From 115c239a21c58b96eced43bfc627ab70c68538ea Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 2 Sep 2021 11:40:57 +0200 Subject: section 5.2 --- buch/chapters/40-eigenwerte/eigenwerte.tex | 203 ++++++++++++++++++----------- 1 file changed, 124 insertions(+), 79 deletions(-) (limited to 'buch/chapters/40-eigenwerte/eigenwerte.tex') diff --git a/buch/chapters/40-eigenwerte/eigenwerte.tex b/buch/chapters/40-eigenwerte/eigenwerte.tex index 745f320..d707e1f 100644 --- a/buch/chapters/40-eigenwerte/eigenwerte.tex +++ b/buch/chapters/40-eigenwerte/eigenwerte.tex @@ -11,11 +11,22 @@ $A\in M_n(\Bbbk)$. In den meisten Anwendungen wird $\Bbbk=\mathbb{R}$ sein. Da aber in $\mathbb{R}$ nicht alle algebraischen Gleichungen lösbar sind, ist es manchmal notwendig, den Vektorraum zu erweitern um zum Beispiel +auf dem Umweg über komplexe Zahlen Eigenschaften der Matrix $A$ abzuleiten. \begin{definition} -Ein Vektor $v\in V$ heisst {\em Eigenvektor} von $A$ zum Eigenwert +Ein Vektor $v\in V$ heisst {\em Eigenvektor} von $A$ zum {\em Eigenwert} +\index{Eigenwert}% +\index{Eigenvekor}% $\lambda\in\Bbbk$, wenn $v\ne 0$ und $Av=\lambda v$ gilt. +Die Menge +\[ +\operatorname{Sp}(A) += +\{\lambda\in\mathbb{C}\,|\, \text{$\lambda$ ist Eigenwert von $A$}\} +\] +heisst das {\em Spektrum} von $A$. +\index{Spektrum}% \end{definition} Die Bedingung $v\ne 0$ dient dazu, pathologische Situationen auszuschliessen. @@ -27,7 +38,7 @@ Ausserdem wäre $0$ ein Eigenvektor zu jedem beliebigen Eigenwert. Eigenvektoren sind nicht eindeutig bestimmt, jedes von $0$ verschiedene Vielfache von $v$ ist ebenfalls ein Eigenvektor. -Zu einem Eigenwert kann man also einen Eigenvektor jeweils mit +Zu einem Eigenwert kann man also einen Eigenvektor mit geeigneten Eigenschaften finden, zum Beispiel kann man für $\Bbbk = \mathbb{R}$ Eigenvektoren auf Länge $1$ normieren. Im Folgenden werden wir oft die abkürzend linear unabhängige Eigenvektoren @@ -82,17 +93,17 @@ s\lambda u + t\lambda v \lambda(su+tv), \] also ist auch $su+tv\in E_\lambda$. -Der Fall $E_\lambda = \{0\}=0$ bedeutet natürlich, dass $\lambda$ gar kein +Der Spezialfall $E_\lambda = \{0\}=0$ bedeutet natürlich, dass $\lambda$ gar kein Eigenwert ist. \begin{satz} -Wenn $\dim E_\lambda=n$, dann ist $A=\lambda E$. +Wenn $\dim E_\lambda=n$ ist, dann ist $A=\lambda I$. \end{satz} \begin{proof}[Beweis] Da $V$ ein $n$-dimensionaler Vektoraum ist, ist $E_\lambda=V$. Jeder Vektor $v\in V$ erfüllt also die Bedingung $Av=\lambda v$, -oder $A=\lambda E$. +oder $A=\lambda I$. \end{proof} Wenn man die Eigenräume von $A$ kennt, dann kann man auch die Eigenräume @@ -105,9 +116,9 @@ Av=\lambda v = (\lambda+\mu)v, \] -somit ist $v$ ein