From 036e7aae98bcf2cb7d63546e153c25649baa93d1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 31 Aug 2021 20:58:56 +0200 Subject: Kapitel 3 --- buch/chapters/30-endlichekoerper/galois.tex | 146 +++++++++++++++++++++++----- 1 file changed, 119 insertions(+), 27 deletions(-) (limited to 'buch/chapters/30-endlichekoerper/galois.tex') diff --git a/buch/chapters/30-endlichekoerper/galois.tex b/buch/chapters/30-endlichekoerper/galois.tex index c7147bf..5189dec 100644 --- a/buch/chapters/30-endlichekoerper/galois.tex +++ b/buch/chapters/30-endlichekoerper/galois.tex @@ -9,11 +9,11 @@ \rhead{Galois-Körper} Ein Körper $\Bbbk$ enthält mindestens die Zahlen $0$ und $1$. Die Null ist nötig, damit $\Bbbk$ eine Gruppe bezüglich der -Addition ist, die immer ein neutrales Element, geschrieben $0$ +Addition ist, die immer ein neutrales Element, geschrieben $0$, enthält. Die Eins ist nötig, damit $\Bbbk^*=\Bbbk\setminus\{0\}$ eine Gruppe bezüglich der Multiplikation ist, die immer eine neutrales -Element, geschrieben $1$ enthält. +Element, geschrieben $1$, enthält. Durch wiederholte Addition entstehen auch die Zahlen $2=1+1$, $3=2+1$ und so weiter. Es sieht also so aus, als ob ein Körper immer unendliche viele @@ -21,6 +21,8 @@ Elemente enthalten müsste. Wie können also endliche Körper entstehen? In diesem Abschnitt sollen die sogenannten Galois-Körper $\mathbb{F}_p$ +\index{Galois-Körper}% +\index{Fp@$\mathbb{F}_p$}% mit genau $p$ Elementen konstruiert werden, die es für jede Primzahl $p$ gibt. Sie sind die Basis für weitere endliche Körper, die eine beliebige Primzahlpotenz $p^n$ von Elementen haben und die die Basis wichtiger @@ -51,6 +53,7 @@ Zahlen $\{0,1,2,\dots,n-1\}$ identifiziert werden kann. \begin{definition} Die Zahlen $a,b\in\mathbb{Z}$ heissen {\em kongruent modulo $n$}, +\index{kongruent modulo $n$}% geschrieben \[ a\equiv b\mod n, @@ -60,6 +63,7 @@ wenn $a-b$ durch $n$ teilbar ist, also $n|(a-b)$. Die Zahlen mit gleichem Rest sind Äquivalenzklassen der Kongruenz modulo $n$. Die Zahlen mit Rest $k$ modulo $n$ bilden die {\em Restklasse} +\index{Restklasse}% \[ \llbracket k\rrbracket=\{\dots,k-2n,k-n,k,k+n,k+2n,\dots\} \subset\mathbb{Z}. \] @@ -90,7 +94,7 @@ Tatsächlich kann man auf den Restklassen eine Ringstruktur definieren. Dazu muss man sicherstellen, dass die Auswahl eines Repräsentanten keinen Einfluss auf den Rest hat. Der Rest $a$ kann jede Zahl der Form $a+kn$ darstellen. -Ebenso kann der Rest $b$ jede zahl der Form $b+ln$ darstellen. +Ebenso kann der Rest $b$ jede Zahl der Form $b+ln$ darstellen. Deren Summe ist $a+b+(k+l)n\equiv a+b\mod n$. Der Repräsentant des Restes hat also keinen Einfluss auf die Summe. @@ -121,8 +125,9 @@ Insbesondere darf kein Produkt $a\cdot b$ mit Faktoren in $\mathbb{Z}/n\mathbb{Z} \setminus \{\llbracket0\rrbracket\}$ zu Null werden. Für $n=15$ funktioniert dies nicht, das Produkt $3\cdot 5\equiv 0\mod 15$. -Man nennt von Null verschiedene Faktoren, deren Produkt Null ist, einen -{\em Nullteiler}. +Wir kommen daher zu der Forderung, dass der Ring $\mathbb{Z}/n\mathbb{Z}$ +nur dann ein Körper sein kann, wenn er nullteilerfrei ist. + Falls sich $n=p_1\cdot p_2$ in zwei Faktoren zerlegen lässt, dann sind $p_1$ und $p_2$ Nullteiler in $\mathbb{Z}/n\mathbb{Z}$. Ein Körper kann also nur entstehen, wenn $n$ eine Primzahl ist. @@ -130,7 +135,9 @@ Ein Körper kann also nur entstehen, wenn $n$ eine Primzahl ist. \begin{definition} \label{buch:endlichekoerper:def:galois-koerper} Ist $p$ eine Primzahl, dann heisst $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ +\index{Primzahl}% der Galois-Körper der Ordnung $p$. +\index{Galois-Körper}% \end{definition} Diese Definition ist nur gerechtfertigt, wenn $\mathbb{F}_p^*$ tatsächlich @@ -152,6 +159,7 @@ lösen kann, wenn die beiden gegebenen Zahlen $a$ und $p$ teilerfremd sind. Dies ist aber dadurch garantiert, dass $p$ eine Primzahl ist und $1\le a