aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--vorlesungen/slides/1/Makefile.inc2
-rw-r--r--vorlesungen/slides/1/chapter.tex2
-rw-r--r--vorlesungen/slides/1/ring.tex58
-rw-r--r--vorlesungen/slides/1/schwierigkeiten.tex90
-rw-r--r--vorlesungen/slides/test.tex6
5 files changed, 156 insertions, 2 deletions
diff --git a/vorlesungen/slides/1/Makefile.inc b/vorlesungen/slides/1/Makefile.inc
index 46bf6b3..38b47b3 100644
--- a/vorlesungen/slides/1/Makefile.inc
+++ b/vorlesungen/slides/1/Makefile.inc
@@ -9,6 +9,8 @@ chapter1 = \
../slides/1/peano.tex \
../slides/1/ganz.tex \
../slides/1/bruch.tex \
+ ../slides/1/ring.tex \
+ ../slides/1/schwierigkeiten.tex \
../slides/1/strukturen.tex \
../slides/1/j.tex \
../slides/1/vektorraum.tex \
diff --git a/vorlesungen/slides/1/chapter.tex b/vorlesungen/slides/1/chapter.tex
index 1b971f7..7bdda34 100644
--- a/vorlesungen/slides/1/chapter.tex
+++ b/vorlesungen/slides/1/chapter.tex
@@ -7,6 +7,8 @@
\folie{1/peano.tex}
\folie{1/ganz.tex}
\folie{1/bruch.tex}
+\folie{1/ring.tex}
+\folie{1/schwierigkeiten.tex}
\folie{1/strukturen.tex}
\folie{1/j.tex}
\folie{1/vektorraum.tex}
diff --git a/vorlesungen/slides/1/ring.tex b/vorlesungen/slides/1/ring.tex
new file mode 100644
index 0000000..9641975
--- /dev/null
+++ b/vorlesungen/slides/1/ring.tex
@@ -0,0 +1,58 @@
+%
+% ring.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\begin{frame}[t]
+\frametitle{Ring\only<15->{/Körper}}
+\vspace{-10pt}
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Addition und Multiplikation}
+$\mathbb{Z}$ und $\mathbb{Q}$
+haben zwei Verknüpfungen:
+\begin{enumerate}
+\item<2-> Addition
+\[
+a,b\in R\Rightarrow a+b\in R
+\]
+\item<3-> Multiplikation
+\[
+a,b\in R\Rightarrow a\cdot b=ab\in R
+\]
+\end{enumerate}
+\vspace{-5pt}
+\uncover<4->{%
+Gilt auch für
+\begin{itemize}
+\item<5-> Polynome
+\item<6-> $M_{n}(\mathbb{R})$
+\item<7-> $\mathbb{R}^3$ mit Vektorprodukt
+\end{itemize}}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<8->{%
+\begin{block}{Definition}
+Ein Ring\only<15->{/{\color{red}Körper}} ist eine Menge $R$ mit zwei
+Verknüpfungen $+$ und $\cdot$:
+\begin{enumerate}
+\item<9->
+$R$ mit $+$ ist eine abelsche Gruppe
+\item<10->
+$R$ mit $\cdot$ ist ein Monoid\only<15->{/{\color{red}eine Gruppe}}
+\item<11->
+Verträglichkeit: Distributivgesetz
+\begin{align*}
+\uncover<12->{a(b+c)&=ab+bc}
+\\
+\uncover<13->{(a+b)c&=ac+bc}
+\end{align*}
+\uncover<14->{(Ausmultiplizieren)}
+\end{enumerate}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/1/schwierigkeiten.tex b/vorlesungen/slides/1/schwierigkeiten.tex
new file mode 100644
index 0000000..fb22e58
--- /dev/null
+++ b/vorlesungen/slides/1/schwierigkeiten.tex
@@ -0,0 +1,90 @@
+%
+% schwierigkeiten.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\begin{frame}[t]
+\frametitle{Schwierigkeiten}
+\vspace{-15pt}
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Nullteiler}
+Elemente $a,b$ mit $ab=0$
+$\Rightarrow$ nicht invertierbar
+\begin{itemize}
+\item<3-> Projektionen
+\[
+\begin{pmatrix}
+1&0\\0&0
+\end{pmatrix}
+\begin{pmatrix}
+0&0\\0&1
+\end{pmatrix}
+=
+0
+\]
+\item<4-> Nilpotente Matrizen
+\[
+\begin{pmatrix}
+0&1&0\\
+0&0&1\\
+0&0&0
+\end{pmatrix}^3
+=0
+\]
+\item<5->
+In $\mathbb{Z}/15\mathbb{Z}$ (modulo 15):
+\[
+3\cdot 5 = 15 \equiv 0\mod 15
+\]
+\end{itemize}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Invertierbarkeit}
+\begin{itemize}
+\item<7->
+$7\in\mathbb{Z}$, aber $7^{-1}\not\in\mathbb{Z}$, $7^{-1}\in\mathbb{Q}$
+\item<8->
+$A$ regulär heisst nicht $A^{-1}\in M_n(\mathbb{Z})$
+\[
+A=\begin{pmatrix}
+1&-1\\
+1&1
+\end{pmatrix}
+\;\Rightarrow\;
+A^{-1}
+=
+\begin{pmatrix}
+\frac12&\frac12\\
+-\frac12&\frac12
+\end{pmatrix}
+\]
+\item<9->
+$A\in\operatorname{SL}_n(\mathbb{Z})$ invertierbar in
+$M_n(\mathbb{Z})$:
+\[
+A=
+\begin{pmatrix}
+5&4\\4&3
+\end{pmatrix}
+\;
+\Rightarrow
+\;
+A^{-1}=
+\begin{pmatrix}
+-3&4\\4&-5
+\end{pmatrix}
+\]
+\end{itemize}
+\uncover<10->{%
+Invertierbarkeit erreichen durch ``vergrössern'' des Ringes
+}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/test.tex b/vorlesungen/slides/test.tex
index e10b0ab..58b7a8c 100644
--- a/vorlesungen/slides/test.tex
+++ b/vorlesungen/slides/test.tex
@@ -5,7 +5,9 @@
%
%\folie{1/peano.tex}
-\folie{1/ganz.tex}
-\folie{1/bruch.tex}
+%\folie{1/ganz.tex}
+%\folie{1/bruch.tex}
+%\folie{1/ring.tex}
+\folie{1/schwierigkeiten.tex}
%\folie{3/polynome.tex}
%\folie{3/motivation.tex}