Eigenvektor von $A+\mu E$ zum Eigenwert $\lambda+\mu$. +somit ist $v$ ein Eigenvektor von $A+\mu I$ zum Eigenwert $\lambda+\mu$. Insbesondere können wir statt die Eigenvektoren von $A$ zum Eigenwert $\lambda$ -zu studieren, auch die Eigenvektoren zum Eigenwert $0$ von $A-\lambda E$ +zu studieren, auch die Eigenvektoren zum Eigenwert $0$ von $A-\lambda I$ untersuchen. % @@ -116,9 +127,9 @@ untersuchen. \subsection{Verallgemeinerte Eigenräume \label{buch:subsection:verallgemeinerte-eigenraeume}} Wenn $\lambda$ ein Eigenwert der Matrix $A$ ist, dann ist -ist $A-\lambda E$ injektiv und $\ker(A-\lambda E)\ne 0$. -Man kann daher die invarianten Unterräume $\mathcal{K}(A-\lambda E)$ -und $\mathcal{J}(A-\lambda E)$. +ist $A-\lambda I$ injektiv und $\ker(A-\lambda I)\ne 0$. +Man kann daher die invarianten Unterräume $\mathcal{K}(A-\lambda I)$ +und $\mathcal{J}(A-\lambda I)$ bilden. \begin{beispiel} Wir untersuchen die Matrix @@ -134,8 +145,8 @@ A \] Man kann zeigen, dass $\lambda=1$ ein Eigenwert ist. Wir suchen die Zerlegung des Vektorraums $\mathbb{R}^4$ in invariante -Unterräume $\mathcal{K}(A-E)$ und $\mathcal{J}(A-E)$. -Die Matrix $B=A-E$ ist +Unterräume $\mathcal{K}(A-I)$ und $\mathcal{J}(A-I)$. +Die Matrix $B=A-I$ ist \[ B = @@ -146,7 +157,7 @@ B 0&0& 0&2 \end{pmatrix} \] -und wir berechnen davon die Potenz +und wir berechnen davon die vierte Potenz \[ D=B^4=(A-E)^4 = @@ -191,26 +202,26 @@ verwenden. Als erstes überprüfen wir, ob diese Basisvektoren tatsächlich invariante Unterräume sind. -Für $\mathcal{J}(A-E) = \langle b_1,b_2\rangle$ +Für $\mathcal{J}(A-I) = \langle b_1,b_2\rangle$ berechnen wir \begin{align*} -(A-E)b_1 +(A-I)b_1 &= \begin{pmatrix} 0\\4\\4\\1 \end{pmatrix} = 4b_2+b_1, \\ -(A-E)b_2 +(A-I)b_2 &= \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} = b_2. \end{align*} -Dies beweist, dass $\mathcal{J}(A-E)$ invariant ist. -In dieser Basis hat die von $A-E$ beschriebene lineare Abbildung -auf $\mathcal{J}(A-E)$ die Matrix +Dies beweist, dass $\mathcal{J}(A-I)$ invariant ist. +In dieser Basis hat die von $A-I$ beschriebene lineare Abbildung +auf $\mathcal{J}(A-I)$ die Matrix \[ -A_{\mathcal{J}(A-E)} +A_{\mathcal{J}(A-I)} = \begin{pmatrix} 1&4\\ @@ -218,7 +229,7 @@ A_{\mathcal{J}(A-E)} \end{pmatrix}. \] -Für den Kern $\mathcal{K}(A-E)$ findet man analog +Für den Kern $\mathcal{K}(A-I)$ findet man analog \[ \left. \begin{aligned} @@ -231,7 +242,7 @@ Ab_4 \end{aligned} \quad\right\} \qquad\Rightarrow\qquad -A_{\mathcal{K}(A-E)} +A_{\mathcal{K}(A-I)} = \begin{pmatrix} 0&-1\\ @@ -252,8 +263,8 @@ A' & &0& 1 \end{array}\right), \] -die Blöcke gehören zu den invarianten Unterräumen $\mathcal{K}(A-E)$ -und $\mathcal{K}(A-E)$. +die