w(2,1), "(B)"); + knoten(fn, w(3,1), "(C)"); + knoten(fn, w(4,1), "(D)"); + knoten(fn, w(5,1), "(E)"); + fprintf(fn, "}\n"); +endfunction + +function punkt(fn, x, wert) + fprintf(fn, "({%.4f*\\c},{%.4f*\\d})", x, wert); +endfunction + +function funktion(fn, v, name, lambda) + fprintf(fn, "\\def\\%s{\n", name); + fprintf(fn, "\t\\draw[color=red,line width=1.4pt]\n\t\t"); + punkt(fn, -2, v(1,1)); + fprintf(fn, " --\n\t\t"); + punkt(fn, -1, v(4,1)); + fprintf(fn, " --\n\t\t"); + punkt(fn, 0, v(2,1)); + fprintf(fn, " --\n\t\t"); + punkt(fn, 1, v(5,1)); + fprintf(fn, " --\n\t\t"); + punkt(fn, 2, v(3,1)); + fprintf(fn, ";\n"); + fprintf(fn, "\t\\draw[->] ({-2.1*\\c},0) -- ({2.1*\\c},0);\n"); + fprintf(fn, "\t\\draw[->] (0,{-1.1*\\d}) -- (0,{1.1*\\d});\n"); + for x = (-2:2) + fprintf(fn, "\t\\fill ({%d*\\c},0) circle[radius=0.05];\n", x); + endfor + fprintf(fn, "}\n"); +endfunction + +fn = fopen("vektoren.tex", "w"); + +vektor(fn, v(:,1), "vnull", lambda(1,1)); +funktion(fn, v(:,1), "fnull", lambda(1,1)); + +vektor(fn, v(:,2), "vone", lambda(2,2)); +funktion(fn, v(:,2), "fone", lambda(2,2)); + +vektor(fn, v(:,3), "vtwo", lambda(3,3)); +funktion(fn, v(:,3), "ftwo", lambda(3,3)); + +vektor(fn, v(:,4), "vthree", lambda(4,4)); +funktion(fn, v(:,4), "fthree", lambda(4,4)); + +vektor(fn, v(:,5), "vfour", lambda(5,5)); +funktion(fn, v(:,5), "ffour", lambda(5,5)); + +fclose(fn); + + diff --git a/vorlesungen/slides/8/wavelets/fourier.tex b/vorlesungen/slides/8/wavelets/fourier.tex new file mode 100644 index 0000000..3195ec8 --- /dev/null +++ b/vorlesungen/slides/8/wavelets/fourier.tex @@ -0,0 +1,86 @@ +% +% fourier.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Fourier-Transformation} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Aufgabe} +Gegeben: Funktion $f$ auf dem Graphen +\\ +\uncover<2->{% +Gesucht: Koeffizienten $\hat{f}$ der Darstellung in der Laplace-Basis} +\end{block} +\uncover<3->{% +\begin{block}{Definition $\chi$-Matrix} +Eigenwerte $0=\lambda_1<\lambda_2\le \dots \le \lambda_n$ von $L$ +\vspace{-10pt} +\begin{center} +\begin{tikzpicture} +\node at (-1.9,0) [left] {$\chi=\mathstrut$}; +\node at (0,0) {$\left(\raisebox{0pt}[1.7cm][1.7cm]{\hspace{3.5cm}}\right)$}; + +\fill[color=blue!20] (-1.7,-1.7) rectangle (-1.1,1.7); +\draw[color=blue] (-1.7,-1.7) rectangle (-1.1,1.7); +\node at (-1.4,0) [rotate=90] {$v_1=\mathstrut$EV zum EW $\lambda_1$\strut}; + +\fill[color=blue!20] (-1.0,-1.7) rectangle (-0.4,1.7); +\draw[color=blue] (-1.0,-1.7) rectangle (-0.4,1.7); +\node at (-0.7,0) [rotate=90] {$v_2=\mathstrut$EV zum EW $\lambda_2$\strut}; + +\fill[color=blue!20] (1.1,-1.7) rectangle (1.7,1.7); +\draw[color=blue] (1.1,-1.7) rectangle (1.7,1.7); +\node at (1.4,0) [rotate=90] {$v_n=\mathstrut$EV zum EW $\lambda_n$\strut}; + +\node at (0.4,0) {$\dots$}; + +\end{tikzpicture} +\end{center} +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<4->{% +\begin{block}{Transformation} +$L$ symmetrisch +\\ +\uncover<5->{$\Rightarrow$ +Die Eigenvektoren von $L$ können orthonormiert gewählt werden} +\\ +\uncover<6->{$\Rightarrow$ +Koeffizienten können durch Skalarprodukte ermittelt werden:} +\uncover<7->{% +\[ +\hat{f}(k) += +\hat{f}(\lambda_k) +\uncover<8->{= +\langle v_k, f\rangle +\quad\Rightarrow\quad +\hat{f}} +\uncover<9->{= +\chi^tf} +\]} +\uncover<10->{% +$\chi$ ist die {\em Fourier-Transformation}} +\end{block}} +\uncover<11->{% +\begin{block}{Rücktransformation} +Eigenvektoren orthonormiert +\\ +\uncover<12->{$\Rightarrow$ +$\chi$ orthogonal} +\uncover<13->{ +\[ +\chi\chi^t = I +\]} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/8/wavelets/frame.tex b/vorlesungen/slides/8/wavelets/frame.tex new file mode 100644 index 0000000..4d0c7d1 --- /dev/null +++ b/vorlesungen/slides/8/wavelets/frame.tex @@ -0,0 +1,66 @@ +% +% template.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Graph Wavelet Frame} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Frame-Vektoren} +Zu Dilatationsfaktoren $A=\{a_i\,|\,i=1,\dots,N\}$ +konstruiere das Frame +\begin{align*} +F= +\{&D_he_1,\dots,D_he_n,\\ + &Dg_1e_1,\dots,Dg_1e_n,\\ + &Dg_2e_1,\dots,Dg_2e_n,\\ + &\dots\\ + &Dg_Ne_1,\dots,Dg_Ne_n\} +\end{align*} +\uncover<2->{Notation: +\begin{align*} +v_{0,k} +&= +D_he_k +\\ +v_{i,k} +&= +Dg_ie_k +\end{align*}} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<3->{% +\begin{block}{Frameoperator} +\begin{align*} +\mathcal{T}\colon \mathbb{R}^n\to\mathbb{R}^{nN} +: +v +&\mapsto +\begin{pmatrix} +\uncover<4->{\langle D_he_1,v\rangle}\\ +\uncover<4->{\vdots}\\ +\uncover<4->{\langle D_he_n,v\rangle}\\ +\hline +\uncover<5->{\langle D_{g_1}e_1,v\rangle}\\ +\uncover<5->{\vdots}\\ +\uncover<5->{\langle D_{g_1}e_n,v\rangle}\\ +\hline +\uncover<6->{\vdots}\\ +\uncover<6->{\vdots}\\ +\hline +\uncover<7->{\langle D_{g_N}e_1,v\rangle}\\ +\uncover<7->{\vdots}\\ +\uncover<7->{\langle D_{g_N}e_n,v\rangle} +\end{pmatrix} +\end{align*} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/8/wavelets/framekonstanten.tex b/vorlesungen/slides/8/wavelets/framekonstanten.tex new file mode 100644 index 0000000..a436536 --- /dev/null +++ b/vorlesungen/slides/8/wavelets/framekonstanten.tex @@ -0,0 +1,71 @@ +% +% template.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +%\setlength{\abovedisplayskip}{5pt} +%\setlength{\belowdisplayskip}{5pt} +\frametitle{Framekonstanten} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +Eine Menge $\mathcal{F}$ von Vektoren heisst ein Frame, +falls es Konstanten $A$ und $B$ gibt derart, dass +\[ +A\|v\|^2 +\le +\|\mathcal{T}v\|^2 +\sum_{b\in\mathcal{F}} |\langle b,v\rangle|^2 +\le +B\|v\|^2 +\] +\uncover<2->{$A>0$ garantiert Invertierbarkeit} +\end{block} +\uncover<3->{% +\begin{block}{$\|\mathcal{T}v\|$ für Graph-Wavelets} +\begin{align*} +\|\mathcal{T}v\|^2 +&= +\sum_k |\langle D_he_k,v\rangle|^2 ++ +\sum_{i,k} |\langle D_{g_i}e_k, v\rangle|^2 +\\ +&\uncover<4->{= +\sum_k |h(\lambda_k) \hat{v}(k)|^2 ++ +\sum_{k,i} |g_i(\lambda_k) \hat{v}(k)|^2} +\end{align*} +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<5->{% +\begin{block}{$A$ und $B$} +Frame-Norm-Funktion +\begin{align*} +f(\lambda) +&= +h(\lambda) ++ +\sum_i g_i(\lambda) +\\ +&\uncover<6->{= +h(\lambda) ++ +\sum_i g(a_i\lambda)} +\end{align*} +\uncover<7->{Abschätzung für Frame-Konstanten +\begin{align*} +A&\uncover<8->{= +\min_{i} f(\lambda_i)} +\\ +B&\uncover<9->{= +\max_{i} f(\lambda_i)} +\end{align*}} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/8/wavelets/frequenzlokalisierung.tex b/vorlesungen/slides/8/wavelets/frequenzlokalisierung.tex new file mode 100644 index 0000000..c78e6dd --- /dev/null +++ b/vorlesungen/slides/8/wavelets/frequenzlokalisierung.tex @@ -0,0 +1,78 @@ +% +% frequenzlokalisierung.