From 82abd76cd3df4c0a95534a6e6029fc523c5d1fee Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 31 Aug 2021 11:05:57 +0200 Subject: =?UTF-8?q?Kapitel=202=20=C3=BCberarbeitet?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/chapters/10-vektorenmatrizen/linear.tex | 37 ++++++++++++++-------------- 1 file changed, 19 insertions(+), 18 deletions(-) (limited to 'buch/chapters/10-vektorenmatrizen/linear.tex') diff --git a/buch/chapters/10-vektorenmatrizen/linear.tex b/buch/chapters/10-vektorenmatrizen/linear.tex index 28ec606..ba89266 100755 --- a/buch/chapters/10-vektorenmatrizen/linear.tex +++ b/buch/chapters/10-vektorenmatrizen/linear.tex @@ -395,7 +395,7 @@ a_{21}&a_{22}&\dots &a_{2n}\\ a_{m1}&a_{m2}&\dots &a_{mn}\\ \end{pmatrix} \] -mit $a_{ij}\in\Bbbk$. +mit $a_{i\!j}\in\Bbbk$. Die Menge aller $m\times n$-Matrizen wird mit \[ M_{m\times n}(\Bbbk) @@ -413,7 +413,7 @@ $M_n(\Bbbk) = M_{n\times n}(\Bbbk)$ ab. Die $m$-dimensionalen Spaltenvektoren $v\in \Bbbk^m$ sind $m\times 1$-Matrizen $v\in M_{n\times 1}(\Bbbk)$, die $n$-dimensionalen Zeilenvetoren $u\in\Bbbk^n$ sind $1\times n$-Matrizen $v\in M_{1\times n}(\Bbbk)$. -Eine $m\times n$-Matrix $A$ mit den Koeffizienten $a_{ij}$ besteht aus +Eine $m\times n$-Matrix $A$ mit den Koeffizienten $a_{i\!j}$ besteht aus den $n$ Spaltenvektoren \[ a_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix},\quad @@ -469,7 +469,7 @@ $n\times l$-Matrix $B\in M_{n\times l}(\Bbbk)$ haben als Produkt eine $m\times l$-Matrix $C=AB\in M_{m\times l}(\Bbbk)$ mit den Koeffizienten \begin{equation} -c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}. +c_{i\!j} = \sum_{k=1}^n a_{ik} b_{kj}. \label{buch:vektoren-und-matrizen:eqn:matrixmultiplikation} \end{equation} \end{definition} @@ -477,34 +477,34 @@ c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}. Die Koeffizienten $a_{ik}$ kommen aus der Zeile $i$ von $A$, die Koeffizienten $b_{kj}$ stehen in der Spalte $j$ von $B$, die Multiplikationsregel \eqref{buch:vektoren-unbd-matrizen:eqn:matrixmultiplikation} -besagt also, dass das Element $c_{ij}$ entsteht als das Produkt +besagt also, dass das Element $c_{i\!j}$ entsteht als das Produkt der Zeile $i$ von $A$ mit der Spalte $j$ von $C$. \subsubsection{Einheitsmatrix} Welche $m\times m$-Matrix $I\in M_{m}(\Bbbk)$ hat die Eigenschaft, dass $IA=A$ für jede beliebige Matrix $A\in M_{m\times n}(\Bbbk)$. -Wir bezeichnen die Einträge von $I$ mit $\delta_{ij}$. +Wir bezeichnen die Einträge von $I$ mit $\delta_{i\!j}$. Die Bedingung $IA=A$ bedeutet \[ -a_{ij} = \delta_{i1}a_{1j} + \dots + \delta_{im}a_{mj}, +a_{i\!j} = \delta_{i1}a_{1j} + \dots + \delta_{im}a_{mj}, \] -Da auf der linken Seite nur $a_{ij}$ vorkommt, müssen alle Terme auf der -rechten Seite verschwinden ausser dem Term mit $a_{ij}$, dessen +Da auf der linken Seite nur $a_{i\!j}$ vorkommt, müssen alle Terme auf der +rechten Seite verschwinden