Blöcke gehören zu den invarianten Unterräumen $\mathcal{K}(A-I)$ +und $\mathcal{K}(A-I)$. Die aus $A-E$ gewonnen invarianten Unterräume sind offenbar auch invariante Unterräume für $A$. \end{beispiel} @@ -264,43 +275,50 @@ Unterraum \[ \mathcal{E}_{\lambda}(A) = -\mathcal{K}(A-\lambda E) +\mathcal{K}(A-\lambda I) \] -der verallgemeinerte Eigenraum von $A$. +der {\em verallgemeinerte Eigenraum} von $A$. +\index{verallgemeinerter Eigenraum}% +\index{Eigenraum, verallgemeinerter}% \end{definition} Es ist klar, dass -$E_\lambda(A)=\ker (A-\lambda E)\subset\mathcal{E}_{\lambda}(A)$. +$E_\lambda(A)=\ker (A-\lambda I)\subset\mathcal{E}_{\lambda}(A)$. \subsection{Zerlegung in invariante Unterräume \label{buch:subsection:zerlegung-in-invariante-unterraeume}} -Wenn $\lambda$ kein Eigenwert von $A$ ist, dann ist $A-\lambda E$ -injektiv und damit $\ker(A-\lambda E)=0$. -Es folgt, dass $\mathcal{K}^i(A-\lambda E)=0$ und daher auch -$\mathcal{J}^i(A-\lambda E)=V$. -Die Zerlegung in invariante Unterräume $\mathcal{J}(A-\lambda E)$ und -$\mathcal{K}(A-\lambda E)$ liefert in diesem Falle also nichts Neues. +Wenn $\lambda$ kein Eigenwert von $A$ ist, dann ist $A-\lambda I$ +injektiv und damit $\ker(A-\lambda I)=0$. +Es folgt, dass $\mathcal{K}^i(A-\lambda I)=0$ und daher auch +$\mathcal{J}^i(A-\lambda I)=V$. +Die Zerlegung in invariante Unterräume $\mathcal{J}(A-\lambda I)$ und +$\mathcal{E}_\lambda(A)=\mathcal{K}(A-\lambda I)$ liefert in diesem Falle also nichts Neues. -Für einen Eigenwert $\lambda_1$ von $A$ dagegen, erhalten wir die Zerlegung +Für einen Eigenwert $\lambda_1$ von $A$ dagegen erhalten wir die Zerlegung \[ V = \mathcal{E}_{\lambda_1}(A) \oplus -\underbrace{\mathcal{J}(A-\lambda_1 E)}_{\displaystyle =V_2}, +\underbrace{\mathcal{J}(A-\lambda_1 I)}_{\displaystyle =V_2}, \] wobei $\mathcal{E}_{\lambda_1}(A)\ne 0$ ist. -Die Matrix $A-\lambda_1 E$ ist eingeschränkt auf $\mathcal{E}_{\lambda_1}(A)$ +Die Matrix $A-\lambda_1 I$ eingeschränkt auf $\mathcal{E}_{\lambda_1}(A)$ ist nilpotent. -Die Zerlegung in invariante Unterräume ist zwar mit Hilfe von $A-\lambda_1E$ +Man kann sagen, auf dem Unterraum $\mathcal{E}_{\lambda_i}(A)$ hat +$A$ die Form $\lambda_1 I + N$, wobei $N$ nilpotent ist. + +Die Zerlegung in invariante Unterräume ist zwar mit Hilfe von $A-\lambda_1I$ gewonnen worden, ist aber natürlich auch eine Zerlegung in invariante Unterräume für $A$. Wir können daher das Problem auf $V_2$ einschränken und nach einem weiteren -Eigenwert $\lambda_2$ von $A$ in $V_2$ suchen, was wieder eine Zerlegung -in invariante Unterräume liefert. +Eigenwert $\lambda_2$ von $A$ in $V_2$ suchen. +Dieser neue Eigenwert liefert eine Zerlegung von $V_2$ +in