From 812a80acf52275699afb285db46aa76be03006c2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 18 Jan 2021 21:01:26 +0100 Subject: add more stuff about spectral radius --- .../40-eigenwerte/uebungsaufgaben/4003.tex | 241 +++++++++++++++++++++ 1 file changed, 241 insertions(+) create mode 100644 buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex (limited to 'buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex') diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex new file mode 100644 index 0000000..3cd9959 --- /dev/null +++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex @@ -0,0 +1,241 @@ +Finden Sie eine Basis von $\mathbb{Q}^4$ derart, dass die Matrix $A$ +\[ +A += +\begin{pmatrix} +-13& 5& -29& 29\\ +-27& 11& -51& 51\\ + -3& 1& -2& 5\\ + -6& 2& -10& 13 +\end{pmatrix} +\] +Jordansche Normalform hat. + +\begin{loesung} +Zunächst muss man die Eigenwerte finden. +Dazu kann man das charakteristische Polynom berechnen, man findet nach +einiger Rechnung oder mit Hilfe einer Software für symbolische Rechnung: +\[ +\chi_A(\lambda) += +x^4-9x^3+30x^2-44x+24 += +(x-3)^3(x-2), +\] +Eigenwerte sind also $\lambda=3$ und $\lambda=2$. + +Der Eigenwert $\lambda=2$ ist ein einfacher Eigenwert, der zugehörige +Eigenraum ist daher eindimensional. +Ein Eigenvektor kann mit Hilfe des linearen Gleichungssystems +\begin{align*} +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|} +\hline +-13-\lambda& 5 &-29 &29 \\ +-27 &11-\lambda&-51 &51 \\ + -3 & 1 & -2-\lambda& 5 \\ + -6 & 2 &-10 &13-\lambda\\ +\hline +\end{tabular} +&\rightarrow +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|} +\hline + -16& 5& -29& 29\\ + -27& 8& -51& 51\\ + -3& 1& -5& 5\\ + -6& 2& -10& 10\\ +\hline +\end{tabular} +\to +\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|} +\hline +1&0&0& 0\\ +0&1&0& 0\\ +0&0&1&-1\\ +0&0&0& 0\\ +\hline +\end{tabular} +\end{align*} +gefunden werden. +Daraus liest man den Eigenvektor +\[ +b_1 += +\begin{pmatrix} 0\\0\\1\\1\end{pmatrix}, +\qquad +Ab_1 = +\begin{pmatrix} +-13& 5& -29& 29\\ +-27& 11& -51& 51\\ + -3& 1& -2& 5\\ + -6& 2& -10& 13 +\end{pmatrix} +\begin{pmatrix} 0\\0\\1\\1\end{pmatrix} += +\begin{pmatrix} +0\\0\\3\\3 +\end{pmatrix} += +3b_1 +\] +ab. +Diesen Vektor können wir auch finden, indem wir $\mathcal{J}(A-eE)$ +bestimmen. +Die vierte Potenz von $A-2E$ ist +\begin{equation} +(A-2E)^4 += +\begin{pmatrix} + 0& 0& 0& 0\\ + 0& 0& 0& 0\\ + 0& 0& 2& -1\\ + 0& 0& 2& -1 +\end{pmatrix}, +\label{4003:potenz} +\end{equation} +der zugehörige Bildraum ist wieder aufgespannt von $b_1$. + +Aus \eqref{4003:potenz} kann man aber auch eine Basis +\[ +b_2 += +\begin{pmatrix}1\\0\\0\\0\end{pmatrix} +,\qquad +b_3 += +\begin{pmatrix}0\\1\\0\\0\end{pmatrix} +,\qquad +b_4 += +\begin{pmatrix}0\\0\\1\\2\end{pmatrix} +\] +für den Kern $\mathcal{K}(A-2E)$ ablesen. +Da $\lambda=2$ der einzige andere Eigenwert ist, muss $\mathcal{K}(A-2E) += \mathcal{J}(A-3E)$ sein. +Dies lässt sich überprüfen, indem wir die vierte Potenz von $A-2E$ +berechnen, sie ist +\[ +(A-2E)^4 += +\begin{pmatrix} + 79& -26& 152& -152\\ + 162& -53& 312& -312\\ + 12& -4& 23& -23\\ + 24& -8& 46& -46\\ +\end{pmatrix}. +\] +Die Spaltenvektoren lassen sich alle durch die Vektoren $b_2$, $b_3$ +und $b_4$ ausdrücken, also ist $\mathcal{J}(A-2E)=\langle b_2,b_3,b_4\rangle$. + +Indem die Vektoren $b_i$ als Spalten in eine Matrix $T$ schreibt, kann man +jetzt berechnen, wie die Matrix der linearen Abbildung in dieser neuen +Basis aussieht, es ist +\[ +A'=T^{-1}AT +\left( +\begin{array}{r|rrr} + 3& 0& 0& 0\\ +\hline + 0& -13& 5& 29\\ + 0& -27& 11& 51\\ + 0& -3& 1& 8 +\end{array} +\right), +\] +wir haben also tatsächlich die versprochene Blockstruktur. + +Der $3\times 3$-Block +\[ +A_1 += +\begin{pmatrix} + -13& 5& 29\\ + -27& 11& 51\\ + -3& 1& 8 +\end{pmatrix} +\] +in der rechten unteren Ecke hat den dreifachen Eigenwert $2$, +und die Potenzen von $A_1-2E$ sind +\[ +A_1-2E +\begin{pmatrix} + -15 & 5& 29\\ + -27 & 9& 51\\ + -3 & 1& 6 +\end{pmatrix} +,\qquad +(A_1-2E)^2 += +\begin{pmatrix} + 3 & -1 & -6\\ + 9 & -3 &-18\\ + 0 & 0 & 0\\ +\end{pmatrix} +,\qquad +(A_1-2E)^3=0. +\] +Für die Jordan-Normalform brauchen wir einen von $0$ verschiedenen +Vektor im Kern von $(A_1-2E)^2$, zum Beispiel den Vektor mit den +Komponenten $1,3,1$. +Man beachte aber, dass diese Komponenten jetzt in der neuen Basis +$b_2,\dots,b_4$ zu verstehen sind, d.~h.~der Vektor, den wir suchen, ist +\[ +c_3 += +b_1+ 3b_2+b_3 += +\begin{pmatrix}1\\3\\1\\2\end{pmatrix}. +\] +Jetzt berechnen wir die Bilder von $c_3$ unter $A-2E$: +\[ +c_2 += +\begin{pmatrix} +29\\51Ò\\6\\12 +\end{pmatrix} +,\qquad +c_1 += +\begin{pmatrix} +-6\\-18\\0\\0 +\end{pmatrix}. +\] +Die Basis $b_1,c_1,c_2,c_3$ ist also eine Basis, in der die Matrix $A$ +Jordansche Normalform annimmt. + +Die Umrechnung der Matrix $A$ in die Basis $\{b_1,c_1,c_2,c_3\}$ kann +mit der Matrix +\[ +T_1 += +\begin{pmatrix} + 0& -6& 29& 1\\ + 0& -18& 51& 3\\ + 1& 0& 6& 1\\ + 1& 0& 12& 2\\ +\end{pmatrix}, +\qquad +T_1^{-1} += +\frac{1}{216} +\begin{pmatrix} + 0& 0& 432& -216\\ + 33& -23& -36& 36\\ + 18& -6& 0& 0\\ + -108& 36& -216& 216 +\end{pmatrix} +\] +erfolgen und ergibt die Jordansche Normalform +\[ +A' += +\begin{pmatrix} +3&0&0&0\\ +0&2&1&0\\ +0&0&2&1\\ +0&0&0&2 +\end{pmatrix} +\] +wie erwartet. +\end{loesung} + + -- cgit v1.2.1