From c5f1492a5845da6467164561183fa93c964d0e87 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 4 Dec 2020 21:07:55 +0100 Subject: Kapitel 1 --- buch/chapters/20-polynome/chapter.tex | 116 ++++++++++++++++++++++++++++++++++ 1 file changed, 116 insertions(+) (limited to 'buch/chapters/20-polynome/chapter.tex') diff --git a/buch/chapters/20-polynome/chapter.tex b/buch/chapters/20-polynome/chapter.tex index 4156c15..b044bcd 100644 --- a/buch/chapters/20-polynome/chapter.tex +++ b/buch/chapters/20-polynome/chapter.tex @@ -6,4 +6,120 @@ \chapter{Polynome \label{buch:chapter:polynome}} \lhead{Polynome} +Ein {\em Polynom} ist ein Ausdruck der Form +\index{Polynom}% +\begin{equation} +p(X) = a_nX^n+a_{n-1}X^{n-1} + \cdots a_2X^2 + a_1X + a_0. +\label{buch:eqn:polynome:polynom} +\end{equation} +Ursprünglich stand das Symbol $X$ als Platzhalter für eine Zahl. +Die Polynomgleichung $Y=p(X)$ drückt dann einen Zusammenhang zwischen +den Grössen $X$ und $Y$ aus. +Zum Beispiel drückt +\begin{equation} +H = -\frac12gT^2 + v_0T +h_0 = p(T) +\label{buch:eqn:polynome:beispiel} +\end{equation} +im Schwerefeld der Erde nahe der Oberfläche einen Zusammenhang +zwischen der Zeit $T$ und der Höhe $H$ eines frei fallenden Körpers aus. +Setzt man einen Wert für $T$ in \eqref{buch:eqn:polynome:beispiel} ein, +erhält man den zugehörigen Wert für $H$. +Man stellt sich hier also vor, dass $T$ eigentlich eine Zahl ist und dass +\eqref{buch:eqn:polynome:polynom} +nur ein ``unfertiger'' Ausdruck oder ein ``Programm'' für eine Berechnung +ist. +In dieser eher arithmetischen Sichtweise ist es aber eigentlich egal, dass in +\index{arithmetische Sichtweise}% +\eqref{buch:eqn:polynome:polynom} nur einfache Multiplikationen und +Additionen vorkommen. +In einem Programm könnten ja auch beliebig komplizierte Operationen +verwendet werden, warum also diese Beschränkung. + +Für die nachfolgenden Betrachtungen stellen wir uns $X$ daher nicht +mehr einfach als einen Platzhalter für eine Zahl vor, sondern als ein neues +algebraisches Objekt, für das man die Rechenregeln erst noch definieren muss. +In diesem Kapteil sollen die Regeln zum Beispiel sicherstellen, +dass man mit Polynomen so rechnen kann, wie wenn $X$ eine Zahl wäre. +Es sollen also zum Beispiel die Regeln +\begin{align} +aX&=Xa +& +(a+b)X&=aX+bX +& +a+X &= X+a +\label{buch:eqn:polynome:basic} +\end{align} +gelten. +In dieser algebraischen Sichtweise können je nach den gewählten algebraischen +Rechenregeln für $X$ interessante rechnerische Strukturen abgebildet werden. +\index{algebraische Sichtweise}% +Ziel dieses Kapitels ist zu zeigen, wie man die Rechenregeln für $X$ +mit Hilfe von Matrizen allgemein darstellen kann. +Diese Betrachtungsweise wird später in Anwendungen ermöglichen, +handliche Realisierungen für das Rechnen mit Grössen zu finden, +die polynomielle Gleichungen erfüllen. +Ebenso sollen in späteren Kapiteln die Regeln +\eqref{buch:eqn:polynome:basic} +erweitert werden oder abgelöst werden um weitere Anwendungen zu erschliessen. + +Bei der Auswahl der zusätzlichen algebraischen Regeln muss man sehr +vorsichtig vorgehen. +Nimmt man zum Beispiel an, dass man durch $X$ teilen kann, dann würde +dies in der arithmetischen Sichtweise bereits ausschliessen, dass man +für $X$ die Zahl $0$ einsetzen kann. +Aber auch eine Regel wie $X^2 \ge 0$, die für alle reellen Zahlen gilt, +würde die Anwendungsmöglichkeiten zu stark einschränken. +Es gibt zwar keine reelle Zahl, die man in das Polynom $p(X)=X^2+1$ +einsetzen könnte, so dass es den Wert $0$ annimmt. +Man könnte $X$ aber als ein neues Objekt ausserhalb von $\mathbb{R}$ +betrachten, welches die Gleichung $X^2+1=0$ erfüllt. +In den komplexen Zahlen $\mathbb{C}$ gibt es mit der imaginären +Einheit $i\in\mathbb{C}$ tatsächlich ein Zahl mit der Eigenschaft +$i^2=-1$ und damit eine Objekt, welches die Ungleichung $X^2\ge 0$ +verletzt. + +Für das Symbol $X$ sollen also die ``üblichen'' Rechenregeln gelten. +Dies ist natürlich nur sinnvoll, wenn man auch mit den Koeffizienten +$a_0,\dots,a_n$ rechnen kann, sind müssen also Elemente einer +algebraischen Struktur sein, in der mindestens die Addition und die +Multiplikation definiert sind. +Die ganzen Zahlen $\mathbb{Z}$ kommen dafür in Frage, aber auch +die rationalen oder reellen Zahlen $\mathbb{Q}$ und $\mathbb{R}$. +Man kann sogar noch weiter gehen: man kann als Koeffizienten auch +Vektoren oder sogar Matrizen zulassen. +Polynome können addiert werden, indem die Koeffizienten addiert werden. +Polynome können aber auch multipliziert werden, was auf die Faltung +der Koeffizienten hinausläuft: +\begin{align} +p(X) &= a_nX^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0 +\notag +\\ +q(X) &= b_mX^m + b_{m-1}X^{m-1} + \dots + b_1X + b_0 +\notag +\\ +p(X) q(X) &= +a_{n}b_{m}X^{n+m} ++ +(a_{n}b_{m-1}+a_{n-1}b_{m})X^{n+m-1} ++ +\dots ++ +\sum_{i + j = k}a_ib_j X^k ++ +\dots ++ +(a_1b_0+a_0b_1)X ++ +a_0b_0 +\label{buch:eqn:polynome:faltung} +\end{align} +Dies ist aber nur möglich, wenn die Koeffizienten selbst miteinander +multipliziert werden können, wenn also die Koeffizienten mindestens +Elemente einer Algebra sind. + +\input{chapters/20-polynome/definitionen.tex} +\input{chapters/20-polynome/vektoren.tex} +\input{chapters/20-polynome/matrizen.tex} +\input{chapters/20-polynome/minimalpolynom.tex} + -- cgit v1.2.1