invariante Unterräume. Indem wir so weiterarbeiten, bis wir den ganzen Raum ausgeschöpft haben, können wir eine Zerlegung des ganzen Raumes $V$ finden, so dass $A$ auf -jedem einzelnen Summanden eine sehr einfach Form hat: +jedem einzelnen Summanden die sehr einfach Form +``$\lambda I + \text{nilpotent}$'' hat: \begin{satz} \label{buch:eigenwerte:satz:zerlegung-in-eigenraeume} @@ -319,28 +337,28 @@ V \oplus \mathcal{E}_{\lambda_l}(A). \] -Die Einschränkung von $A-\lambda_{i}E$ auf den Eigenraum +Die Einschränkung von $A-\lambda_{i}I$ auf den Eigenraum $\mathcal{E}_{\lambda_i}(A)$ ist nilpotent. \end{satz} \subsection{Das charakteristische Polynom \label{buch:subsection:das-charakteristische-polynom}} Ein Eigenvektor von $A$ erfüllt $Av=\lambda v$ oder gleichbedeutend -$(A-\lambda E)v=0$, er ist also eine nichttriviale Lösung des homogenen -Gleichungssystems mit Koeffizientenmatrix $A-\lambda E$. -Ein Eigenwert ist also ein Skalar derart, dass $A-\lambda E$ +$(A-\lambda I)v=0$, er ist also eine nichttriviale Lösung des homogenen +Gleichungssystems mit Koeffizientenmatrix $A-\lambda I$. +Ein Eigenwert ist also ein Skalar derart, dass $A-\lambda I$ singulär ist. Ob eine Matrix singulär ist, kann mit der Determinante festgestellt werden. Die Eigenwerte einer Matrix $A$ sind daher die Nullstellen -von $\det(A-\lambda E)$. +von $\det(A-\lambda I)$. \begin{definition} Das {\em charakteristische Polynom} \[ \chi_A(x) = -\det (A-x E) +\det (A-x I) = \left| \begin{matrix} @@ -352,24 +370,36 @@ a_{n1} & a_{n2} &\dots & a_{nn}-x \right|. \] der Matrix $A$ ist ein Polynom vom Grad $n$ mit Koeffizienten in $\Bbbk$. +\index{charakteristisches Polynom}% +\index{Polynome, charakteristisches}% \end{definition} Findet man eine Nullstelle $\lambda\in\Bbbk$ von $\chi_A(x)$, -dann ist die Matrix $A-\lambda E\in M_n(\Bbbk)$ und mit dem Gauss-Algorithmus +dann ist die Matrix $A-\lambda I\in M_n(\Bbbk)$ und mit dem Gauss-Algorithmus kann man auch mindestens einen Vektor $v\in \Bbbk^n$ finden, der $Av=\lambda v$ erfüllt. -Eine Matrix der Form wie in Satz~\ref{buch:eigenwerte:satz:jordanblock} +Eine Dreiecksmatrix der Form +\[ +A=\begin{pmatrix} +\lambda& * & * & * &\dots &*\\ + 0 &\lambda& * & * &\dots &*\\ + 0 & 0 &\lambda& * &\dots &*\\ + 0 & 0 & 0 &\lambda&\dots &*\\ +\vdots &\vdots &\vdots & &\ddots&\vdots\\ + 0 & 0 & 0 & 0 &\dots &\lambda +\end{pmatrix} +\] hat \[ \chi_A(x) = \left| \begin{matrix} -\lambda-x & 1 & & & & \\ - & \lambda-x & 1 & & & \\ - & & \lambda-x & & & \\ - & & &\ddots& & \\ - & & & &\lambda-x& 1 \\ +\lambda-x & * & * & & * & * \\ + & \lambda-x & * & & * & * \\ + & & \lambda-x & & * & * \\ + & & &\ddots& * & * \\ + & & & &\lambda-x& * \\ & & & & &\lambda-x \end{matrix} \right| @@ -380,16 +410,18 @@ hat \] als charakteristisches Polynom, welches $\lambda$ als einzige Nullstelle hat. -Der Eigenraum der Matrix ist aber nur eindimensional, man kann also -im Allgemeinen für jede Nullstelle des charakteristischen Polynoms -nicht mehr als einen Eigenvektor (d.