From 7ba2b33ce9ed11753a1bb80d833354393f7e7603 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 22 Sep 2021 21:06:58 +0200 Subject: zweite Leseung Kapitel 3 und 4 --- buch/chapters/30-endlichekoerper/galois.tex | 68 ++++++++++++++--------------- 1 file changed, 34 insertions(+), 34 deletions(-) (limited to 'buch/chapters/30-endlichekoerper/galois.tex') diff --git a/buch/chapters/30-endlichekoerper/galois.tex b/buch/chapters/30-endlichekoerper/galois.tex index 7ffef0b..1d4a9c9 100644 --- a/buch/chapters/30-endlichekoerper/galois.tex +++ b/buch/chapters/30-endlichekoerper/galois.tex @@ -80,14 +80,14 @@ Beim Rechnen mit Resten modulo $n$ können Vielfache von $n$ ignoriert werden. Zum Beispiel gilt \[ \begin{aligned} -48&\equiv -1\mod 7& 48&=-1&&\text{in $\mathbb{Z}/7\mathbb{Z}$} +48&\equiv -1\mod 7&&\Leftrightarrow& 48&=-1&&\text{in $\mathbb{Z}/7\mathbb{Z}$} \\ -3\cdot 5=15&\equiv 1\mod 7 & 3\cdot 5&=1&&\text{in $\mathbb{Z}/7\mathbb{Z}$.} +3\cdot 5=15&\equiv\phantom{-}1\mod 7&&\Leftrightarrow & 3\cdot 5&=\phantom{-}1&&\text{in $\mathbb{Z}/7\mathbb{Z}$.} \end{aligned} \] Das Beispiel zeigt, dass man mindestens in $\mathbb{Z}/7\mathbb{Z}$ mit Resten ganz ähnlich rechnen kann wie in $\mathbb{Q}$. -In $\mathbb{Z}/7\mathbb{Z}$ scheinen $3$ und $5$ multiplikative inverse +In $\mathbb{Z}/7\mathbb{Z}$ scheinen $3$ und $5$ multiplikative Inverse zu sein. Tatsächlich kann man auf den Restklassen eine Ringstruktur definieren. @@ -97,7 +97,6 @@ Der Rest $a$ kann jede Zahl der Form $a+kn$ darstellen. Ebenso kann der Rest $b$ jede Zahl der Form $b+ln$ darstellen. Deren Summe ist $a+b+(k+l)n\equiv a+b\mod n$. Der Repräsentant des Restes hat also keinen Einfluss auf die Summe. - Ebenso ist das Produkt der beiden Repräsentaten $(a+kn)\cdot(b+ln) = ab + (al+bk)n + kln^2=ab + (al+bk+kln)n\equiv ab\mod n$ für jede Wahl von $k$ und $l$. @@ -105,7 +104,7 @@ Auch die Multiplikation ist also unabhängig vom gewählten Repräsentanten. \begin{definition} Die Menge $\mathbb{Z}/n\mathbb{Z}$ ist ein Ring, -heisst der {\em Restklassenring modulo $n$}. +er heisst der {\em Restklassenring modulo $n$}. \end{definition} \subsubsection{Division in $\mathbb{Z}/n\mathbb{Z}$} @@ -288,7 +287,7 @@ Primzahl ist. Wir betrachten dazu die Menge der nicht einfarbigen, geschlossenen Perlenketten der Länge $p$ mit $a$ Farben. Einge dieser Perlenketten unterscheiden sich nur durch eine -Drehung um einzelne Perlen. +Drehung um eine gewisse Anzahl Perlen. Sei $G$ die Menge der nicht einfarbigen, geschlossenen Perlenketten, die sich nicht nur um eine Drehung unterscheiden. @@ -362,14 +361,11 @@ $(p-1)!\equiv -1\mod p$. \begin{proof}[Beweis] Wenn $p$ keine Primzahl ist, dann lässt sich $p$ in Faktoren -$p=n_1\cdot n_2=p$ zerlegen. -Beide Faktoren kommen in der Liste $1,2,\dots,p-1$ vor. -Insbesondere haben $p=n_1n_2$ und $(p-1)!$ mindestens einen -der Faktoren $n_1$ oder $n_2$ gemeinsam, wir können annehmen, -dass $n_1$ dieser Faktor ist. -Es folgt, dass der grösste gemeinsame Teiler von $p$ und $(p-1)!$ -grösser als $n_1$ ist, auch $(p-1)!$ ein Vielfaches von $n_1$ in -$\mathbb{F}_p$. +$p=n_1\cdot n_2$ zerlegen. +Dies bedeutet auch, dass $n_1$ und $n_2$ Nullteiler sind in +$\mathbb{F}_p$, es ist also $n_1n_2=0\in\mathbb{F}_p$. +Beide Faktoren kommen in der Liste der Zahlen $1,2,\dots,p-1$ vor. +Daher muss auch $1\cdot2\cdot\dots\cdot(p-1)=(p-1)!=0\in\mathbb{F}_p$ sein. Insbesondere kann $(p-1)!$ nicht $-1\in\mathbb{F}_p$ sein. Ist andererseits $p$ eine Primzahl, dann sind die Zahlen $1, 2,\dots,p-1$ @@ -382,7 +378,7 @@ Daher ist auch $(a+1)(a-1)=0$, in $\mathbb{F}_p$ muss daher einer der Faktoren $0$ sein, also $a=-1$ oder $a=1$ in $\mathbb{F}_p$. Zu jeder Zahl $a\in\{2,\dots,p-2\}$ liegt die Inverse $a^{-1}$ -ebenfalls in diesen Bereich und ist verschieden von $a$: $a^{-1}\ne a$. +ebenfalls in diesem Bereich und ist verschieden von $a$: $a^{-1}\ne a$. Das Produkt der Zahlen $2\cdot 3 \cdot\ldots\cdot (p-2)$ besteht also aus zueinander inversen Paaren. @@ -467,7 +463,7 @@ Ein Körper mit Charakteristik $0$ enthält immer unendliche viele Elemente. \subsubsection{Teilbarkeit von Binomialkoeffizienten} -Als Beispiel für die Auswrikung der Charakteristik auf die Arithmetik +Als Beispiel für die Auswirkung der Charakteristik auf die Arithmetik in einem endlichen Körper betrachten wir die Teilbarkeitseigenschaften der Binomialkoeffizienten. @@ -500,9 +496,10 @@ Rest bei Teilung durch $2$ der Binomialkoeffizienten. \index{Binomialkoeffizient}% Man kann daraus ablesen, dass $\binom{n}{m}\equiv 0\mod 2$ für $n=2^k$ und $00$ und $00$ und $0