From 474af74b757abcc54670c8de170c7458543a801a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 29 Jan 2021 20:59:05 +0100 Subject: new stuff about parrondo --- buch/chapters/10-vektorenmatrizen/gruppen.tex | 184 +++++++++++++++++++++++++- 1 file changed, 182 insertions(+), 2 deletions(-) (limited to 'buch/chapters/10-vektorenmatrizen/gruppen.tex') diff --git a/buch/chapters/10-vektorenmatrizen/gruppen.tex b/buch/chapters/10-vektorenmatrizen/gruppen.tex index fe77009..1f9db81 100644 --- a/buch/chapters/10-vektorenmatrizen/gruppen.tex +++ b/buch/chapters/10-vektorenmatrizen/gruppen.tex @@ -3,6 +3,186 @@ % % (c) 2021 Prof Dr Andreas Müller, Hochschule Rapeprswil % -\section{Gruppen -\label{buch:grundlagen:setion:gruppen}} +\subsection{Gruppen +\label{buch:grundlagen:subsection:gruppen}} \rhead{Gruppen} +Die kleinste sinnvolle Struktur ist die einer Gruppe. +Eine solche besteht aus einer Menge $G$ mit einer Verknüpfung, +die additiv +\begin{align*} +G\times G \to G&: (g,h) = gh +\intertext{oder multiplikativ } +G\times G \to G&: (g,h) = g+h +\end{align*} +geschrieben werden kann. +Ein Element $0\in G$ heisst {\em neutrales Element} bezüglich der additiv +geschriebenen Verknüpfung falls $0+x=x$ für alle $x\in G$. +\index{neutrales Element}% +Ein Element $e\in G$ heisst neutrales Element bezüglich der multiplikativ +geschriebneen Verknüpfung, wenn $ex=x$ für alle $x\in G$. +In den folgenden Definitionen werden wir immer die multiplikative +Schreibweise verwenden, für Fälle additiv geschriebener siehe auch die +Beispiele weiter unten. + +\begin{definition} +\index{Gruppe}% +Ein {\em Gruppe} +\index{Gruppe}% +ist eine Menge $G$ mit einer Verknüfung mit folgenden +Eigenschaften: +\begin{enumerate} +\item +Die Verknüpfung ist assoziativ: $(ab)c=a(bc)$ für alle $a,b,c\in G$. +\item +Es gibt ein neutrales Element $e\in G$ +\item +Für jedes Element $g\in G$ gibt es ein Element $h\in G$ mit +$hg=e$. +\end{enumerate} +Das Element $h$ heisst auch das Inverse Element zu $g$. +\end{definition} + +Falls nicht jedes Element invertierbar ist, aber wenigstens ein neutrales +Element vorhanden ist, spricht man von einem {\em Monoid}. +\index{Monoid}% +Hat man nur eine Verknüpfung, spricht man oft von einer {\em Halbruppe}. +\index{Halbgruppe}% + +\begin{definition} +Eine Gruppe $G$ heisst abelsch, wenn $ab=ba$ für alle $a,b\in G$. +\end{definition} + +Additiv geschrieben Gruppen werden immer als abelsch angenommen, +multiplikativ geschrieben Gruppen können abelsch oder nichtabelsch sein. + +\subsubsection{Beispiele von Gruppen} + +\begin{beispiel} +Die Menge $\mathbb{Z}$ mit der Addition ist eine additive Gruppe mit +dem neutralen Element $0$. +Das additive Inverse eines Elementes $a$ ist $-a$. +\end{beispiel} + +\begin{beispiel} +Die von Null verschiedenen Elemente $\Bbbk^*$ eines Zahlekörpers bilden +bezüglich der Multiplikation eine Gruppe mit neutralem Element $1$. +Das multiplikative Inverse eines Elementes $a\in \Bbbk$ mit $a\ne 0$ +ist $a^{-1}=\frac1{a}$. +\end{beispiel} + +\begin{beispiel} +Die Vektoren $\Bbbk^n$ bilden bezüglich der Addition eine Gruppe mit +dem Nullvektor als neutralem Element. +Betrachtet man $\Bbbk^n$ als Gruppe, verliert man die Multiplikation +mit Skalaren aus den Augen. +$\Bbbk^n$ als Gruppe zu bezeichnen ist also nicht falsch, man +verliert dadurch aber +\end{beispiel} + +\begin{beispiel} +Die Menge aller quadratischen $n\times n$-Matrizen $M_n(\Bbbk)$ ist +eine Gruppe bezüglich der Addition mit der Nullmatrix als neutralem +Element. +Bezügich der Matrizenmultiplikation ist $M_n(\Bbbk)$ aber keine +Gruppe, da sich die singulären Matrizen nicht inverieren lassen. +Die Menge der invertierbaren Matrizen +\[ +\operatorname{GL}_n(\Bbbk) += +\{ +A\in M_n(\Bbbk)\;|\; \text{$A$ invertierbar} +\} +\] +ist bezüglich der Multiplikation eine Gruppe. +Die Gruppe $\operatorname{GL}_n(\Bbbk)$ ist eine echte Teilmenge +von $M_n(\Bbbk)$, die Addition und Multiplikation führen im Allgemeinen +aus der Gruppe heraus, es gibt also keine Mögichkeit, in der Gruppe +$\operatorname{GL}_n(\Bbbk)$ diese Operationen zu verwenden. +\end{beispiel} + +\subsubsection{Einige einfache Rechenregeln in Gruppen} +Die Struktur einer Gruppe hat bereits eine Reihe von +Einschränkungen zur Folge. +Zum Beispiel sprach die Definition des neutralen Elements $e$ nur von +Produkten der Form $ex=x$, nicht von Produkten $xe$. +Und die Definition des inversen Elements $h$ von $g$ hat nur +verlangt, dass $gh=e$, es wurde nichts gesagt über das Produkt $hg$. + +\begin{satz} +\label{buch:vektorenmatrizen:satz:gruppenregeln} +Ist $G$ eine Gruppe mit neutralem Element $e$, dann gilt +\begin{enumerate} +\item +$xe=x$ für alle $x\in G$ +\item +Es gibt nur ein neutrales Element. +Wenn also $f\in G$ mit $fx=x$ für alle $x\in G$, ist dann folgt $f=e$. +\item +Wenn $hg=e$ gilt, dann auch $gh=e$ und $h$ ist durch $g$ eindeutig bestimmt. +\end{enumerate} +\end{satz} + +\begin{proof}[Beweis] +Wir beweisen als Erstes den ersten Teil der Eigenschaft~3. +Sei $h$ die Inverse von $g$, also $hg=e$. +Sei weiter $i$ die Inverse von $h$, also $ih=e$. +Damit folgt jetzt +\[ +g += +eg += +(ih)g += +i(hg) += +ie. +\] +Wende man dies auf das Produkt $gh$ an, folgt +\[ +gh += +(ie)h += +i(eh) += +ih += +e +\] +Es ist also nicht nur $hg=e$ sondern immer auch $gh=e$. + +Für eine Inverse $h$ von $g$ folgt +\[ +ge += +g(hg) += +(gh)g += +eg += +g, +\] +dies ist die Eigenschaft~1. + +Sind $f$ und $e$ neutrale Elemente, dann folgt +\[ +f = fe = e +\] +aus der Eigenschaft~1. + +Schliesslich sei $x$ ein beliebiges Inverses von $g$, dann ist +$xg=e$, dann folgt +$x=xe=x(gh)=(xg)h = eh = h$, es gibt also nur ein Inverses von $g$. +\end{proof} + +Diesem Problem sind wir zum Beispiel auch in +Abschnitt~\ref{buch:grundlagen:subsection:gleichungssyteme} +begegnet, wo wir nur gezeigt haben, dass $AA^{-1}=E$ ist. +Da aber die invertierbaren Matrizen eine Gruppe +bilden, folgt jetzt aus dem Satz automatisch, dass auch $A^{-1}A=E$. + + + + -- cgit v1.2.1 From 78a408188971844605dc913dc2a5ddcb99023150 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 30 Jan 2021 12:39:53 +0100 Subject: add more algebra stuff --- buch/chapters/10-vektorenmatrizen/gruppen.tex | 121 ++++++++++++++++++++++++++ 1 file changed, 121 insertions(+) (limited to 'buch/chapters/10-vektorenmatrizen/gruppen.tex') diff --git a/buch/chapters/10-vektorenmatrizen/gruppen.tex b/buch/chapters/10-vektorenmatrizen/gruppen.tex index 1f9db81..b4e0982 100644 --- a/buch/chapters/10-vektorenmatrizen/gruppen.tex +++ b/buch/chapters/10-vektorenmatrizen/gruppen.tex @@ -183,6 +183,127 @@ begegnet, wo wir nur gezeigt haben, dass $AA^{-1}=E$ ist. Da aber