From 8a1598b4fbaca52a1de7e9e23f4a69581b587372 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 2 Sep 2021 11:05:02 +0200 Subject: section 5.1 --- buch/chapters/40-eigenwerte/chapter.tex | 50 +++++++++++++++++++++++++-------- 1 file changed, 38 insertions(+), 12 deletions(-) (limited to 'buch/chapters/40-eigenwerte/chapter.tex') diff --git a/buch/chapters/40-eigenwerte/chapter.tex b/buch/chapters/40-eigenwerte/chapter.tex index 24ea57d..65cf608 100644 --- a/buch/chapters/40-eigenwerte/chapter.tex +++ b/buch/chapters/40-eigenwerte/chapter.tex @@ -8,30 +8,56 @@ \lhead{Eigenwerte und Eigenvektoren} \rhead{} Die algebraischen Eigenschaften einer Matrix $A$ sind eng mit der -Frage nach linearen Beziehungen unter den Potenzen von $A^k$ verbunden. +Frage nach linearen Beziehungen zwischen den Potenzen $A^k$ von $A$ verbunden. Im Allgemeinen ist die Berechnung dieser Potenzen eher unübersichtlich, es sei denn, die Matrix hat eine spezielle Form. Die Potenzen einer Diagonalmatrix erhält man, indem man die Diagonalelemente potenziert. +\index{Diagonalmatrix}% Auch für Dreiecksmatrizen ist mindestens die Berechnung der Diagonalelemente von $A^k$ einfach. +\index{Dreiecksmatrix}% Die Theorie der Eigenwerte und Eigenvektoren ermöglicht, Matrizen in -eine solche besonders einfache Form zu bringen. +\index{Eigenwert}% +\index{Eigenvektor} +eine solche besonders einfache sogenannte Normalform zu bringen. +\index{Normalform}% +Ziel ist, einen Algorithmus zu finden, mit dem sich für jede lineare +Abbildung eine Basis finden lässt, in der ihre Matrix eine besonders +einfach Form hat, in der auch die Berechnung von Potenzen leicht +möglich ist. -In Abschnitt~\ref{buch:section:grundlagen} werden die grundlegenden -Definitionen der Eigenwerttheorie in Erinnerung gerufen. +Die Untersuchungen beginnen in +Abschnitt~\ref{buch:section:grundlagen} mit Betrachtungen über +Potenzen von Matrizen und ihren invarianten Unterräumen. +\index{Matrixpotenz}% +\index{invarianter Unterraum}% +\index{Unterraum, invarianter}% +Es ergibt sich bereits eine Normalform für nilpotente Matrizen. +\index{nilpotent}% +In Abschnitt~\ref{buch:section:eigenwerte-eigenvektoren} wird daraus die +allgemeine Eigenwerttheorie entwickelt. Damit kann dann in Abschnitt~\ref{buch:section:normalformen} -gezeigt werden, wie Matrizen in besonders einfache Form gebracht -werden können. -Die Eigenwerte bestimmen auch die Eigenschaften von numerischen -Algorithmen, wie in den Abschnitten~\ref{buch:section:spektralradius} -und \ref{buch:section:numerisch} dargestellt wird. -Für viele Funktionen kann man auch den Wert $f(A)$ berechnen, unter -geeigneten Voraussetzungen an den Spektralradius. -Dies wird in Abschnitt~\ref{buch:section:spektraltheorie} beschrieben. +gezeigt werden, wie Matrizen in Normalform gebracht werden können. +Für viele Funktionen kann man auch den Wert $f(A)$ berechnen. +In Abschnitt~\ref{buch:section:analytische-funktionen-einer-matrix} wird +gezeigt, wie dies für analytische Funktionen und für Funktionen möglich +\index{analytische Funktion}% +ist, die durch Polynome approximiert werden. +Es zeigt sich, dass dazu geeigneten Voraussetzungen an den sogenannten +Spektralradius gestelltw erden müssen. +\index{Spektralradius}% +Es stellt sich heraus, dass man nicht für alle Matrizen $A$ eine +sinnvolle Definition von $f(A)$ für beliebige stetige Funktionen $f$ +erwarten kann. +Möglich ist dies nur für sogenannte normale Matrizen, wie in +der Spektraltheorie in +Abschnitt~\ref{buch:section:spektraltheorie} dargestellt wird. +\index{Spektraltheorie} \input{chapters/40-eigenwerte/grundlagen.tex} +\input{chapters/40-eigenwerte/eigenwerte.tex} \input{chapters/40-eigenwerte/normalformen.tex} \input{chapters/40-eigenwerte/spektralradius.tex} \input{chapters/40-eigenwerte/spektraltheorie.tex} -- cgit v1.2.1