~h.~einen eindimensionalen Eigenraum) -erwarten. +Wenn die Einträge oberhalb der Diagonalen nicht alle 0 sind, +dann hat der Eigenraum der Matrix Dimension, die keiner ist als +$n$. +Man kann also im Allgemeinen für jede Nullstelle des charakteristischen +Polynoms nicht mehr als einen Eigenvektor (d.~h.~einen eindimensionalen +Eigenraum) erwarten. Wenn das charakteristische Polynom von $A$ keine Nullstellen in $\Bbbk$ hat, dann kann es auch keine Eigenvektoren in $\Bbbk^n$ geben. Gäbe es nämlich einen solchen Vektor, dann müsste eine der Komponenten -des Vektors von $0$ verschieden sein, wir nehmen an, dass es die Komponente -in Zeile $k$ ist. +des Vektors von $0$ verschieden sein. +Wir nehmen an, dass es die Komponente in Zeile $k$ ist. Die Komponente $v_k$ kann man auf zwei Arten berechnen, einmal als die $k$-Komponenten von $Av$ und einmal als $k$-Komponente von $\lambda v$: \[ @@ -406,8 +438,11 @@ sein, im Widerspruch zur Annahme. Durch Hinzufügen von geeigneten Elementen können wir immer zu einem Körper $\Bbbk'$ übergehen, in dem das charakteristische Polynom in Linearfaktoren zerfällt. -In diesem Körper kann man jetzt das homogene lineare Gleichungssystem -mit Koeffizientenmatrix $A-\lambda E$ lösen und damit mindestens +\index{Linearfaktor}% +Für reelle Matrizen kann man zum Beispiel zu $\mathbb{C}$ übergehen, +da ein reelles Polynom alle Nullstellen in $\mathbb{C}$ hat. +In diesem Körper $\Bbbk'$ kann man jetzt das homogene lineare Gleichungssystem +mit Koeffizientenmatrix $A-\lambda I$ lösen und damit mindestens einen Eigenvektor $v$ für jeden Eigenwert finden. Die Komponenten von $v$ liegen in $\Bbbk'$, und mindestens eine davon kann nicht in $\Bbbk$ liegen. @@ -454,20 +489,22 @@ Die Matrix $A$ lässt sich also über dem Körper $\mathbb{Q}(\!\sqrt{2})$ diagonalisieren, nicht aber über dem Körper $\mathbb{Q}$. Da $A'$ Diagonalform hat mit $\pm\sqrt{2}$ auf der Diagonalen, folgt -$A^{\prime 2} = 2E$, die Matrix $A'$ erfüllt also die Gleichung +$A^{\prime 2} = 2I$, die Matrix $A'$ erfüllt also die Gleichung \begin{equation} -A^{\prime 2}-E= \chi_{A}(A) = 0. +A^{\prime 2}-I= \chi_{A}(A) = 0. \label{buch:grundlagen:eqn:cayley-hamilton-beispiel} \end{equation} -Dies is ein Spezialfall des Satzes von Cayley-Hamilton -(Satz~\ref{buch:normalformen:satz:cayley-hamilton}) -welcher besagt, dass jede Matrix $A$ eine Nullstelle ihres -charakteristischen Polynoms ist: $\chi_A(A)=0$. Die Gleichung~\ref{buch:grundlagen:eqn:cayley-hamilton-beispiel} wurde zwar in $\mathbb{Q}(\!