From fad0bd1f2032b530d71370e66b3b2bb75b7ef20a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 21 Sep 2021 15:51:04 +0200 Subject: fixes kapitel 1 --- buch/chapters/05-zahlen/natuerlich.tex | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) (limited to 'buch/chapters/05-zahlen/natuerlich.tex') diff --git a/buch/chapters/05-zahlen/natuerlich.tex b/buch/chapters/05-zahlen/natuerlich.tex index 8c51346..629e539 100644 --- a/buch/chapters/05-zahlen/natuerlich.tex +++ b/buch/chapters/05-zahlen/natuerlich.tex @@ -57,7 +57,7 @@ Aus der Nachfolgereigenschaft lässt sich durch wiederholte Anwendung die vertrautere Addition konstruieren. \index{Addition!in $\mathbb{N}$}% Um die Zahl $n\in\mathbb{N}$ um $m\in\mathbb{N}$ zu vermehren, also -$n+m$ auszurechnen, kann man rekursive Regeln +$n+m$ auszurechnen, kann man die rekursiven Regeln \begin{align*} n+0&=n\\ n+m'&=(n+m)' @@ -79,7 +79,7 @@ Nach diesen Regeln ist = (((5)')')'. \] -Dies ist genau die Art und Weise, wie kleine Kinder Rechnen lernen. +Dies ist genau die Art und Weise, wie kleine Kinder rechnen lernen. Sie zählen von $5$ ausgehend um $3$ weiter, manchmal unter Zuhilfenahme ihrer Finger. Der dritte Nachfolger von $5$ heisst üblicherweise $8$. @@ -88,7 +88,7 @@ Die algebraische Struktur, die hier konstruiert worden ist, heisst ein {\em Monoid}. \index{Monoid}% Allerdings kann man darin zum Beispiel nur selten Gleichungen -lösen, zum Beispiel hat $3+x=1$ keine Lösung. +lösen, so etwa hat $3+x=1$ keine Lösung. Die Addition ist nicht immer umkehrbar. \subsubsection{Multiplikation} @@ -164,7 +164,7 @@ a\cdot(b+c) = ab+ac (a+b)\cdot c = ac+bc \] gelten. -Bei einem nicht-kommutativen Produkt ist es hierbei notwendig, +Bei einem nicht kommutativen Produkt ist es notwendig, zwischen Links- und Rechts-Distributivgesetz zu unterscheiden. Die Distributivgesetze drücken die wohlbekannte Regel des @@ -195,8 +195,8 @@ Die Zahlen \] haben keine weiteren Teiler. Sie heissen {\em Primzahlen}. \index{Primzahl}% -Die Menge der natürlichen Zahlen ist die naheliegende Arena -für die Zahlentheorie. +Die Menge der natürlichen Zahlen wird mit der Teilbarkeit zur naheliegenden +Arena für die Zahlentheorie. \index{Zahlentheorie}% \subsubsection{Konstruktion der natürlichen Zahlen aus der Mengenlehre} -- cgit v1.2.1