From 260bd654d33b27c69b47e07217fa2212ef835fbd Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 3 Apr 2021 16:53:38 +0200 Subject: add new images --- buch/chapters/60-gruppen/symmetrien.tex | 264 ++++++++++++++++++++++++++++++-- 1 file changed, 254 insertions(+), 10 deletions(-) (limited to 'buch/chapters/60-gruppen/symmetrien.tex') diff --git a/buch/chapters/60-gruppen/symmetrien.tex b/buch/chapters/60-gruppen/symmetrien.tex index 80f6534..b686791 100644 --- a/buch/chapters/60-gruppen/symmetrien.tex +++ b/buch/chapters/60-gruppen/symmetrien.tex @@ -156,6 +156,14 @@ D_{\alpha} ist also eine Einparameter-Untergruppe von $\operatorname{GL}_2(\mathbb{R})$. \subsubsection{Der harmonische Oszillator} +\begin{figure} +\centering +\includegraphics{chapters/60-gruppen/images/phasenraum.pdf} +\caption{Die Lösungen der +Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl} +im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$. +\label{chapter:gruppen:fig:phasenraum}} +\end{figure} Eine Masse $m$ verbunden mit einer Feder mit der Federkonstanten $K$ schwingt um die Ruhelage $x=0$ entsprechend der Differentialgleichung \[ @@ -206,7 +214,7 @@ p(t) = \cos \omega t. \] In Matrixform kann man die allgemeine Lösung zur Anfangsbedingun $x(0)=x_0$ und $p(0)=p_0$ -\[ +\begin{equation} \begin{pmatrix} x(t)\\ p(t) @@ -217,9 +225,10 @@ p(t) \cos \omega t & \frac{1}{\omega} \sin\omega t \\ -\omega \sin\omega t & \cos\omega t \end{pmatrix} -}_{\Phi_t} +}_{\displaystyle =\Phi_t} \begin{pmatrix}x_0\\p_0\end{pmatrix} -\] +\label{buch:gruppen:eqn:phi} +\end{equation} schreiben. Die Matrizen $\Phi_t$ bilden eine Einparameter-Untergruppe von $\operatorname{GL}_n(\mathbb{R})$, da @@ -260,17 +269,252 @@ Die Matrizen $\Phi_t$ beschreiben eine kontinuierliche Symmetrie des Differentialgleichungssystems, welches den harmonischen Oszillator beschreibt. -\begin{figure} -\centering -\includegraphics{chapters/60-gruppen/images/phasenraum.pdf} -\caption{Die Lösungen der +\subsubsection{Fluss einer Differentialgleichung} +Die Abbildungen $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} sind jeweils +Matrizen in $\operatorname{GL}_n(\mathbb{R})$. +Der Grund dafür ist, dass die Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl} -im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$. -\label{chapter:gruppen:fig:phasenraum}} -\end{figure} +linear ist. +Dies hat zur Folge, dass für zwei Anfangsbedingungen $x_1,x_2\in\mathbb{R}^2$ +die Lösung für Linearkombinationen $\lambda x_1+\mu x_2$ durch +Linearkombination der Lösungen erhalten werden kann, also +aus der Formel +\[ +\Phi_t (\lambda x_1 + \mu x_2) = \lambda \Phi_t x_1 + \mu \Phi_t x_2. +\] +Dies zeigt, dass $\Phi_t$ für jedes $t$ eine lineare Abbildung sein muss. + +Für eine beliebige Differentialgleichung kann man immer noch eine Abbildung +$\Phi$ konstruieren, die aber nicht mehr linear ist. +Sei dazu die Differentialgleichung erster Ordnung +\begin{equation} +\frac{dx}{dt} += +f(t,x) +\qquad\text{mit}\qquad +f\colon \mathbb{R}\times\mathbb{R}^n \to \mathbb{R}^n +\label{buch:gruppen:eqn:dgl} +\end{equation} +gegeben. +Für jeden Anfangswert $x_0\in\mathbb{R}^n$ kann man mindestens für eine +gewisse Zeit $t <\varepsilon$ eine Lösung $x(t,x_0)$ finden mit $x(t,x_0)=x_0$. +Aus der Theorie der gewöhnlichen Differentialgleichungen ist auch +bekannt, dass $x(t,x_0)$ mindestens in der Nähe von $x_0$ differenzierbar von +$x_0$ abhängt. +Dies erlaubt eine Abbildung +\[ +\Phi\colon \mathbb{R}\times \mathbb{R}^n \to \mathbb{R}^n +: +(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0) +\] +zu definieren, die sowohl von $t$ als auch von $x_0$ differenzierbar +abhängt. +Aus der Definition folgt unmittelbar, dass $\Phi_0(x_0)=x_0$ ist, dass +also $\Phi_0$ die identische Abbildung von $\mathbb{R}^n$ ist. + +Aus der Definition lässt sich auch ableiten, dass +$\Phi_{s+t}=\Phi_s\circ\Phi_t$ gilt. +$\Phi_t(x_0)=x(t,x_0)$ ist der Endpunkt der Bahn, die bei $x_0$ beginnt +und sich während der Zeit $t$ entwickelt. +$\Phi_s(x(t,x_0))$ ist dann der Endpunkt der Bahn, die bei $x(t,x_0)$ +beginnt und sich während der Zeit $s$ entwickelt. +Somit ist $\Phi_s\circ \Phi_t(x_0)$ der Endpunkt der Bahn, die bei +$x_0$ beginnt und sich über die Zeit $s+t$ entwickelt. +In Formeln bedeutet dies +\[ +\Phi_{s+t} = \Phi_s\circ \Phi_t. +\] +Die Abbildung $t\mapsto \Phi_t$ ist also wieder ein Homomorphismus +von der additiven Gruppe $\mathbb{R}$ in eine Gruppe von differenzierbaren +Abbildungen $\mathbb{R}^n\to\mathbb{R}^n$. + +\begin{definition} +Die