From 61fc78a9f2f6d524ba506703bfcd766e2a56aa1e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 30 Aug 2021 20:32:46 +0200 Subject: review chapter 1 --- buch/chapters/05-zahlen/komplex.tex | 120 ++++++++++++++++++++++-------------- 1 file changed, 75 insertions(+), 45 deletions(-) (limited to 'buch/chapters/05-zahlen/komplex.tex') diff --git a/buch/chapters/05-zahlen/komplex.tex b/buch/chapters/05-zahlen/komplex.tex index 4ccea89..0f7e7f7 100644 --- a/buch/chapters/05-zahlen/komplex.tex +++ b/buch/chapters/05-zahlen/komplex.tex @@ -6,7 +6,8 @@ \section{Komplexe Zahlen \label{buch:section:komplexe-zahlen}} \rhead{Komplexe Zahlen} -In den reellen Zahlen lassen sich viele algebraische Gleichungen lösen. +In den reellen Zahlen lassen sich viele algebraische Gleichungen lösen, +die in $\mathbb{Q}$ nicht lösbar waren. Andere, z.~B.~die Gleichung \begin{equation} x^2+1=0, @@ -15,6 +16,7 @@ x^2+1=0, haben weiterhin keine Lösung. Der Grund dafür ist das Bestreben bei der Konstruktion der reellen Zahlen, die Ordnungsrelation zu erhalten. +\index{Ordnungsrelation}% Diese ermöglicht, Näherungsintervall und Intervallschachtelungen zu definieren. @@ -37,16 +39,18 @@ Die erste Komponente soll die bekannten reellen Zahlen darstellen, deren Quadrat positiv ist. Die zweite Komponente soll für die Zahlen verwendet werden, deren Quadrat negativ ist. -Die Zahl, deren Quadrat $-1$ sein soll, bezeichnen wir auch mit dem +Die Zahl, deren Quadrat $-1$ sein soll, bezeichnen wir mit dem Paar $(0,1)$ und schreiben dafür auch $i=(0,1)$ mit $i^2=-1$. +Das Paar $i=(0,1)$ heisst auch die {\em imaginäre Einheit}. +\index{imaginäre Einheit}% Die Rechenregeln sollen weiterhin erhalten bleiben, sie müssen daher wie folgt definiert werden: \begin{equation} \begin{aligned} -(a,b) + (c,d) &= (a+c,b+d) & (a+bi) + (c+di) &= (a+c) + (b+d)i +(a,b) + (c,d) &= (a+c,b+d) &&& (a+bi) + (c+di) &= (a+c) + (b+d)i \\ -(a,b) \cdot (c,d) & (ad-bd, ad+bc) & (a+bi)\cdot(c+di) &= ac-bd + (ad+bc)i. +(a,b) \cdot (c,d) &= (ad-bd, ad+bc) &&& (a+bi)\cdot(c+di) &= ac-bd + (ad+bc)i. \end{aligned} \label{buch:zahlen:cregeln} \end{equation} @@ -65,8 +69,10 @@ Die Menge $\mathbb{C}$ verhält sich daher wie eine zweidimensionaler reeller Vektorraum. \subsubsection{Real- und Imaginärteil} -Ist $z=a+bi$ eine komplexe Zahl, dann heisst $a$ der Realteil $a=\Re z$ -und $b$ heisst der Imaginärteil $\Im z$. +Ist $z=a+bi$ eine komplexe Zahl, dann heisst $a$ der {\em Realteil} $a=\Re z$ +\index{Realteil}% +und $b$ heisst der {\em Imaginärteil} $\Im z$. +\index{Imaginärteil}% Real- und Imaginärteil sind lineare Abbildungen $\mathbb{C}\to\mathbb{R}$, sie projizieren einen Punkt auf die Koordinatenachsen, die entsprechend auch die reelle und die imaginäre Achse heissen. @@ -86,13 +92,43 @@ a \Re z. \] Zusätzlich kehrt das Vorzeichen der einen Komponente. -Wir kommen auf diese Eigenschaft zurück, wenn wir später in Abschnitt~XXX +Wir kommen auf diese Eigenschaft zurück, wenn wir später in +Abschnitt~\ref{buch:grundlagen:subsection:ringe} komplexe Zahlen als Matrizen beschreiben. +\subsubsection{Gausssche Zahlenebene} +Beschränkt man die Multiplikation auf einen reellen Faktor, wird $\mathbb{C}$ +zu einem zweidimensionalen reellen Vektorraum. +Man kann die komplexe Zahl $a+bi$ daher auch als Punkt $(a,b)$ in der +sogenannten {\em Gaussschen Ebene} betrachten (Abbildung~\ref{buch:zahlen:cfig}). +\index{Gaussche Zahlenebene}% +Die Addition von komplexen Zahlen ist in diesem Bild die vektorielle +Addition, die Multiplikation mit reellen Zahlen werden wir weiter unten +genauer untersuchen müssen. + +\begin{figure} +\centering +\includegraphics{chapters/05-zahlen/images/komplex.pdf} +\caption{Argument und Betrag einer komplexen Zahl $z=a+ib$ in der +Gaussschen Zahlenebene +\label{buch:zahlen:cfig}} +\end{figure}% + +Die Zahlenebene führt auf eine weitere mögliche Parametrisierung einer +komplexen Zahl. +Ein Punkt $z$ der Ebene kann in Polarkoordinaten auch durch den {\em Betrag} +\index{Betrag}% +\index{Polarkoordinaten}% +und den Winkel zwischen der reellen Achse und dem Radiusvektor zum Punkt, +dem sogenannten {\em Argument}, +charakterisiert werden. + \subsubsection{Komplexe Konjugation} Der komplexen Zahl $u=a+bi$ ordnen wir die sogenannte {\em komplex konjugierte} Zahl $\overline{z} = a-bi$. Mit Hilfe der komplexen Konjugation kann man den Real- und Imaginärteil +\index{komplexe Konjugation}% +\index{Konjugation, komplexe}% algebraisch ausdrücken: \[ \Re z @@ -124,7 +160,8 @@ Wenn $x\ge 0$ ist und $x\le 0$, dann ist $x=0$. In $\mathbb{C}$ steht diese Ordnungsrelation nicht mehr zur Verfügung. Eine komplexe Zahl ist von $0$ verschieden, wenn die Länge des Vektors in der Zahlenebene verschieden von $0$ ist. -Wir definieren daher den Betrag einer komplexen Zahl $z=a+bi$ als +Wir definieren daher den {\em Betrag} einer komplexen Zahl $z=a+bi$ als +\index{Betrag} \[ |z|^2 = @@ -158,7 +195,7 @@ Produkt der komplexen Zahlen sein. Wie berechnet man den Quotienten $\frac{z}{w}$ für zwei beliebige komplexe Zahlen $z=a+bi$ und $w=c+di$ mit $w\ne 0$? -Dazu erweitert man den Bruch mit der komplex konjugierten des Nenners: +Dazu erweitert man den Bruch mit der komplex Konjugierten des Nenners: \begin{align*} \frac{z}{w} &= @@ -169,7 +206,7 @@ Dazu erweitert man den Bruch mit der komplex konjugierten des Nenners: Da der Nenner $|w|^2>0$ eine reelle Zahl ist, ist die Division einfach, es ist die Multiplikation mit der reellen Zahl $1/|w|^2$. -Wir können den Quotienten auch in Komponenten ausdrücken: +Wir können den Quotienten auch durch Real- und Imaginärteil ausdrücken: \begin{align*} \frac{z}{w} &= @@ -180,38 +217,20 @@ Wir können den Quotienten auch in Komponenten ausdrücken: \frac{ac-bd +(ad+bc)i}{c^2+d^2}. \end{align*} -\subsubsection{Gausssche Zahlenebene} -Beschränkt man die