\sqrt{2})$ hergeleitet, aber in ihr kommen keine Koeffizienten aus $\mathbb{Q}(\!\sqrt{2})$ vor, die man nicht auch in $\mathbb{Q}$ berechnen könnte. -Sie gilt daher ganz allgemein. +Sie gilt daher ganz allgemein, also $A^2-I=0$. +Dies is ein Spezialfall des Satzes von Cayley-Hamilton +\index{Cayley-Hamilton, Satz von}% +\index{Satz von Cayley-Hamilton}% +(Satz~\ref{buch:normalformen:satz:cayley-hamilton}) +welcher besagt, dass jede Matrix $A$ eine Nullstelle ihres +charakteristischen Polynoms ist: $\chi_A(A)=0$. \end{beispiel} \begin{beispiel} @@ -483,7 +520,7 @@ M_2(\mathbb{R}) über dem Körper $\Bbbk = \mathbb{R}$ hat das charakteristische Polynom \[ -\det(A-xE) +\det(A-xI) = \left| \begin{matrix} @@ -500,43 +537,51 @@ x^2+1. \] Die charakteristische Gleichung $\chi_A(x)=0$ hat in $\mathbb{R}$ keine Lösungen, daher gehen wir zum Körper $\Bbbk'=\mathbb{C}$ über, -in dem dank dem Fundamentalsatz der Algebra alle Nullstellen zu finden -sind, sie sind $\pm i$. +in dem dank dem Fundamentalsatz \ref{buch:zahlen:satz:fundamentalsatz} +der Algebra alle Nullstellen zu finden sind, sie sind $\pm i$. In $\mathbb C$ lassen sich dann auch Eigenvektoren finden, man muss dazu die -folgenden linearen Gleichungssyteme lösen: +folgenden homogenen linearen Gleichungssyteme in Tableauform lösen: \begin{align*} \begin{tabular}{|>{$}c<{$}>{$}c<{$}|} +\hline 32-i&-41\\ -25 &-32-i +25 &-32-i\\ +\hline \end{tabular} & \rightarrow \begin{tabular}{|>{$}c<{$}>{$}c<{$}|} +\hline 1 & t\\ -0 & 0 +0 & 0 \\ +\hline \end{tabular} & \begin{tabular}{|>{$}c<{$}>{$}c<{$}|} +\hline 32+i&-41\\ -25 &-32+i +25 &-32+i\\ +\hline \end{tabular} & \rightarrow \begin{tabular}{|>{$}c<{$}>{$}c<{$}|} +\hline 1 & \overline{t}\\ -0 & 0 +0 & 0 \\ +\hline \end{tabular}, \intertext{wobei wir $t=-41/(32-i) =-41(32+i)/1025= -1.28 -0.04i = (64-1)/50$ abgekürzt haben. Die zugehörigen Eigenvektoren sind} -v_i&=\begin{pmatrix}t\\i\end{pmatrix} +v_i&=\begin{pmatrix}t\\-1\end{pmatrix} & -v_{-i}&=\begin{pmatrix}\overline{t}\\i\end{pmatrix} +v_{-i}&=\begin{pmatrix}\overline{t}\\-1\end{pmatrix}. \end{align*} Mit den Vektoren $v_i$ und $v_{-i}$ als Basis kann die Matrix $A$ als komplexe Matrix, also mit komplexem $T$ in die komplexe Diagonalmatrix $A'=\operatorname{diag}(i,-i)$ transformiert werden. -Wieder kann man sofort ablesen, dass $A^{\prime2}+E=0$, und wieder kann +Wieder kann man sofort ablesen, dass $A^{\prime2}+I=0$, und wieder kann man schliessen, dass für die relle Matrix $A$ ebenfalls $\chi_A(A)=0$ gelten muss. \end{beispiel} -- cgit v1.2.1