From d732a94f72bcb414ada8f8f638fc2a034426686f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 18 Oct 2021 19:52:32 +0200 Subject: typos chapters 1-5 --- buch/chapters/20-polynome/definitionen.tex | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) (limited to 'buch/chapters/20-polynome/definitionen.tex') diff --git a/buch/chapters/20-polynome/definitionen.tex b/buch/chapters/20-polynome/definitionen.tex index b58c0dd..152589a 100644 --- a/buch/chapters/20-polynome/definitionen.tex +++ b/buch/chapters/20-polynome/definitionen.tex @@ -23,8 +23,8 @@ Zahl zu multiplizieren. Die Struktur, die wir hier beschrieben haben, hängt davon ab, was wir uns unter einer ``Zahl'' vorstellen. -Wir bezeichnen die Menge, aus der die ``Zahlen'' kommen können mit $R$ und -nennen sie die Menge der Skalare. +Wir bezeichnen die Menge, aus der die ``Zahlen'' kommen können, mit $R$ und +nennen sie die Menge der {\em Skalare}. \index{Skalar}% Wenn wir uns vorstellen, dass man die Elemente von $R$ an Stelle von $X$ in das Polynom einsetzen kann, dann muss es möglich sein, in $R$ zu @@ -73,7 +73,7 @@ Ein Polynom heisst {\em normiert} oder auch {\em monisch}, wenn der \index{Polynom!normiert}% \index{normiertes Polynom}% \index{Polynom!monisch}% -\index{normiertes Polynom} +\index{normiertes Polynom}% höchste Koeffizient oder auch {\em Leitkoeffizient} des Polynoms $1$ ist, also $a_n=1$. \index{Leitkoeffizient}% @@ -201,8 +201,8 @@ sein als die grössere von den beiden Zahlen $n$ und $m$ angibt, dies beweist \eqref{buch:eqn:polynome:gradsumme}. Ebenso kann der höchste Koeffizient im Produkt nach der Formel~\eqref{buch:eqn:polynome:faltung} nicht ``weiter oben'' als bei -$n+m$ liegen, dies beweist -beweist \eqref{buch:eqn:polynome:gradprodukt}. +$n+m$ liegen, dies +beweist~\eqref{buch:eqn:polynome:gradprodukt}. In einem Ring mit Nullteilern (Siehe Definition~\ref{buch:grundlagen:def:nullteiler}) könnte es passieren, dass $a_nb_m=0$ ist, d.~h.~es ist durchaus möglich, @@ -245,9 +245,9 @@ Betrachten wir $\lambda$ wieder als ein Polynom, dann folgt aus \eqref{buch:eqn:polynome:gradsummeexakt}, dass \[ \begin{aligned} -\lambda&\ne 0 &&\Rightarrow& \deg (\lambda p) &= \deg\lambda + \deg p = 0+\deg p +\lambda&\ne 0 &&\Rightarrow& \deg (\lambda p) &= \deg\lambda + \deg p = 0+\deg p, \\ -\lambda&=0 &&\Rightarrow& \deg (0 p) &= \deg 0 + \deg p = \deg 0 +\lambda&=0 &&\Rightarrow& \deg (0 p) &= \deg 0 + \deg p = \deg 0. \end{aligned} \] Diese Gleichung kann also nur aufrechterhalten werden, wenn die ``Zahl'' $\deg 0$ die Eigenschaft besitzt, dass man immer noch $\deg 0$ bekommt, @@ -405,7 +405,7 @@ In $\mathbb{Q}[X]$ ist die Division $a:b$ für die Polynome \begin{equation} \begin{aligned} a(X) &= X^4 - X^3 -7X^2 + X + 6\\ -b(X) &= 2X^2+X+1, +b(X) &= 2X^2+X+1 \end{aligned} \label{buch:polynome:eqn:divisionsaufgabe2} \end{equation} @@ -500,7 +500,7 @@ Wir erwarten daher die entsprechenden Eigenschaften auch in einem Polynomring. Allerdings ist eine Faktorzerlegung nicht ganz eindeutig. Wenn das Polynom $f\in\mathbb{Z}[X]$ die Faktorisierung -$f=g\cdot h$ mit $g,h\mathbb{Z}[X]$ hat, dann +$f=g\cdot h$ mit $g,h\in\mathbb{Z}[X]$ hat, dann ist $rg\cdot r^{-1}h$ ebenfalls eine Faktorisierung für jedes $r =\pm1$. Dasselbe gilt in $\mathbb{Q}$ für jedes $r\in \mathbb{Q}^*$. Faktorisierung ist also nur eindeutig bis auf Elemente der -- cgit v1.2.1