Multiplikation auf einen reellen Faktor, wird $\mathbb{C}$ -zu einem zweidimensionalen reellen Vektorraum. -Man kann die komplexe Zahl $a+bi$ daher auch als Punkt $(a,b)$ in der -sogenannten Gaussschen Ebene betrachten. -Die Addition von komplexen Zahlen ist in diesem Bild die vektorielle -Addition, die Multiplikation mit reellen Zahlen werden wir weiter unten -genauer untersuchen müssen. - -\begin{figure} -\centering -\includegraphics{chapters/05-zahlen/images/komplex.pdf} -\caption{Argument und Betrag einer komplexen Zahl $z=a+ib$ in der -Gaussschen Zahlenebene -\label{buch:zahlen:cfig}} -\end{figure} -Die Zahlenebene führt auf eine weitere Parametrisierung einer -komplexen Zahl. -Ein Punkt $z$ der Ebene kann in Polarkoordinaten auch durch den Betrag -und den Winkel zwischen der reellen Achse und dem Radiusvektor zum Punkt -beschrieben werden. - \subsubsection{Geometrische Interpretation der Rechenoperationen} -Die Addition kompelxer Zahlen wurde bereits als Vektoraddition -in der Gausschen Zahlenebene. +Die Addition komplexer Zahlen wurde bereits als Vektoraddition +in der Gausschen Zahlenebene interpretiert. Die Multiplikation ist etwas komplizierter, wir berechnen Betrag und Argument von $zw$ separat. Für den Betrag erhalten wir \begin{align*} |zw|^2 &= +zw\overline{(zw)} += +zw\overline{z}\overline{w} += z\overline{z}w\overline{w} = |z|^2|w|^2 @@ -252,6 +271,7 @@ und $c\ne 0$, was uns ermöglicht, den Bruch durch $ac$ zu kürzen: \bigr). \end{align*} Im letzten Schritt haben wir die Additionsformel für den Tangens verwendet. +\index{Additionstheorem für Tangens}% Daraus liest man ab, dass das Argument eines Produkts die Summe der Argumente ist. Die Multiplikation mit einer festen komplexen Zahl führt also mit der ganzen @@ -263,7 +283,7 @@ wenn wir die komplexen Zahlen als Matrizen beschreiben wollen. Die komplexen Zahlen $\mathbb{C}$ sind als Erweiterung von $\mathbb{R}$ so konstruiert worden, dass die Gleichung $x^2+1=0$ eine Lösung hat. Etwas überraschend ist dagegen, dass in dieser Erweiterung jetzt jede -beliebige algebraische Gleichung lösbar geworden. +beliebige algebraische Gleichung lösbar geworden ist. Dies ist der Inhalt des Fundamentalsatzes der Algebra. \begin{satz}[Fundamentalsatz der Algebra] @@ -273,7 +293,7 @@ Jede algebraische Gleichung der Form p(x)=x^n + a_{n-1}x^{n-1}+a_1x+a_0=0,\qquad a_k\in\mathbb{C} \] mit komplexen Koeffizienten hat $n$ möglicherweise mit Vielfachheit -gezähle Nullstellen $\alpha_1,\dots,\alpha_m$, d.~h.~das Polynom $p(x)$ +gezählte Nullstellen $\alpha_1,\dots,\alpha_m$, d.~h.