From 78a408188971844605dc913dc2a5ddcb99023150 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 30 Jan 2021 12:39:53 +0100 Subject: add more algebra stuff --- buch/chapters/10-vektorenmatrizen/gruppen.tex | 121 ++++++++++++++++++++++++++ 1 file changed, 121 insertions(+) (limited to 'buch/chapters/10-vektorenmatrizen/gruppen.tex') diff --git a/buch/chapters/10-vektorenmatrizen/gruppen.tex b/buch/chapters/10-vektorenmatrizen/gruppen.tex index 1f9db81..b4e0982 100644 --- a/buch/chapters/10-vektorenmatrizen/gruppen.tex +++ b/buch/chapters/10-vektorenmatrizen/gruppen.tex @@ -183,6 +183,127 @@ begegnet, wo wir nur gezeigt haben, dass $AA^{-1}=E$ ist. Da aber die invertierbaren Matrizen eine Gruppe bilden, folgt jetzt aus dem Satz automatisch, dass auch $A^{-1}A=E$. +\subsubsection{Homomorphismen} +Lineare Abbildung zwischen Vektorräumen zeichnen sich dadurch aus, +dass sie die algebraische Struktur des Vektorraumes respektieren. +Für eine Abbildung zwischen Gruppen heisst dies, dass die Verknüpfung, +das neutrale Element und die Inverse respektiert werden müssen. + +\begin{definition} +Ein Abbildung $\varphi\colon G\to H$ zwischen Gruppen heisst ein +{\em Homomorphismus}, wenn +$\varphi(g_1g_2)=\varphi(g_1)\varphi(g_2)$ für alle $g_1,g_2\in G$ gilt. +\index{Homomorphismus}% +\end{definition} + +Der Begriff des Kerns einer linearen Abbildung lässt sich ebenfalls auf +die Gruppensituation erweitern. +Auch hier ist der Kern der Teil der Gruppe, er unter dem +Homomorphismus ``unsichtbar'' wird. + +\begin{definition} +Ist $\varphi\colon G\to H$ ein Homomorphisus, dann ist +\[ +\ker\varphi += +\{g\in G\;|\; \varphi(g)=e\} +\] +eine Untergruppe. +\index{Kern}% +\end{definition} + +\subsubsection{Normalteiler} +Der Kern eines Homomorphismus ist nicht nur eine Untergruppe, er erfüllt +noch eine zusätzliche Bedingung. +Für jedes $g\in G$ und $h\in\ker\varphi$ gilt +\[ +\varphi(ghg^{-1}) += +\varphi(g)\varphi(h)\varphi(g^{-1}) += +\varphi(g)\varphi(g^{-1}) += +\varphi(gg^{-1}) += +\varphi(e) += +e +\qquad\Rightarrow\qquad +ghg^{-1}\in\ker\varphi. +\] +Der Kern wird also von der Abbildung $h\mapsto ghg^{-1}$, +der {\em Konjugation} in sich abgebildet. + +\begin{definition} +Eine Untergruppe $H \subset G$ heisst ein {\em Normalteiler}, +geschrieben $H \triangleleft G$ +wenn $gHg^{-1}\subset H$ für jedes $g\in G$. +\index{Normalteiler} +\end{definition} + +Die Konjugation selbst ist ebenfalls keine Unbekannte, sie ist uns +bei der Basistransformationsformel schon begegnet. +Die Tatsache, dass $\ker\varphi$ unter Konjugation erhalten bleibt, +kann man also interpretieren als eine Eigenschaft, die unter +Basistransformation erhalten bleibt. + +\subsubsection{Faktorgruppen} +Ein Unterraum $U\subset V$ eines Vektorraumes gibt Anlass zum +Quotientenraum, der dadurch entsteht, dass man die Vektoren in $U$ +zu $0$ kollabieren lässt. +Eine ähnliche Konstruktion könnte man für eine Untergruppe $H \subset G$ +versuchen. +Man bildet also wieder die Mengen von Gruppenelementen, die sich um +ein Elemente in $H$ unterscheiden. +Man kann diese Mengen in der Form $gH$ mit $g\in G$ schreiben. + +Man möchte jetzt aber auch die Verknüpfung für solche Mengen +definieren, natürlich so, dass $g_1H\cdot g_2H = (g_1g_2)H$ ist. +Da die Verknüpfung nicht abelsch sein muss, entsteht hier +ein Problem. +Für $g_1=e$ folgt, dass $Hg_2H=g_2H$ sein muss. +Das geht nur, wenn $Hg_2=g_2H$ oder $g_2Hg_2^{-1}=H$ ist, wenn +also $H$ ein Normalteiler ist. + +\begin{definition} +Für eine Gruppe $G$ mit Normalteiler $H\triangleleft G$ ist die +Menge +\[ +G/H = \{ gH \;|\; g\in G\} +\] +eine Gruppe mit der Verknüpfung $g_1H\cdot g_2H=(g_1g_2)H$. +$G/H$ heisst {\em Faktorgruppe} oder {\em Quotientengruppe}. +\index{Faktorgruppe}% +\index{Quotientengruppe}% +\end{definition} + +Für abelsche Gruppen ist die Normalteilerbedingung keine zusätzliche +Einschränkung, jeder Untergruppe ist auch ein Normalteiler. + +\begin{beispiel} +Die ganzen Zahlen $\mathbb{Z}$ bilden eine abelsche Gruppe und +die Menge der Vielfachen von $n$ +$n\mathbb{Z}\subset\mathbb{Z}$ ist eine Untergruppe. +Da $\mathbb{Z}$ abelsch ist, ist $n\mathbb{Z}$ ein Normalteiler +und die Faktorgruppe $\mathbb{Z}/n\mathbb{Z}$ ist wohldefiniert. +Nur die Elemente +\[ +0+n\mathbb{Z}, +1+n\mathbb{Z}, +2+n\mathbb{Z}, +\dots +(n-1)+n\mathbb{Z} +\] +sind in der Faktorgruppe verschieden. +Die Gruppe $\mathbb{Z}/n\mathbb{Z}$ besteht also aus den Resten +bei Teilung durch $n$. +Diese Gruppe wird in Kapitel~\ref{buch:chapter:endliche-koerper} +genauer untersucht. +\end{beispiel} + +Das Beispiel suggeriert, dass man sich die Elemente von $G/H$ +als Reste vorstellen kann. + -- cgit v1.2.1