ausser dem Term mit $a_{i\!j}$, dessen Koeffizient $\delta_{ii}=1$ sein muss. Die Koeffizienten sind daher \[ -\delta_{ij} +\delta_{i\!j} = \begin{cases} 1&\qquad i=j\\ 0&\qquad\text{sonst} \end{cases} \] -Die Zahlen $\delta_{ij}$ heissen auch das {\em Kronecker-Symbol} oder +Die Zahlen $\delta_{i\!j}$ heissen auch das {\em Kronecker-Symbol} oder {\em Kronecker-Delta}. \index{Kronecker-$\delta$}% \index{Kronecker-Symbol}% -Die Matrix $I$ hat die Einträge $\delta_{ij}$ und heisst die +Die Matrix $I$ hat die Einträge $\delta_{i\!j}$ und heisst die {\em Einheitsmatrix} \index{Einheitsmatrix}% \[ @@ -608,7 +608,7 @@ das Tableau benötigt, alle Schritte operieren direkt auf den Daten des Tableaus. In jedem Schritt des Algorithmus wird zunächst eine Zeile $i$ und -Spalte $j$ ausgewählt, das Elemente $a_{ij}$ heisst das {\em Pivotelement}. +Spalte $j$ ausgewählt, das Elemente $a_{i\!j}$ heisst das {\em Pivotelement}. \index{Pivotelement}% Die {\em Pivotdivision} \index{Pivotdivision} @@ -617,7 +617,7 @@ Die {\em Pivotdivision} \hline a_{11}&\dots &a_{1j}&\dots &a_{1n}&b_1 \\[-2pt] \vdots& &\vdots&\ddots&\vdots&\vdots\\ -a_{i1}&\dots &{\color{red}a_{ij}}&\dots &a_{in}&b_i \\[-2pt] +a_{i1}&\dots &{\color{red}a_{i\!j}}&\dots &a_{in}&b_i \\[-2pt] \vdots& &\vdots&\ddots&\vdots&\vdots\\ a_{m1}&\dots &a_{mj}&\dots &a_{mn}&b_m \\ \hline @@ -627,7 +627,7 @@ a_{m1}&\dots &a_{mj}&\dots &a_{mn}&b_m \\ \hline a_{11}&\dots &a_{1j}&\dots &a_{1n}&b_1 \\[-2pt] \vdots& &\vdots&\ddots&\vdots&\vdots\\ -{\color{red}\frac{a_{i1}}{a_{ij}}}&\dots &{\color{red}1}&\dots &{\color{red}\frac{a_{in}}{a_{ij}}}&{\color{red}\frac{b_i}{a_{ij}}}\\[-2pt] +{\color{red}\frac{a_{i1}}{a_{i\!j}}}&\dots &{\color{red}1}&\dots &{\color{red}\frac{a_{in}}{a_{i\!j}}}&{\color{red}\frac{b_i}{a_{i\!j}}}\\[-2pt] \vdots& &\vdots&\ddots&\vdots&\vdots\\ a_{m1}&\dots &a_{mj}&\dots &a_{mn}&b_m \\ \hline @@ -864,7 +864,7 @@ a_{n1}&a_{n2}&\dots &a_{nn}&0 &0 &\dots &1 \\ \end{tabular} \] Die Vektoren $c_k$ sind die Spaltenvektoren der Matrix $C$ mit den -Einträgen $c_{ij}$. +Einträgen $c_{i\!j}$. Mit den Vektoren $c_k$ können jetzt beliebige inhomogene Gleichungssysteme $Ax=b$ gelöst werden. @@ -1046,7 +1046,7 @@ Die Inverse der $n\times n$-Matrix $A$ ist gegeben durch \index{Formel für die inverse Matrix}% \index{inverse Matrix, Formel für}% \begin{equation} -(A^{-1})_{ij} +(A^{-1})_{i\!j} = \frac{1}{\det(A)} \begin{pmatrix} @@ -1367,9 +1367,10 @@ Basis in die gestrichen umzurechnen gestattet. Ist $A$ die Matrix von $A$ in den Basen $\mathcal{B}$ und $\mathcal{C}$, dann ist Matrix der gleichen Abbildung in den Basen $\mathcal{B}'$ und $\mathcal{C}'$ gegeben durch die Matrix -\[ +\begin{equation} A' = T_VAT_U^{-1}. -\] +\label{buch:vektoren-und-matrizen:eqn:basiswechselabb} +\end{equation} \subsubsection{Umkehrabbbildung} Sei $f$ eine umkehrbare lineare Abbildung $U\to V$ und $g\colon V\to U$. -- cgit v1.2.1