~das Polynom $p(x)$ lässt sich in Linearfaktoren \[ p(x) @@ -281,12 +301,12 @@ p(x) (x-\alpha_1)^{k_1}(x-\alpha_2)^{k_2}\cdot\ldots\cdot(x-\alpha_m)^{k_m} \] zerlegen, wobei $k_1+k_2+\dots+k_m=n$. -Die Zahlen $k_j$ heisst die {\em Vielfachheit} der Nullstelle $\alpha_j$. +Die Zahl $k_j$ heisst die {\em Vielfachheit} der Nullstelle $\alpha_j$. \end{satz} Der Fundamentalsatz der Algebra wurde erstmals von Carl Friedrich Gauss \index{Gauss, Carl Friedrich}% -bewiesen. +vollständig bewiesen. Seither sind viele alternative Beweise mit Methoden aus den verschiedensten Gebieten der Mathematik gegeben worden. Etwas salopp könnten man sagen, dass der Fundamentalsatz ausdrückt, dass @@ -304,10 +324,11 @@ Da Drehungen um verschiedene Achsen nicht vertauschen, kann eine solche Erweiterung nicht mehr kommutativ sein. William Rowan Hamilton propagierte ab 1843 eine Erweiterung von $\mathbb{C}$ +\index{Hamilton, William Rowan}% mit zwei zusätzlichen Einheiten $j$ und $k$ mit den nichtkommutativen Relationen \begin{equation} -i^2 = j^2 = k^2 = ijk = -1. +i^2 = j^2 = k^2 = i\!jk = -1. \label{buch:zahlen:eqn:quaternionenregeln} \end{equation} Er nannte die Menge aller Linearkombinationen @@ -319,6 +340,9 @@ die {\em Quaternionen}, die Einheiten $i$, $j$ und $k$ heissen auch Einheitsquaternionen. \index{Einheitsquaternionen}% Konjugation, Betrag und Division können ganz ähnlich wie bei den +\index{Konjugation von Quaternionen}% +\index{Betrag einer Quaternion}% +\index{Division durch eine Quaternion}% komplexen Zahlen definiert werden und machen $\mathbb{H}$ zu einer sogenannten {\em Divisionsalgebra}. \index{Divisionsalgebra}% @@ -331,24 +355,24 @@ Aus den Regeln für die Quadrate der Einheiten in $i^{-1}=-i$, $j^{-1}=-j$ und $k^{-1}=-k$. Die letzte Bedingung liefert daraus \[ -ijk=-1 +i\!jk=-1 \qquad\Rightarrow\qquad \left\{ \quad \begin{aligned} -ij +i\!j &= -ijkk^{-1}=-1k^{-1}=k +i\!jkk^{-1}=-1k^{-1}=k \\ -i^2jk&=-i=-jk +i^2\!jk&=-i=-jk \\ -j^2k&=-ji=k \end{aligned} \right. \] Aus den Relationen~\eqref{buch:zahlen:eqn:quaternionenregeln} -folgt also insbesondere auch, dass $ij=-ji$. -Ebenso kann abgeleitet werden, dass $jk=-kj$ und $ik=-ki$. +folgt also insbesondere auch, dass $i\!j=-ji$. +Ebenso kann abgeleitet werden, dass $jk=-k\!j$ und $ik=-ki$. Man sagt, die Einheiten sind {\em antikommutativ}. \index{antikommutativ}% @@ -358,9 +382,15 @@ Komponenten $a_0,\dots,a_3$ vollständig beschrieben ist. Eine Transformationsmatrix des dreidimensionalen Raumes enthält dagegen neun Koeffizienten, die vergleichsweise komplizierte Abhängigkeiten erfüllen müssen. +Kapitel~\ref{chapter:clifford} behandelt nicht nur die Beschreibung +von Drehungen des dreidimensionalen Raumes sondern eine weitreichende +Verallgemeinerung dieser Idee, die sogenannte {\em geometrische Algebra}. +\index{geometrische Algebra}% Quaternionen haben auch in weiteren Gebieten interessante Anwendungen, zum Beispiel in der Quantenmechanik, wo antikommutierende Operatoren +\index{Quantenmechanik}% bei der Beschreibung von Fermionen eine zentrale Rolle spielen. +\index{Fermion}% Aus rein algebraischer Sicht kann man die Frage stellen, ob es eventuell auch noch grössere Divisionsalgebren gibt, die $\mathbb{H}$ erweitern. -- cgit v1.2.1