From 6c6543a136f7e18bfb002f6cc72381c8d33d1c14 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 15 Jan 2021 17:04:33 +0100 Subject: =?UTF-8?q?Einleitung=20und=20Kapitel=201=20hinzugef=C3=BCgt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/chapters/05-zahlen/ganz.tex | 114 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 114 insertions(+) create mode 100644 buch/chapters/05-zahlen/ganz.tex (limited to 'buch/chapters/05-zahlen/ganz.tex') diff --git a/buch/chapters/05-zahlen/ganz.tex b/buch/chapters/05-zahlen/ganz.tex new file mode 100644 index 0000000..8dd4a62 --- /dev/null +++ b/buch/chapters/05-zahlen/ganz.tex @@ -0,0 +1,114 @@ +% +% ganz.tex -- Ganze Zahlen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\section{Ganze Zahlen +\label{buch:section:ganze-zahlen}} +\rhead{Ganze Zahlen} +Die Menge der ganzen Zahlen löst das Problem, dass nicht jede ganzzahlige +Gleichung der Form $x+a=b$ eine Lösung hat. +Dazu ist erforderlich, den natürlichen Zahlen die negativen Zahlen +hinzuzufügen, also wieder die Existenz neuer Objekte zu postulieren, +die die Rechenregeln weiterhin erfüllen. + +\subsubsection{Paare von natürlichen Zahlen} +Die ganzen Zahlen können konstruiert werden als Paare $(u,v)$ von +natürlichen Zahlen $u,v\in\mathbb{N}$. +Die Paare der Form $(u,0)$ entsprechen den natürlichn Zahlen, die +Paare $(0,v)$ sind die negativen Zahlen. +Die Rechenoperatioen sind wie folgt definiert: +\begin{equation} +\begin{aligned} +(a,b)+(u,v) &= (a+u,b+v) +\\ +(a,b)\cdot (u,v) &= (au+bv,av+bu) +\end{aligned} +\label{buch:zahlen:ganze-rechenregeln} +\end{equation} + +\subsubsection{Äquivalenzrelation} +Die Definition~\eqref{buch:zahlen:ganze-rechenregeln} +erzeugt neue Paare, die wir noch nicht interpretieren können. +Zum Beispiel ist $0=1+(-1) = (1,0) + (0,1) = (1,1)$, die Paare $(u,u)$ +müssen daher alle mit der ganzen Zahl $0$ identifiziert werden. +Es folgt dann auch, dass alle Paare von natürlichen Zahlen mit +``gleicher Differenz'' den gleichen ganzzahligen Wert darstellen, +allerdings können wir das nicht so formulieren, da ja die Differenz +noch gar nicht definiert ist. +Stattdessen gelten zwei Paare als äquivalent, wenn +\begin{equation} +(a,b) \sim (c,d) +\qquad\Leftrightarrow\qquad +a+d = c+d +\label{buch:zahlen:ganz-aquivalenz} +\end{equation} +gilt. +Diese Bedingung erhält man, indem man zu $a-b=c-d$ die Summe $b+d$ +hinzuaddiert. +Ein ganzen Zahl $z$ ist daher eine Menge von Paaren von natürlichen +Zahlen mit der Eigenschaft +\[ +(a,b)\in z\;\wedge (a',b')\in z +\qquad\Leftrightarrow\qquad +(a,b)\sim(a',b') +\qquad\Leftrightarrow\qquad +a+b' = a'+b. +\] +Man nennt eine solche Menge eine {\em Äquivalenzklasse} der Relation $\sim$. + +Die Menge $\mathbb{Z}$ der {\em ganzen Zahlen} Ist die Menge aller solchen +Äquivalenzklassen. +Die Menge der natürlichen Zahlen $\mathbb{N}$ ist in evidenter Weise +darin eingebettet als die Menge der Äquivalenzklassen von Paaren der +Form $(n,0)$. + +\subsubsection{Entgegengesetzter Wert} +Zu jeder ganzen Zahl $z$ dargestellt durch das Paar $(a,b)$ +stellt das Paar $(b,a)$ eine ganze Zahl dar mit der Eigenschaft +\begin{equation} +z+(b,a) += +(a,b) + (b+a) = (a+b,a+b) \sim (0,0) = 0. +\label{buch:zahlen:eqn:entgegengesetzt} +\end{equation} +Die von $(b,a)$ dargestellte ganze Zahl wird mit $-z$ bezeichnet, +die Rechnung~\eqref{buch:zahlen:eqn:entgegengesetzt} lässt sich damit +abgekürzt als $z+(-z)=0$ schreiben. + +\subsubsection{Lösung von Gleichungen} +Gleichungen der Form $a=x+b$ können jetzt für beliebige ganze Zahlen +immer gelöst werden. +Dazu schreibt man $a,b\in\mathbb{N}$ als Paare und sucht die +Lösung in der Form $x=(u,v)$. +Man erhält +\begin{align*} +(a,0) &= (u,v) + (b,0) +\\ +(a+b,b) &= (u+b,v) +\end{align*} +Das Paar $(u,v) = (a,b)$ ist eine Lösung, die man normalerweise als +$a-b = (a,0) + (-(b,0)) = (a,0) + (0,b) = (a,b)$ schreibt. + +\subsubsection{Ring} +\index{Ring}% +Die ganzen Zahlen sind ein Beispiel für einen sogenannten Ring, +eine algebraische Struktur in der Addition, Subtraktion und +Multiplikation definiert sind. +Weitere Beispiel werden später vorgestellt, +der Ring der Polynome $\mathbb{Z}[X]$ in Kapitel~\ref{buch:chapter:polynome} +und +der Ring der $n\times n$-Matrizen in +Kapitel~\ref{buch:chapter:vektoren-und-matrizen}. +In einem Ring wird nicht verlangt, dass die Multiplikation kommutativ +ist, Matrizenringe sind nicht kommutativ. +$\mathbb{Z}$ ist ein kommutativer Ring ebenso sind die Polynomringe +kommutativ. +Die Theorie der nicht kommutativen Ringe ist sehr viel reichhaltiger +und leider auch komplizierter als die kommutative Theorie. +\index{Ring!kommutativer}% + + + + + -- cgit v1.2.1