die invertierbaren Matrizen eine Gruppe bilden, folgt jetzt aus dem Satz automatisch, dass auch $A^{-1}A=E$. +\subsubsection{Homomorphismen} +Lineare Abbildung zwischen Vektorräumen zeichnen sich dadurch aus, +dass sie die algebraische Struktur des Vektorraumes respektieren. +Für eine Abbildung zwischen Gruppen heisst dies, dass die Verknüpfung, +das neutrale Element und die Inverse respektiert werden müssen. + +\begin{definition} +Ein Abbildung $\varphi\colon G\to H$ zwischen Gruppen heisst ein +{\em Homomorphismus}, wenn +$\varphi(g_1g_2)=\varphi(g_1)\varphi(g_2)$ für alle $g_1,g_2\in G$ gilt. +\index{Homomorphismus}% +\end{definition} + +Der Begriff des Kerns einer linearen Abbildung lässt sich ebenfalls auf +die Gruppensituation erweitern. +Auch hier ist der Kern der Teil der Gruppe, er unter dem +Homomorphismus ``unsichtbar'' wird. + +\begin{definition} +Ist $\varphi\colon G\to H$ ein Homomorphisus, dann ist +\[ +\ker\varphi += +\{g\in G\;|\; \varphi(g)=e\} +\] +eine Untergruppe. +\index{Kern}% +\end{definition} + +\subsubsection{Normalteiler} +Der Kern eines Homomorphismus ist nicht nur eine Untergruppe, er erfüllt +noch eine zusätzliche Bedingung. +Für jedes $g\in G$ und $h\in\ker\varphi$ gilt +\[ +\varphi(ghg^{-1}) += +\varphi(g)\varphi(h)\varphi(g^{-1}) += +\varphi(g)\varphi(g^{-1}) += +\varphi(gg^{-1}) += +\varphi(e) += +e +\qquad\Rightarrow\qquad +ghg^{-1}\in\ker\varphi. +\] +Der Kern wird also von der Abbildung $h\mapsto ghg^{-1}$, +der {\em Konjugation} in sich abgebildet. + +\begin{definition} +Eine Untergruppe $H \subset G$ heisst ein {\em Normalteiler}, +geschrieben $H \triangleleft G$ +wenn $gHg^{-1}\subset H$ für jedes $g\in G$. +\index{Normalteiler} +\end{definition} + +Die Konjugation selbst ist ebenfalls keine Unbekannte, sie ist uns +bei der Basistransformationsformel schon begegnet. +Die Tatsache, dass $\ker\varphi$ unter Konjugation erhalten bleibt, +kann man also interpretieren als eine Eigenschaft, die unter +Basistransformation erhalten bleibt. + +\subsubsection{Faktorgruppen} +Ein Unterraum $U\subset V$ eines Vektorraumes gibt Anlass zum +Quotientenraum, der dadurch entsteht, dass man die Vektoren in $U$ +zu $0$ kollabieren lässt. +Eine ähnliche Konstruktion könnte man für eine Untergruppe $H \subset G$ +versuchen. +Man bildet also wieder die Mengen von Gruppenelementen, die sich um +ein Elemente in $H$ unterscheiden. +Man kann diese Mengen in der Form $gH$ mit $g\in G$ schreiben. + +Man möchte jetzt aber auch die Verknüpfung für solche Mengen +definieren, natürlich so, dass $g_1H\cdot g_2H = (g_1g_2)H$ ist. +Da die Verknüpfung nicht abelsch sein muss, entsteht hier +ein Problem. +Für $g_1=e$ folgt, dass $Hg_2H=g_2H$ sein muss. +Das geht nur, wenn $Hg_2=g_2H$ oder $g_2Hg_2^{-1}=H$ ist, wenn +also $H$ ein Normalteiler ist. + +\begin{definition} +Für eine Gruppe $G$ mit Normalteiler $H\triangleleft G$ ist die +Menge +\[ +G/H = \{ gH \;|\; g\in G\} +\] +eine Gruppe mit der Verknüpfung $g_1H\cdot g_2H=(g_1g_2)H$. +$G/H$ heisst {\em Faktorgruppe} oder {\em Quotientengruppe}. +\index{Faktorgruppe}% +\index{Quotientengruppe}% +\end{definition} + +Für abelsche Gruppen ist die Normalteilerbedingung keine zusätzliche +Einschränkung, jeder Untergruppe ist auch ein Normalteiler. + +\begin{beispiel} +Die ganzen Zahlen $\mathbb{Z}$ bilden eine abelsche