From d98f38c1c5ef49bcdf1e4954b0d2f040d2a007c6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 10 Sep 2021 10:48:56 +0200 Subject: typos spannung --- buch/papers/spannung/teil0.tex | 3 ++- buch/papers/spannung/teil1.tex | 6 +++--- buch/papers/spannung/teil2.tex | 33 ++++++++++++++++++++++++--------- buch/papers/spannung/teil3.tex | 11 ++++++----- buch/papers/spannung/teil4.tex | 2 +- 5 files changed, 36 insertions(+), 19 deletions(-) diff --git a/buch/papers/spannung/teil0.tex b/buch/papers/spannung/teil0.tex index 17e1d21..f708055 100644 --- a/buch/papers/spannung/teil0.tex +++ b/buch/papers/spannung/teil0.tex @@ -72,7 +72,8 @@ Es ist praktisch, die relative Dehnung $\varepsilon$ anzugeben und nicht eine ab \caption{1D Spannungszustand aus einer quaderförmigen Bodenprobe} \label{fig:Bild1} \end{figure} -Mithilfe vom Elastizitätsmodul $E$ als Proportionalitätskonstante lässt sich der eindimensionale Fall mit +Mithilfe vom Elastizitätsmodul $E$ (auch Youngscher Modul) als Proportionalitätskonstante lässt sich der eindimensionale Fall mit +\index{Youngscher Modul} \[ \sigma = diff --git a/buch/papers/spannung/teil1.tex b/buch/papers/spannung/teil1.tex index 76a0437..552c1cf 100644 --- a/buch/papers/spannung/teil1.tex +++ b/buch/papers/spannung/teil1.tex @@ -1,15 +1,15 @@ \section{Skalare, Vektoren, Matrizen und Tensoren\label{spannung:section:Skalare,_Vektoren,_Matrizen_und_Tensoren}} \rhead{Skalare, Vektoren, Matrizen und Tensoren} -Der Begriff Tensor kann als Überbegriff der mathematischen Objekte Skalar, Vektor und Matrix, betrachtet werden. +Der Begriff Tensor kann als Überbegriff der mathematischen Objekte Skalar, Vektor und Matrix betrachtet werden. \index{Tensor}% Allerdings sind noch höhere Stufen dieser Objekte beinhaltet. Skalare, Vektoren oder Matrizen sind daher auch Tensoren. Ein Skalar ist ein Tensor 0. Stufe. \index{Stufe}% Mit einem Vektor können mehrere Skalare auf einmal beschrieben werden. -Ein Vektor hat daher die Stufe 1 und ist höherstufig als ein Skalar. +Ein Vektor hat daher die Stufe 1 und ist höherstufiger als ein Skalar. Mit einer Matrix können wiederum mehrere Vektoren auf einmal beschrieben werden. -Eine Matrix hat daher die Stufe 2 und ist noch höherstufig als ein Vektor. +Eine Matrix hat daher die Stufe 2 und ist noch höherstufiger als ein Vektor. Versteht man diese Stufen, so versteht man den Sinn des Begriffs Tensor. Jede Stufe von Tensoren verlangt andere Rechenregeln. diff --git a/buch/papers/spannung/teil2.tex b/buch/papers/spannung/teil2.tex index ddd591f..fec0120 100644 --- a/buch/papers/spannung/teil2.tex +++ b/buch/papers/spannung/teil2.tex @@ -8,13 +8,13 @@ Durch komplexe Spannungsausbreitungen im Boden entstehen im 3D-Spannungszustand \label{fig:infinitesimalerWuerfel} \end{figure} Ein Tensor 0.~Stufe, sprich ein Skalar, kann lediglich den 1D-Spannungszustand beschreiben. -Um den 3D-Spannungszustandes als ein mathematisches Objekt darstellen zu können, wird ein Tensor 2.~Stufe, sprich eine Matrix, eingesetzt. +Um den 3D-Spannungszustand als ein mathematisches Objekt darstellen zu können, wird ein Tensor 2.