aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--vorlesungen/punktgruppen/.gitignore6
-rw-r--r--vorlesungen/punktgruppen/Makefile18
-rw-r--r--vorlesungen/punktgruppen/script.pdfbin0 -> 22284 bytes
-rw-r--r--vorlesungen/punktgruppen/script.tex47
4 files changed, 71 insertions, 0 deletions
diff --git a/vorlesungen/punktgruppen/.gitignore b/vorlesungen/punktgruppen/.gitignore
index 7f69fa5..068a456 100644
--- a/vorlesungen/punktgruppen/.gitignore
+++ b/vorlesungen/punktgruppen/.gitignore
@@ -1,2 +1,8 @@
+# directories
__pycache__
media
+build
+
+# files
+script.log
+missfont.log
diff --git a/vorlesungen/punktgruppen/Makefile b/vorlesungen/punktgruppen/Makefile
new file mode 100644
index 0000000..eb4eed6
--- /dev/null
+++ b/vorlesungen/punktgruppen/Makefile
@@ -0,0 +1,18 @@
+TEX=xelatex
+TEXARGS=--output-directory=build --halt-on-error
+
+all: script.pdf media
+
+.PHONY: clean
+clean:
+ @rm -rfv build
+ # @rm -rfv media
+
+script.pdf: script.tex
+ mkdir -p build
+ $(TEX) $(TEXARGS) script.tex
+ cp build/script.pdf .
+
+media:
+ poetry install
+ poetry run manim -ql crystals.py
diff --git a/vorlesungen/punktgruppen/script.pdf b/vorlesungen/punktgruppen/script.pdf
new file mode 100644
index 0000000..0893e79
--- /dev/null
+++ b/vorlesungen/punktgruppen/script.pdf
Binary files differ
diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex
new file mode 100644
index 0000000..e4fc63c
--- /dev/null
+++ b/vorlesungen/punktgruppen/script.tex
@@ -0,0 +1,47 @@
+\documentclass[a4paper]{article}
+
+\usepackage[cm]{manuscript}
+\usepackage{xcolor}
+
+\newcommand{\scene}[1]{\noindent[ #1 ]\par}
+\newenvironment{totranslate}{\color{red!60!black}}{}
+
+\begin{document}
+
+\section{Intro}
+
+\section{Geometrie}
+\scene{Intro}
+\scene{Zyklische Gruppe}
+
+\begin{totranslate}
+ Let's now focus our attention on the simplest class of simmetries: those
+ generated only by a rotation. We'll describe the symmetries with a group
+ \(G\), and we'll write that it is generated by a rotation \(r\) with these
+ angle brackets.
+
+ Take this shape as an example. By applying the rotation \emph{action} 5
+ times, it seems as if we had not done anything, furthermore, if we \emph{act}
+ with higher ``powers'' \(r\), they will have the same effect as one of the
+ previous action. Thus the group only contain the identity and the powers of
+ \(r\) up to 4.
+
+ In general, groups with this structure are known as the
+ ``Cyclic Groups'' of order \(n\), where the action \(r\) can be applied
+ \(n-1\) times before wrapping around.
+\end{totranslate}
+
+\scene{Diedergruppe}
+
+\begin{totranslate}
+ Okay that was not difficult, now let's spice this up a bit.
+\end{totranslate}
+
+\scene{Symmetrische Gruppe}
+\scene{Alternierende Gruppe}
+
+\section{Algebra}
+
+\section{Krystalle}
+
+\end{document}