Gruppe und +die Menge der Vielfachen von $n$ +$n\mathbb{Z}\subset\mathbb{Z}$ ist eine Untergruppe. +Da $\mathbb{Z}$ abelsch ist, ist $n\mathbb{Z}$ ein Normalteiler +und die Faktorgruppe $\mathbb{Z}/n\mathbb{Z}$ ist wohldefiniert. +Nur die Elemente +\[ +0+n\mathbb{Z}, +1+n\mathbb{Z}, +2+n\mathbb{Z}, +\dots +(n-1)+n\mathbb{Z} +\] +sind in der Faktorgruppe verschieden. +Die Gruppe $\mathbb{Z}/n\mathbb{Z}$ besteht also aus den Resten +bei Teilung durch $n$. +Diese Gruppe wird in Kapitel~\ref{buch:chapter:endliche-koerper} +genauer untersucht. +\end{beispiel} + +Das Beispiel suggeriert, dass man sich die Elemente von $G/H$ +als Reste vorstellen kann. + -- cgit v1.2.1 From 6e8e590acec6c5e94497f386ad36849f9b4825fc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 1 Feb 2021 13:29:17 +0100 Subject: =?UTF-8?q?=C3=9Cbersicht=20algebraische=20Strukturen?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/chapters/10-vektorenmatrizen/gruppen.tex | 1 - 1 file changed, 1 deletion(-) (limited to 'buch/chapters/10-vektorenmatrizen/gruppen.tex') diff --git a/buch/chapters/10-vektorenmatrizen/gruppen.tex b/buch/chapters/10-vektorenmatrizen/gruppen.tex index b4e0982..0ff1004 100644 --- a/buch/chapters/10-vektorenmatrizen/gruppen.tex +++ b/buch/chapters/10-vektorenmatrizen/gruppen.tex @@ -5,7 +5,6 @@ % \subsection{Gruppen \label{buch:grundlagen:subsection:gruppen}} -\rhead{Gruppen} Die kleinste sinnvolle Struktur ist die einer Gruppe. Eine solche besteht aus einer Menge $G$ mit einer Verknüpfung, die additiv -- cgit v1.2.1 From 66ec07f9b9bc6243511cfe85bd5d64edde4a1020 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 1 Feb 2021 20:45:04 +0100 Subject: new stuff --- buch/chapters/10-vektorenmatrizen/gruppen.tex | 30 +++++++++++++++++++++++++++ 1 file changed, 30 insertions(+) (limited to 'buch/chapters/10-vektorenmatrizen/gruppen.tex') diff --git a/buch/chapters/10-vektorenmatrizen/gruppen.tex b/buch/chapters/10-vektorenmatrizen/gruppen.tex index 0ff1004..9848469 100644 --- a/buch/chapters/10-vektorenmatrizen/gruppen.tex +++ b/buch/chapters/10-vektorenmatrizen/gruppen.tex @@ -303,6 +303,36 @@ genauer untersucht. Das Beispiel suggeriert, dass man sich die Elemente von $G/H$ als Reste vorstellen kann. +\subsubsection{Darstellungen} +Abstrakt definierte Gruppen können schwierig zu verstehen sein. +Oft hilft es, wenn man eine geometrische Darstellung der Gruppenoperation +finden kann. +Die Gruppenelemente werden dann zu umkehrbaren linearen Operationen +auf einem geeigneten Vektorraum. + +\begin{definition} +\label{buch:vektorenmatrizen:def:darstellung} +Eine Darstellung einer Gruppe $G$ ist ein Homomorphismus +$G\to\operatorname{GL}_(\mathbb{R})$. +\index{Darstellung} +\end{definition} + +\begin{beispiel} +Die Gruppen $\operatorname{GL}_n(\mathbb{Z})$, +$\operatorname{SL}_n(\mathbb{Z})$ oder $\operatorname{SO}(n)$ +sind alle Teilmengen von $\operatorname{GL}_n(\mathbb{R}$. +Die Einbettungsabbildung $G\hookrightarrow \operatorname{GL}_n(\mathbb{R})$ +ist damit automatisch eine Darstellung, sie heisst auch die +{\em reguläre Darstellung} der Gruppe $G$. +\index{reguläre Darstellung} +\end{beispiel} + +In Kapitel~\ref{buch:chapter:permutationen} wird gezeigt, +dass Permutationen einer endlichen eine Gruppe bilden und wie +sie durch Matrizen dargestellt werden können. + + + -- cgit v1.2.1