From d732a94f72bcb414ada8f8f638fc2a034426686f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 18 Oct 2021 19:52:32 +0200 Subject: typos chapters 1-5 --- buch/chapters/20-polynome/vektoren.tex | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) (limited to 'buch/chapters/20-polynome/vektoren.tex') diff --git a/buch/chapters/20-polynome/vektoren.tex b/buch/chapters/20-polynome/vektoren.tex index 535b896..9f0dee2 100644 --- a/buch/chapters/20-polynome/vektoren.tex +++ b/buch/chapters/20-polynome/vektoren.tex @@ -29,7 +29,7 @@ R^{n+1}. \] Diese Darstellung eines Polynoms gibt auch die Addition von Polynomen und die Multiplikation von Polynomen mit Skalaren aus $R$ korrekt wieder. -Die Abbildung von Vektoren auf Polynome +Die Abbildung \[ \varphi \colon R^{n+1} \to R[X] @@ -38,6 +38,7 @@ Die Abbildung von Vektoren auf Polynome \mapsto a_nX^n + a_{n-1}X^{n-1}+\dots+a_1X+a_0 \] +von Vektoren auf Polynome erfüllt also \[ \varphi( \lambda a) = \lambda \varphi(a) @@ -62,7 +63,7 @@ um Multiplikation mit Skalaren geht, ist also diese vektorielle Darstellung mit Hilfe von $\varphi$ eine zweckmässige Darstellung. In zwei Bereichen ist die Beschreibung von Polynomen mit Vektoren allerdings -ungenügend: einerseits können Polynome können beliebig hohen Grad haben, +ungenügend: einerseits können Polynome beliebig hohen Grad haben, während Vektoren in $R^{n+1}$ höchstens $n+1$ Komponenten haben können. Andererseits geht bei der vektoriellen Beschreibung die multiplikative Struktur vollständig verloren. @@ -159,12 +160,12 @@ Multiplikationsoperator betrachten. Diese Operatoren setzen sich zusammen zu einem Operator \[ -{X\cdot} \colon R^\infty \to \infty, +{X\cdot} : R^\infty \to \infty, \] der die Multiplikation mit $X$ beschreibt. Ist $p(X)$ ein Polynom, dann lässt sich die Multiplikation -in von Polynome mit $R[X]$ ebenfalls als Operator schreiben. +von $p(X)$ mit Polynomen in $R[X]$ ebenfalls als Operator schreiben. Die Potenz $X^k$ wirkt durch $k$-fache Iteration des Operators $X\cdot$. Das Polynom $p(X)$ wirkt als Linearkombination der Operatoren $(X\cdot)^k$, @@ -174,7 +175,7 @@ in das Polynom erhalten kann: p(X\cdot) = a_n(X\cdot)^n + a_{n-1}(X\cdot)^{n+1} + \dots + a_1(X\cdot) + a_0 -\colon +: R^\infty \to R^\infty : q(X) @@ -235,7 +236,7 @@ die Beobachtung, dass sich eine ganz allgemeine Algebra wie die der Polynome auf sehr direkte Art und Weise abbilden lässt in eine Algebra von Matrizen auf einem geeigneten Vektorraum. -Im vorliegenden Fall sind das zwar ``undendliche'' +Im vorliegenden Fall sind das zwar ``unendliche'' Matrizen, in zukünftigen Beispielen werden wir das selbe Prinzip jedoch in Aktion sehen in Situationen, wo eine Operation auf einem endlichen Vektorraum -- cgit v1.2.1