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup + +\def\kurve#1#2{ + \draw[color=#2,line width=1.4pt] + plot[domain=0:6.3,samples=400] + ({\x},{7*\x*exp(-(\x/#1)*(\x/#1))/#1}); +} +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Lokalisierung} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Bandpass} +Gegeben durch $g(\lambda)\ge 0$: +\begin{align*} +g(0) &= 0\\ +\lim_{\lambda\to\infty}g(\lambda)&= 0 +\end{align*} +\vspace{-10pt} +\begin{enumerate} +\item<3-> Fourier-transformieren +\item<4-> Amplituden mit $g(\lambda)$ multiplizieren +\item<5-> Rücktransformieren +\end{enumerate} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<6->{% +\begin{block}{Tiefpass} +Gegeben durch $h(\lambda)\ge0$: +\begin{align*} +h(0) &= 1\\ +\lim_{\lambda\to\infty}h(\lambda)&= 0 +\end{align*} +\vspace{-10pt} +\begin{enumerate} +\item<8-> Fourier-Transformation +\item<9-> Amplituden mit $h(\lambda)$ multiplizieren +\item<10-> Rücktransformation +\end{enumerate} +\end{block}} +\end{column} +\end{columns} +\begin{center} +\begin{tikzpicture}[>=latex,thick,scale=0.8] + +\uncover<2->{ +\begin{scope}[xshift=-4.5cm] +\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}]; +\kurve{3}{red} +\draw[->] (0,-0.1) -- (0,3.3); +\end{scope} +} + +\uncover<7->{ +\begin{scope}[xshift=4.5cm] +\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}]; +\draw[color=darkgreen,line width=1.4pt] + plot[domain=0:6.3,samples=100] + ({\x},{3*exp(-(\x/0.5)*(\x/0.5)}); + +\draw[->] (0,-0.1) -- (0,3.3) coordinate[label={right:$\color{darkgreen}h(\lambda)$}]; +\end{scope} +} + +\end{tikzpicture} +\end{center} +\end{frame} +\egroup diff --git a/vorlesungen/slides/8/wavelets/funktionen.tex b/vorlesungen/slides/8/wavelets/funktionen.tex new file mode 100644 index 0000000..2e3ae9b --- /dev/null +++ b/vorlesungen/slides/8/wavelets/funktionen.tex @@ -0,0 +1,78 @@ +% +% funktionen.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\def\knoten#1#2{ + \draw #1 circle[radius=0.25]; + \node at #1 {$#2$}; +} +\def\kante#1#2{ + \draw[shorten >= 0.25cm,shorten <= 0.25cm] #1 -- #2; +} +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Funktionen auf einem Graphen} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +Ein Graph $G=(V,E)$, eine Funktion auf dem Graphen ist +\[ +f\colon V \to \mathbb{R} : v\mapsto f(v) +\] +Knoten: $V=\{1,\dots,n\}$ +\\ +\uncover<2->{% +Vektorschreibweise +\[ +f = \begin{pmatrix} +f(1)\\f(2)\\\vdots\\f(n) +\end{pmatrix} +\]} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<3->{% +\begin{block}{Matrizen} +Adjazenz-, Grad- und Laplace-Matrix operieren auf Funktionen auf Graphen: +\[ +L += +\begin{pmatrix*}[r] + 2&-1& 0&-1& 0\\ +-1& 4&-1&-1&-1\\ + 0&-1& 2& 0&-1\\ +-1&-1& 0& 3&-1\\ + 0&-1&-1&-1& 3\\ +\end{pmatrix*} +\] +\end{block} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\def\a{2} +\coordinate (A) at (0,0); +\coordinate (B) at (\a,0); +\coordinate (C) at ({2*\a},0); +\coordinate (D) at ({0.5*\a},{-0.5*sqrt(3)*\a}); +\coordinate (E) at ({1.5*\a},{-0.5*sqrt(3)*\a}); +\knoten{(A)}{1} +\knoten{(B)}{2} +\knoten{(C)}{3} +\knoten{(D)}{4} +\knoten{(E)}{5} +\kante{(A)}{(B)} +\kante{(B)}{(C)} +\kante{(A)}{(D)} +\kante{(B)}{(D)} +\kante{(B)}{(E)} +\kante{(C)}{(E)} +\kante{(D)}{(E)} +\end{tikzpicture} +\end{center}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/8/wavelets/gundh.tex b/vorlesungen/slides/8/wavelets/gundh.tex new file mode 100644 index 0000000..2d6c677 --- /dev/null +++ b/vorlesungen/slides/8/wavelets/gundh.tex @@ -0,0 +1,85 @@ +% +% template.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\kurve#1#2{ + \draw[color=#2,line width=1.4pt] + plot[domain=0:6.3,samples=400] + ({\x},{7*\x*exp(-(\x/#1)*(\x/#1))/#1}); +} + +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Wavelets} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Mutterwavelets + Dilatation} +Eine Menge von Dilatationsfaktoren +\[ +A= \{a_1,a_2,\dots,a_N\} +\] +wählen\uncover<2->{, und mit Funktionen +\[ +{\color{blue}g_i} = \tilde{D}_{1/a_i}{\color{red}g} +\] +die Standardbasisvektoren filtern} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<5->{ +\begin{block}{Vaterwavelets} +Tiefpass mit Funktion ${\color{darkgreen}h(\lambda)}$, +Standardbasisvektoren mit ${\color{darkgreen}h}$ filtern: +\[ +D_{\color{darkgreen}h}e_k +\] +\end{block}} +\end{column} +\end{columns} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\begin{scope} + +\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}]; + +\kurve{1}{red} +\uncover<4->{ +\foreach \k in {0,...,4}{ + \pgfmathparse{0.30*exp(ln(2)*\k)} + \xdef\l{\pgfmathresult} + \kurve{\l}{blue} +} +} + +\node[color=red] at ({0.7*1},3) [above] {$g(\lambda)$}; +\uncover<4->{ +\node[color=blue] at ({0.7*0.3*16},3) [above] {$g_i(\lambda)$}; +} + +\draw[->] (0,-0.1) -- (0,3.3); +\end{scope} + +\begin{scope}[xshift=7cm] + +\uncover<6->{ +\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}]; + +\draw[color=darkgreen,line width=1.4pt] + plot[domain=0:6.3,samples=100] + ({\x},{3*exp(-(\x/0.5)*(\x/0.5)}); + +\draw[->] (0,-0.1) -- (0,3.3) coordinate[label={right:$\color{darkgreen}h(\lambda)$}]; +} + +\end{scope} + +\end{tikzpicture} +\end{center} +\end{frame} +\egroup diff --git a/vorlesungen/slides/8/wavelets/laplacebasis.tex b/vorlesungen/slides/8/wavelets/laplacebasis.tex new file mode 100644 index 0000000..ced4c09 --- /dev/null +++ b/vorlesungen/slides/8/wavelets/laplacebasis.tex @@ -0,0 +1,62 @@ +% +% template.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\def\a{2} +\def\b{0.8} +\def\c{1} +\def\d{0.6} +\input{../slides/8/wavelets/vektoren.tex} +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Laplace-Basis} +\begin{center} +\begin{tikzpicture}[>=latex,thick] + +\begin{scope}[yshift=-0.4cm,xshift=-5.5cm] +\fnull +\end{scope} + +\begin{scope}[yshift=-1.8cm,xshift=-5.5cm] +\fone +\end{scope} + +\begin{scope}[yshift=-3.2cm,xshift=-5.5cm] +\ftwo +\end{scope} + +\begin{scope}[yshift=-4.6cm,xshift=-5.5cm] +\fthree +\end{scope} + +\begin{scope}[yshift=-6.0cm,xshift=-5.5cm] +\ffour +\end{scope} + +\begin{scope}[yshift=0cm] +\vnull +\end{scope} + +\begin{scope}[yshift=-1.4cm] +\vone +\end{scope} + +\begin{scope}[yshift=-2.8cm] +\vtwo +\end{scope} + +\begin{scope}[yshift=-4.2cm] +\vthree +\end{scope} + +\begin{scope}[yshift=-5.6cm] +\vfour +\end{scope} + +\end{tikzpicture} +\end{center} +\end{frame} +\egroup diff --git a/vorlesungen/slides/8/wavelets/lokalisierungsvergleich.tex b/vorlesungen/slides/8/wavelets/lokalisierungsvergleich.tex new file mode 100644 index 0000000..d6575d0 --- /dev/null +++ b/vorlesungen/slides/8/wavelets/lokalisierungsvergleich.tex @@ -0,0 +1,46 @@ +% +% lokalisierungsvergleich.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Lokalisierung} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Ortsraum} +Ortsraum$\mathstrut=V$ +\begin{itemize} +\item<3-> Standardbasis +\item<5-> lokalisiert in den Knoten +\item<7-> die meisten $\hat{f}(k)$ gross +\item<9-> vollständig delokalisiert im Frequenzraum +\end{itemize} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Frequenzraum} +\uncover<2->{Frequenzraum $\mathstrut=\{\lambda_1,\lambda_2,\dots,\lambda_n\}$} +\begin{itemize} +\item<4-> Laplace-Basis +\item<6-> lokalisiert in den Eigenwerten +\item<8-> die meisten Komponenten gross +\item<10-> vollständig delokalisiert im Ortsraum +\end{itemize} +\end{block} +\end{column} +\end{columns} +\uncover<11->{% +\begin{block}{Plan} +Gesucht sind Funktionen auf dem Graphen derart, die +\begin{enumerate} +\item<12-> in der Nähe einzelner Knoten konzentriert/lokalisiert sind und +\item<13-> deren Fourier-Transformation in der Nähe einzelner Eigenwerte +konzentriert/lokalisiert ist +\end{enumerate} +\end{block}} +\end{frame} +\egroup diff --git a/vorlesungen/slides/8/wavelets/matrixdilatation.tex b/vorlesungen/slides/8/wavelets/matrixdilatation.tex new file mode 100644 index 0000000..3536736 --- /dev/null +++ b/vorlesungen/slides/8/wavelets/matrixdilatation.tex @@ -0,0 +1,39 @@ +% +% matrixdilatation.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Dilatation in Matrixform} +Dilatationsfaktor $a$, skaliertes Wavelet beim Knoten $k$ mit Spektrum +$\tilde{D}_{1/a}g$ +\begin{align*} +D_{g,a}e_k +&= +\chi +\begin{pmatrix} +g(a\lambda_1)& 0 & \dots & 0 \\ + 0 &g(a\lambda_2)& \dots & 0 \\ + \vdots & \vdots & \ddots & \vdots \\ + 0 & 0 & \dots &g(a\lambda_n) +\end{pmatrix} +\chi^t +e_k +\intertext{\uncover<2->{``verschmierter'' Standardbasisvektor am Knoten $k$}} +\uncover<2->{D_he_k +&= +\chi +\begin{pmatrix} +h(\lambda_1)& 0 & \dots & 0 \\ + 0 &h(\lambda_2)& \dots & 0 \\ + \vdots & \vdots & \ddots & \vdots \\ + 0 & 0 & \dots &h(\lambda_n) +\end{pmatrix} +\chi^t +e_k} +\end{align*} +\end{frame} +\egroup diff --git a/vorlesungen/slides/8/wavelets/vektoren.tex b/vorlesungen/slides/8/wavelets/vektoren.tex new file mode 100644 index 0000000..2315d53 --- /dev/null +++ b/vorlesungen/slides/8/wavelets/vektoren.tex @@ -0,0 +1,200 @@ +\def\vnull{ + \coordinate (A) at ({0*\a},0); + \coordinate (B) at ({1*\a},0); + \coordinate (C) at ({2*\a},0); + \coordinate (D) at ({0.5*\a},{-\b}); + \coordinate (E) at ({1.5*\a},{-\b}); + \draw (A) -- (B); + \draw (A) -- (D); + \draw (B) -- (C); + \draw (B) -- (D); + \draw (B) -- (E); + \draw (C) -- (E); + \draw (D) -- (E); + \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.0000$}; + \fill[color=red!100] (A) circle[radius=0.25]; + \draw (A) circle[radius=0.25]; + \fill[color=red!100] (B) circle[radius=0.25]; + \draw (B) circle[radius=0.25]; + \fill[color=red!100] (C) circle[radius=0.25]; + \draw (C) circle[radius=0.25]; + \fill[color=red!100] (D) circle[radius=0.25]; + \draw (D) circle[radius=0.25]; + \fill[color=red!100] (E) circle[radius=0.25]; + \draw (E) circle[radius=0.25]; +} +\def\fnull{ + \draw[color=red,line width=1.4pt] + ({-2.0000*\c},{0.4472*\d}) -- + ({-1.0000*\c},{0.4472*\d}) -- + ({0.0000*\c},{0.4472*\d}) -- + ({1.0000*\c},{0.4472*\d}) -- + ({2.0000*\c},{0.4472*\d}); + \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0); + \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d}); + \fill ({-2*\c},0) circle[radius=0.05]; + \fill ({-1*\c},0) circle[radius=0.05]; + \fill ({0*\c},0) circle[radius=0.05]; + \fill ({1*\c},0) circle[radius=0.05]; + \fill ({2*\c},0) circle[radius=0.05]; +} +\def\vone{ + \coordinate (A) at ({0*\a},0); + \coordinate (B) at ({1*\a},0); + \coordinate (C) at ({2*\a},0); + \coordinate (D) at ({0.5*\a},{-\b}); + \coordinate (E) at ({1.5*\a},{-\b}); + \draw (A) -- (B); + \draw (A) -- (D); + \draw (B) -- (C); + \draw (B) -- (D); + \draw (B) -- (E); + \draw (C) -- (E); + \draw (D) -- (E); + \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.1586$}; + \fill[color=blue!100] (A) circle[radius=0.25]; + \draw (A) circle[radius=0.25]; + \fill[color=blue!00] (B) circle[radius=0.25]; + \draw (B) circle[radius=0.25]; + \fill[color=red!100] (C) circle[radius=0.25]; + \draw (C) circle[radius=0.25]; + \fill[color=blue!41] (D) circle[radius=0.25]; + \draw (D) circle[radius=0.25]; + \fill[color=red!41] (E) circle[radius=0.25]; + \draw (E) circle[radius=0.25]; +} +\def\fone{ + \draw[color=red,line width=1.4pt] + ({-2.0000*\c},{-0.6533*\d}) -- + ({-1.0000*\c},{-0.2706*\d}) -- + ({0.0000*\c},{-0.0000*\d}) -- + ({1.0000*\c},{0.2706*\d}) -- + ({2.0000*\c},{0.6533*\d}); + \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0); + \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d}); + \fill ({-2*\c},0) circle[radius=0.05]; + \fill ({-1*\c},0) circle[radius=0.05]; + \fill ({0*\c},0) circle[radius=0.05]; + \fill ({1*\c},0) circle[radius=0.05]; + \fill ({2*\c},0) circle[radius=0.05]; +} +\def\vtwo{ + \coordinate (A) at ({0*\a},0); + \coordinate (B) at ({1*\a},0); + \coordinate (C) at ({2*\a},0); + \coordinate (D) at ({0.5*\a},{-\b}); + \coordinate (E) at ({1.5*\a},{-\b}); + \draw (A) -- (B); + \draw (A) -- (D); + \draw (B) -- (C); + \draw (B) -- (D); + \draw (B) -- (E); + \draw (C) -- (E); + \draw (D) -- (E); + \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.3000$}; + \fill[color=red!100] (A) circle[radius=0.25]; + \draw (A) circle[radius=0.25]; + \fill[color=blue!00] (B) circle[radius=0.25]; + \draw (B) circle[radius=0.25]; + \fill[color=red!100] (C) circle[radius=0.25]; + \draw (C) circle[radius=0.25]; + \fill[color=blue!100] (D) circle[radius=0.25]; + \draw (D) circle[radius=0.25]; + \fill[color=blue!100] (E) circle[radius=0.25]; + \draw (E) circle[radius=0.25]; +} +\def\ftwo{ + \draw[color=red,line width=1.4pt] + ({-2.0000*\c},{0.5000*\d}) -- + ({-1.0000*\c},{-0.5000*\d}) -- + ({0.0000*\c},{-0.0000*\d}) -- + ({1.0000*\c},{-0.5000*\d}) -- + ({2.0000*\c},{0.5000*\d}); + \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0); + \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d}); + \fill ({-2*\c},0) circle[radius=0.05]; + \fill ({-1*\c},0) circle[radius=0.05]; + \fill ({0*\c},0) circle[radius=0.05]; + \fill ({1*\c},0) circle[radius=0.05]; + \fill ({2*\c},0) circle[radius=0.05]; +} +\def\vthree{ + \coordinate (A) at ({0*\a},0); + \coordinate (B) at ({1*\a},0); + \coordinate (C) at ({2*\a},0); + \coordinate (D) at ({0.5*\a},{-\b}); + \coordinate (E) at ({1.5*\a},{-\b}); + \draw (A) -- (B); + \draw (A) -- (D); + \draw (B) -- (C); + \draw (B) -- (D); + \draw (B) -- (E); + \draw (C) -- (E); + \draw (D) -- (E); + \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.4414$}; + \fill[color=red!41] (A) circle[radius=0.25]; + \draw (A) circle[radius=0.25]; + \fill[color=red!00] (B) circle[radius=0.25]; + \draw (B) circle[radius=0.25]; + \fill[color=blue!41] (C) circle[radius=0.25]; + \draw (C) circle[radius=0.25]; + \fill[color=blue!100] (D) circle[radius=0.25]; + \draw (D) circle[radius=0.25]; + \fill[color=red!100] (E) circle[radius=0.25]; + \draw (E) circle[radius=0.25]; +} +\def\fthree{ + \draw[color=red,line width=1.4pt] + ({-2.0000*\c},{0.2706*\d}) -- + ({-1.0000*\c},{-0.6533*\d}) -- + ({0.0000*\c},{0.0000*\d}) -- + ({1.0000*\c},{0.6533*\d}) -- + ({2.0000*\c},{-0.2706*\d}); + \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0); + \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d}); + \fill ({-2*\c},0) circle[radius=0.05]; + \fill ({-1*\c},0) circle[radius=0.05]; + \fill ({0*\c},0) circle[radius=0.05]; + \fill ({1*\c},0) circle[radius=0.05]; + \fill ({2*\c},0) circle[radius=0.05]; +} +\def\vfour{ + \coordinate (A) at ({0*\a},0); + \coordinate (B) at ({1*\a},0); + \coordinate (C) at ({2*\a},0); + \coordinate (D) at ({0.5*\a},{-\b}); + \coordinate (E) at ({1.5*\a},{-\b}); + \draw (A) -- (B); + \draw (A) -- (D); + \draw (B) -- (C); + \draw (B) -- (D); + \draw (B) -- (E); + \draw (C) -- (E); + \draw (D) -- (E); + \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.5000$}; + \fill[color=red!25] (A) circle[radius=0.25]; + \draw (A) circle[radius=0.25]; + \fill[color=blue!100] (B) circle[radius=0.25]; + \draw (B) circle[radius=0.25]; + \fill[color=red!25] (C) circle[radius=0.25]; + \draw (C) circle[radius=0.25]; + \fill[color=red!25] (D) circle[radius=0.25]; + \draw (D) circle[radius=0.25]; + \fill[color=red!25] (E) circle[radius=0.25]; + \draw (E) circle[radius=0.25]; +} +\def\ffour{ + \draw[color=red,line width=1.4pt] + ({-2.0000*\c},{0.2236*\d}) -- + ({-1.0000*\c},{0.2236*\d}) -- + ({0.0000*\c},{-0.8944*\d}) -- + ({1.0000*\c},{0.2236*\d}) -- + ({2.0000*\c},{0.2236*\d}); + \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0); + \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d}); + \fill ({-2*\c},0) circle[radius=0.05]; + \fill ({-1*\c},0) circle[radius=0.05]; + \fill ({0*\c},0) circle[radius=0.05]; + \fill ({1*\c},0) circle[radius=0.05]; + \fill ({2*\c},0) circle[radius=0.05]; +} |