~Stufe, sprich eine Matrix, eingesetzt. Die Spannungen sind durch die zwei Indizes \( i, j\in\left\{1, 2, 3\right\} \) definiert. -Daher ergeben sich die neun Spannungen. +Daher ergeben sich die $9$ Spannungen. Die nachfolgenden Zusammenhänge sind in \cite{spannung:Voigtsche-Notation} beschrieben. Dieser Spannungstensor kann schliesslich mit $3^2$ Einträgen als $3\times3$ Matrix mit \[ @@ -48,7 +48,7 @@ Der Dehnungstensor ist ebenfalls ein Tensor 2.~Stufe und kann somit auch als $3\ \] dargestellt werden und beschreibt den gesamten Dehnungszustand. -Der Spannungs- und Dehnungstensor 2.~Stufe kann je in einen Tensor 1.~Stufe überführt werden, welches ein Spaltenvektor ist. +Der Spannungs- und Dehnungstensor 2.~Stufe kann je in einen Tensor 1.~Stufe überführt werden, welcher ein Spaltenvektor ist. Man darf Zeile um Zeile in eine Spalte notieren, sodass es einen Spaltenvektor ergibt. So ergibt sich der Spannungsvektor @@ -114,8 +114,8 @@ Dieser ist im 1D-Spannungszustand ein Tensor 0.~Stufe und somit ein Skalar, der Dieser Elastizitätstensor 4.~Stufe kann als Tensor 2.~Stufe, sprich als Matrix, dargestellt werden. So wird die Spannungsgleichung stark vereinfacht, da nun eine Matrix auf einen Vektor operiert. -Dieser Tensor muss für eine Spannung jeden Einfluss aus allen neun Dehnungen mit Konstanten erfassen. -Dies bedeutet um eine von neun Spannungen berechnen zu können müssen alle neun Dehnung mit unterschiedlichen Faktoren summiert werden. +Dieser Tensor muss für eine Spannung jeden Einfluss aus allen $9$ Dehnungen mit Konstanten erfassen. +Dies bedeutet um eine von $9$ Spannungen berechnen zu können müssen alle $9$ Dehnung mit unterschiedlichen Faktoren summiert werden. Es ergeben sich $9^2$ Einträge, welches mit den vier Indizes \( i, j, k, l\in\left\{1, 2, 3\right\} @@ -354,14 +354,19 @@ beziehungsweise \sigma_{12} \end{pmatrix} = +%\left( +%\begin{array}{ccc|ccc} \begin{pmatrix} C_{1111} & C_{1122} & C_{1133} & C_{1123} & C_{1113} & C_{1112} \\ C_{2211} & C_{2222} & C_{2233} & C_{2223} & C_{2213} & C_{2212} \\ C_{3311} & C_{3322} & C_{3333} & C_{3323} & C_{3313} & C_{3312} \\ +%\hline C_{2311} & C_{2322} & C_{2333} & C_{2323} & C_{2313} & C_{2312} \\ C_{1311} & C_{1322} & C_{1333} & C_{1323} & C_{1313} & C_{1312} \\ C_{1211} & C_{1222} & C_{1233} & C_{1223} & C_{1213} & C_{1212} \end{pmatrix} +%\end{array} +%\right) \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ @@ -417,14 +422,19 @@ Dies ergibt die Spannungsgleichung, welche weit möglichst vereinfacht ist: \end{pmatrix} = \frac{E}{(1+\nu)(1-2\nu)} -\begin{pmatrix} +\left( +\begin{array}{ccc|ccc} +%\begin{pmatrix} 1- 2\nu & \nu & \nu & 0 & 0 & 0\\ \nu & 1- 2\nu & \nu & 0 & 0 & 0\\ \nu & \nu & 1- 2\nu & 0 & 0 & 0\\ +\hline 0 & 0 & 0 & \frac{1}{2} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} -\end{pmatrix} +%\end{pmatrix} +\end{array} +\right) \begin{pmatrix} \varepsilon_{11}\\ \varepsilon_{22}\\ @@ -468,14 +478,19 @@ Durch einige Berechnungsschritte erhält man die