diff options
Diffstat (limited to '')
-rw-r--r-- | vorlesungen/punktgruppen/.gitignore | 6 | ||||
-rw-r--r-- | vorlesungen/punktgruppen/Makefile | 18 | ||||
-rw-r--r-- | vorlesungen/punktgruppen/script.pdf | bin | 0 -> 22284 bytes | |||
-rw-r--r-- | vorlesungen/punktgruppen/script.tex | 47 |
4 files changed, 71 insertions, 0 deletions
diff --git a/vorlesungen/punktgruppen/.gitignore b/vorlesungen/punktgruppen/.gitignore index 7f69fa5..068a456 100644 --- a/vorlesungen/punktgruppen/.gitignore +++ b/vorlesungen/punktgruppen/.gitignore @@ -1,2 +1,8 @@ +# directories __pycache__ media +build + +# files +script.log +missfont.log diff --git a/vorlesungen/punktgruppen/Makefile b/vorlesungen/punktgruppen/Makefile new file mode 100644 index 0000000..eb4eed6 --- /dev/null +++ b/vorlesungen/punktgruppen/Makefile @@ -0,0 +1,18 @@ +TEX=xelatex +TEXARGS=--output-directory=build --halt-on-error + +all: script.pdf media + +.PHONY: clean +clean: + @rm -rfv build + # @rm -rfv media + +script.pdf: script.tex + mkdir -p build + $(TEX) $(TEXARGS) script.tex + cp build/script.pdf . + +media: + poetry install + poetry run manim -ql crystals.py diff --git a/vorlesungen/punktgruppen/script.pdf b/vorlesungen/punktgruppen/script.pdf Binary files differnew file mode 100644 index 0000000..0893e79 --- /dev/null +++ b/vorlesungen/punktgruppen/script.pdf diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex new file mode 100644 index 0000000..e4fc63c --- /dev/null +++ b/vorlesungen/punktgruppen/script.tex @@ -0,0 +1,47 @@ +\documentclass[a4paper]{article} + +\usepackage[cm]{manuscript} +\usepackage{xcolor} + +\newcommand{\scene}[1]{\noindent[ #1 ]\par} +\newenvironment{totranslate}{\color{red!60!black}}{} + +\begin{document} + +\section{Intro} + +\section{Geometrie} +\scene{Intro} +\scene{Zyklische Gruppe} + +\begin{totranslate} + Let's now focus our attention on the simplest class of simmetries: those + generated only by a rotation. We'll describe the symmetries with a group + \(G\), and we'll write that it is generated by a rotation \(r\) with these + angle brackets. + + Take this shape as an example. By applying the rotation \emph{action} 5 + times, it seems as if we had not done anything, furthermore, if we \emph{act} + with higher ``powers'' \(r\), they will have the same effect as one of the + previous action. Thus the group only contain the identity and the powers of + \(r\) up to 4. + + In general, groups with this structure are known as the + ``Cyclic Groups'' of order \(n\), where the action \(r\) can be applied + \(n-1\) times before wrapping around. +\end{totranslate} + +\scene{Diedergruppe} + +\begin{totranslate} + Okay that was not difficult, now let's spice this up a bit. +\end{totranslate} + +\scene{Symmetrische Gruppe} +\scene{Alternierende Gruppe} + +\section{Algebra} + +\section{Krystalle} + +\end{document} |