From b1bb5a5e1d7d43a27e601a5df5cb212512458fc0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 24 Jan 2021 13:05:42 +0100 Subject: galois fields, exercise 3002 --- buch/chapters/30-endlichekoerper/uebungsaufgaben/3001.tex | 2 +- buch/chapters/30-endlichekoerper/uebungsaufgaben/3002.tex | 9 +++++++++ 2 files changed, 10 insertions(+), 1 deletion(-) create mode 100644 buch/chapters/30-endlichekoerper/uebungsaufgaben/3002.tex (limited to 'buch/chapters/30-endlichekoerper/uebungsaufgaben') diff --git a/buch/chapters/30-endlichekoerper/uebungsaufgaben/3001.tex b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3001.tex index 7e40dfe..9d47f85 100644 --- a/buch/chapters/30-endlichekoerper/uebungsaufgaben/3001.tex +++ b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3001.tex @@ -1,4 +1,4 @@ -Im Rahmen der Aufgabe, die Zehntausernderstelle der Zahl $5^{5^{5^{5^5}}}$ +Im Rahmen der Aufgabe, die Zehntauserderstelle der Zahl $5^{5^{5^{5^5}}}$ zu berechnen muss Michael Penn im Video \url{https://youtu.be/Xg24FinMiws} bei 12:52 zwei Zahlen $x$ und $y$ finden, so dass, diff --git a/buch/chapters/30-endlichekoerper/uebungsaufgaben/3002.tex b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3002.tex new file mode 100644 index 0000000..83bfd0e --- /dev/null +++ b/buch/chapters/30-endlichekoerper/uebungsaufgaben/3002.tex @@ -0,0 +1,9 @@ +Berechnen Sie $666^{666}$ in $\mathbb{F}_{13}$. + +\begin{loesung} +Zunächst ist die Basis der Potenz $666=3$ in $\mathbb{F}_{13}$, es +muss also nur $3^{666}$ berechnet werden. +Nach dem kleinen Satz von Fermat ist $3^{12}=1$ in $\mathbb{F}_{13}$. +Wegen $666 = 12*50+6$ folgt +$ 3^{666} = 3^6=729=1$ in $\mathbb{F}_{13}$. +\end{loesung} -- cgit v1.2.1