Dehnungsgleichung: \end{pmatrix} = \frac{1}{E} -\begin{pmatrix} +\left( +\begin{array}{ccc|ccc} +%\begin{pmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ +\hline 0 & 0 & 0 & 2+2\nu & 0 & 0 \\ 0 & 0 & 0 & 0 & 2+2\nu & 0 \\ 0 & 0 & 0 & 0 & 0 & 2+2\nu -\end{pmatrix} +%\end{pmatrix} +\end{array} +\right) \begin{pmatrix} \sigma_{11}\\ \sigma_{22}\\ diff --git a/buch/papers/spannung/teil3.tex b/buch/papers/spannung/teil3.tex index c68c0d1..147fe01 100644 --- a/buch/papers/spannung/teil3.tex +++ b/buch/papers/spannung/teil3.tex @@ -13,7 +13,7 @@ Folglich gilt: \] Dadurch wird der Spannungszustand vereinfacht. Diesen vereinfachten Spannungszustand kann man mit den zwei geotechnischen Invarianten abbilden. -Die erste Invariante ist die volumetrische Spannung +Die erste Invariante ist die volumetrische oder auch hydrostatische Spannung \begin{equation} p = @@ -76,8 +76,8 @@ Die Faktoren mit den Dehnungskomponenten können so als \] eingeführt werden, mit \begin{align*} - \varepsilon_{v} &= \text{Hydrostatische Dehnung [-]} \\ - \varepsilon_{s} &= \text{Deviatorische Dehnung [-].} + \varepsilon_{v} &= \text{hydrostatische Dehnung [-]} \\ + \varepsilon_{s} &= \text{deviatorische Dehnung [-].} \end{align*} Die hydrostatische Dehnung $\varepsilon_{v}$ kann mit einer Kompression und die deviatorische Dehnung $\varepsilon_{s}$ mit einer Verzerrung verglichen werden. @@ -105,6 +105,7 @@ vereinfachen. Diese Spannungsgleichung mit den zwei Einträgen ($p$ und $q$) ist gleichwertig wie die ursprüngliche Spannungsgleichung mit den neun Einträgen ($\sigma_{11}$, $\sigma_{12}$, $\sigma_{13}$, $\sigma_{21}$, $\sigma_{22}$, $\sigma_{23}$, $\sigma_{31}$, $\sigma_{32}$, $\sigma_{33}$). -Mit dieser Formel \eqref{spannung:Matrixschreibweise} lassen sich verschieden Ergebnisse von Versuchen analysieren und berechnen. +Mit dieser Formel \eqref{spannung:Matrixschreibweise} lassen sich Ergebnisse von Versuchen analysieren und berechnen. Ein solcher Versuch, der oft in der Geotechnik durchgeführt wird, ist der Oedometer-Versuch. -Im nächsten Kapitel wird die Anwendung der Matrix an diesem Versuch beschrieben. +In Abschnitt~\ref{spannung:section:Oedometrischer Elastizitätsmodul} +wird die Anwendung der Matrix an diesem Versuch beschrieben. diff --git a/buch/papers/spannung/teil4.tex b/buch/papers/spannung/teil4.tex index 2e0de45..06d67c9 100644 --- a/buch/papers/spannung/teil4.tex +++ b/buch/papers/spannung/teil4.tex @@ -78,5 +78,5 @@ Mit diesen Gleichungen hat man das Gleichungssystem um $E_{\text{OED}}$ und $\si Die Poisson-Zahl muss als Kennwert gemäss der Bodenklasse gewählt werden. Den Versuch kann man auf einem $\sigma$-$\varepsilon$-Diagramm abtragen (siehe Abbildung~\ref{fig:DiagrammOedometer-Versuch}). Durch die Komprimierung nimmt der Boden mehr Spannung auf, und verformt sich zugleich weniger stark. -Mit diesem ermittelten $E_{\text{OED}}$ kann man nun weitere Berechnungen für die Geotechnik durchführen. +Mit diesem ermittelten $E_{\text{OED}}$ kann man nun weitere Berechnungen in der Geotechnik durchführen. -- cgit v1.2.1