From 6e8e590acec6c5e94497f386ad36849f9b4825fc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 1 Feb 2021 13:29:17 +0100 Subject: =?UTF-8?q?=C3=9Cbersicht=20algebraische=20Strukturen?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/chapters/10-vektorenmatrizen/linear.tex | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) (limited to 'buch/chapters/10-vektorenmatrizen/linear.tex') diff --git a/buch/chapters/10-vektorenmatrizen/linear.tex b/buch/chapters/10-vektorenmatrizen/linear.tex index cc1c5b9..0e106c9 100644 --- a/buch/chapters/10-vektorenmatrizen/linear.tex +++ b/buch/chapters/10-vektorenmatrizen/linear.tex @@ -592,7 +592,14 @@ Sie wird auch $C=A^{-1}$ geschrieben. Die Definition der inversen Matrix stellt sicher, dass $AA^{-1}=E$ gilt, daraus folgt aber noch nicht, dass auch $A^{-1}A=E$ ist. -Die Eigenschaften der Matrizenmultiplikation stellen jedoch sicher, +Diese Eigenschaft kann man jedoch wie folgt erhalten. +Sei $C$ die inverse Matrix von $A$, also $AC=E$. +Sei weiter $D$ die inverse Matrix von $C$, also $CD=E$. +Dann ist zunächst $A=AE=A(CD)=(AC)D=ED=D$ und weiter +$CA=CD=E$. +Mit der Bezeichnung $C=A^{-1}$ erhalten wir also auch $A^{-1}A=E$. + +Die Eigenschaften der Matrizenmultiplikation stellen sicher, dass die Menge der invertierbaren Matrizen eine Struktur bilden, die man Gruppe nennt, die in Abschnitt~\ref{buch:grundlagen:subsection:gruppen} genauer untersucht wird. -- cgit v1.2.1