From fad0bd1f2032b530d71370e66b3b2bb75b7ef20a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 21 Sep 2021 15:51:04 +0200 Subject: fixes kapitel 1 --- buch/chapters/05-zahlen/reell.tex | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) (limited to 'buch/chapters/05-zahlen/reell.tex') diff --git a/buch/chapters/05-zahlen/reell.tex b/buch/chapters/05-zahlen/reell.tex index 06eb7aa..7af07e8 100644 --- a/buch/chapters/05-zahlen/reell.tex +++ b/buch/chapters/05-zahlen/reell.tex @@ -13,7 +13,7 @@ Pythagoräern aufgefallen. \index{Pythagoräer} Ziel dieses Abschnitts ist, den Körper $\mathbb{Q}$ zu einem Körper $\mathbb{R}$ zu erweitern, in dem die Gleichung -gelöst werden kann, ohne dabei Ordnungsrelation zu zerstören, die +gelöst werden kann, ohne dabei die Ordnungsrelation zu zerstören, die die hilfreiche und anschauliche Vorstellung der Zahlengeraden liefert. \index{Zahlengerade}% @@ -37,7 +37,7 @@ schnell, sie sind mit der sogenannten Kettenbruchentwicklung der Zahl $\sqrt{2}$ gewonnen worden.}. Jedes der Intervalle enthält auch das nachfolgende Intervall, und die intervalllänge konvergiert gegen 0. -Eine solche \emph{Intervallschachtelung} beschreibt also genau eine Zahl, +Eine solche \emph{Intervallschachtelung} beschreibt also genau eine ``Zahl'', \index{Intervallschachtelung}% aber möglicherweise keine, die sich als Bruch schreiben lässt. @@ -52,10 +52,10 @@ Das Problem dieser wohlbekannten Definition für die Konstruktion reeller Zahle ist, dass im Falle der Folge \[ (a_n)_{n\in\mathbb{N}}= -(1, +\biggl(1, \frac75, \frac{41}{29}, -\frac{239}{169},\dots) \to a=\sqrt{2} +\frac{239}{169},\dots\biggr) \to a=\sqrt{2} \] das Objekt $a$ noch gar nicht existiert. Es gibt keine rationale Zahl, die als Grenzwert dieser Folge dienen @@ -71,7 +71,7 @@ Die Menge $\mathbb{R}$ der reellen Zahlen kann man auch als Menge aller Cauchy-Folgen $(a_n)_{n\in\mathbb{N}}$, $a_n\in\mathbb{Q}$, betrachten. \index{Cauchy-Folge}% -Eine Folge ist eine Cauchy-Folge, wenn es für jedes $\varepsilon>0$ +Eine Folge ist eine {\em Cauchy-Folge}, wenn es für jedes $\varepsilon>0$ eine Zahl $N(\varepsilon)$ gibt derart, dass $|a_n-a_m|<\varepsilon$ für $n,m>N(\varepsilon)$. Ab einer geeigneten Stelle $N(\varepsilon)$ sind die Folgenglieder also -- cgit v1.2.1