From 036e7aae98bcf2cb7d63546e153c25649baa93d1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 31 Aug 2021 20:58:56 +0200 Subject: Kapitel 3 --- buch/chapters/30-endlichekoerper/wurzeln.tex | 44 ++++++++++++++++++++-------- 1 file changed, 32 insertions(+), 12 deletions(-) (limited to 'buch/chapters/30-endlichekoerper/wurzeln.tex') diff --git a/buch/chapters/30-endlichekoerper/wurzeln.tex b/buch/chapters/30-endlichekoerper/wurzeln.tex index 600336c..b066969 100644 --- a/buch/chapters/30-endlichekoerper/wurzeln.tex +++ b/buch/chapters/30-endlichekoerper/wurzeln.tex @@ -52,10 +52,10 @@ Inverse kann zum Beispiel als die inverse Matrix mit dem Gauss-Algorithmus berechnet werden. In einem zweiten Schritt zeigen wir dann, dass man die Rechnung noch etwas vereinfachen kann, wenn man in Polynomringen arbeitet. -Schliesslich zeigen wir dann im -Abschnitt~\ref{buch:subsection:zerfaellungskoerper}, wie man -den Prozess iterieren kann und so für beliebige Polynome immer einen -Körper finden kann, der alle Nullstellen enthält. +%Schliesslich zeigen wir dann im +%Abschnitt~\ref{buch:subsection:zerfaellungskoerper}, wie man +%den Prozess iterieren kann und so für beliebige Polynome immer einen +%Körper finden kann, der alle Nullstellen enthält. Wir beginnen in Abschnitt~\ref{buch:subsection:irreduziblepolynome} damit, die Polynome, die für die Konstruktion in Frage kommen, etwas genauer zu charakterisieren. @@ -608,7 +608,17 @@ $J$ mit $I\subset J\subset R$ entweder $I=J$ oder $J=R$ gilt. Die Ideale $p\mathbb{Z}\subset \mathbb{Z}$ sind maximal genau dann, wenn $p$ eine Primzahl ist. -TODO: XXX Begründung +Ist nämlich $p=n_1n_2$ eine Faktorisierung, dann ist +$\mathbb{Z}\supset n_1\mathbb{Z} \supset p\mathbb{Z}$ +und $n_1\mathbb{Z}$ ist ein grössers Ideal als $p\mathbb{Z}$, +d.~h.~$p\mathbb{Z}$ ist nicht maximal. + +In $\mathbb{Z}$ sind alle Ideale von der Form $n\mathbb{Z}$. +Wenn es also ein Ideal $I\supset p\mathbb{Z}$ gibt, welches +$p\mathbb{Z}$ echt enthält, dann gibt es $n\in\mathbb{Z}$ derart, +dass $n\mathbb{Z} \subset p\mathbb{Z}$. +Dies ist gleichbedeutend damit, dass $n$ ein echter Teiler von $p$ +ist, also ist $p$ keine Primzahl. \end{beispiel} \begin{satz} @@ -616,6 +626,23 @@ Der Ring $R/I$ ist genau dann ein Körper, wenn $I$ ein maximales Ideal ist. \end{satz} \begin{proof}[Beweis] +Nehmen wir zunächst an, dass $I$ ein maximales Ideal ist. +Damit $R/I$ ein Körper ist, muss jedes von $0$ verschiedene Element +eine multiplikatives Inverses haben. +Sei als $a\in R\setminus I$, dann ist $a+I$ ein von $0$ verschiedenes +Körperelement. +Die Menge $Ra+I$ ist dann ein Ideal von $R$, welches $I$ echt enthält. +Weil $I$ maximal ist, ist $Ra+I=R$, also gibt es ein Element $b\in I$ +derart, dass $ab+I=1+I$, d.~h.~$b+I$ ist das gesuchte multiplikative +Inverse. + +Sei nun umgekehrt $R/I$ ein Körper und $J\supset I$ sei ein Ideal, +welches $I$ echt enhält. +Sei $a\in J\setminus I$. +Da $R/I$ ein Körper ist, ist $a+I$ invertierbar, es gibt also ein +$b\in R$ mit $ab+I=1+I$. +Da $a\in J$ folgt $Ra\subset J$. +Andererseits ist $1\in Ra$, also ist $J=R$ und das Ideal $J$ ist maximal. \end{proof} Ein irreduzibles Polynom $m\in\Bbbk[X]$ erzeugt ein maximales Ideal, @@ -894,10 +921,3 @@ Dieser Spezialfall ist für die praktische Anwendung in der Kryptographie von besonderer Bedeutung, daher wird er im In Kapitel~\ref{buch:chapter:kryptographie} genauer untersucht. -\subsection{Zerfällungskörper -\label{buch:subsection:zerfaellungskoerper}} -XXX TODO - - - - -- cgit v1.2.1