Abbildung +\[ +\Phi\colon \mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n +: +(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0) +\] +heisst der {\em Fluss} der Differentialgleichung +\eqref{buch:gruppen:eqn:dgl}, +wenn für jedes $x_0\in\mathbb{R}^n$ die Kurve $t\mapsto \Phi_t(x_0)$ +eine Lösung der Differentialgleichung ist mit Anfangsbedingung $x_0$. +\end{definition} + +Die Abbildung $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} ist also +der Fluss der Differentialgleichung des harmonischen Oszillators. \subsection{Mannigfaltigkeiten \label{buch:subsection:mannigfaltigkeit}} +Eine Differentialgleichung der Form~\eqref{buch:gruppen:eqn:dgl} +stellt einen Zusammenhang her zwischen einem Punkt $x$ und der +Tangentialrichtung einer Bahnkurve $f(t,x)$. +Die Ableitung liefert die lineare Näherung der Bahkurve +\[ +x(t_0+h) = x(t_0) + h f(t_0,x_0) + o(h) +\] +für $h$ in einer kleinen Umgebung von $0$. +Das funktioniert auch, weil $f(t_0,x_0)$ selbst ein Vektor von +$\mathbb{R}^n$ ist, in dem die Bahnkurve verläuft. + +Diese Idee funktioniert nicht mehr zum Beispiel für eine +Differentialgleichung auf einer Kugeloberfläche, weil alle Punkte +$x(t_0)+hf(t_0,x_0)$ für alle $h\ne 0$ nicht mehr auf der Kugeloberfläche +liegen. +Physikalisch äussert sich das ein einer zusätzlichen Kraft, die nötig +ist, die Bahn auf der Kugeloberfläche zu halten. +Diese Kraft stellt zum Beispiel sicher, dass die Vektoren $f(t,x)$ für +Punkte $x$ auf der Kugeloberfläche immer tangential an die Kugel sind. +Trotzdem ist der Tangentialvektor oder der Geschwindigkeitsvektor +nicht mehr ein Objekt, welches als Teil der Kugeloberfläche definiert +werden kann, er kann nur definiert werden, wenn man sich die Kugel als +in einen höherdimensionalen Raum eingebettet vorstellen kann. + +Um die Idee der Differentialgleichung auf einer beliebigen Fläche +konsistent zu machen ist daher notwendig, die Idee einer Tagentialrichtung +auf eine Art zu definieren, die nicht von der Einbettung der Fläche +in den $n$-dimensionalen Raum abhängig ist. +Das in diesem Abschnitt entwickelte Konzept der {\em Mannigfaltigkeit} +löst dieses Problem. + +\subsubsection{Karten} +Die Navigation auf der Erdoberfläche verwendet das Koordinatensystem +der geographischen Länge und Breite. +Dieses Koordinatensystem funktioniert gut, solange man sich nicht an +den geographischen Polen befindet, denn deren Koordinaten sind +nicht mehr eindeutig. +Alle Punkte mit geographischer Breite $90^\circ$ und beliebiger +geographischer Länge beschreiben den Nordpol. +Auch die Ableitung funktioniert dort nicht mehr. +Bewegt man sich mit konstanter Geschwindigkeit über den Nordpol, +springt die Ableitung der geographischen Breite von einem positiven +Wert auf einen negativen Wert, sie kann also nicht differenzierbar sein. +Diese Einschränkungen sind in der Praxis nur ein geringes Problem dar, +da die meisten Reisen nicht über die Pole erfolgen. + +Der Polarforscher, der in unmittelbarer Umgebung des Poles arbeitet, +kann das Problem lösen, indem er eine lokale Karte für das Gebiet +um den Pol erstellt. +Dafür kann er beliebige Koordinaten verwenden, zum Beispiel auch +ein kartesisches Koordinatensystem, er muss nur eine Methode haben, +wie er seine Koordinaten wieder auf geographische Länge und Breite +umrechnen will. +Und wenn er über Geschwindigkeiten kommunizieren will, dann muss +er auch Ableitungen von Kurven in seinem kartesischen Koordinatensystem +umrechnen können auf die Kugelkoordinaten. +Dazu muss seine Umrechnungsformel von kartesischen Koordinaten +auf Kugelkoordinaten differenzierbar sein. + +Diese Idee wird vom Konzept der Mannigfaltigkeit verallgemeinert. +Eine $n$-dimensionale {\em Mannigfaltigkeit} ist eine Menge $M$ von Punkten, +die lokal, also in der Umgebung eines Punktes, mit möglicherweise mehreren +verschiedenen Koordinatensystemen versehen werden kann. +Ein Koordinatensystem ist eine umkehrbare Abbildung einer offenen Teilmenge +$U\subset M$ in den Raum $\mathbb{R}^n$. +Die Komponenten dieser Abbildung heissen die {\em Koordinaten}. + +\begin{definition} +Eine Karte auf $M$ ist eine umkehrbare Abbildung +$\varphi\colon U\to \mathbb{R}^n$. +Ein differenzierbarer Atlas ist eine Familie von Karten $\varphi_\alpha$ +derart, dass die Definitionsgebiete $U_\alpha$ die ganze Menge $M$ +überdecken, und dass die Kartenwechsel Abbildungen +\[ +\varphi_\beta\circ\varphi_\alpha^{-1} +\colon +\varphi_\alpha(U_\alpha\cap U_\beta) +\to +\varphi_\beta(U_\alpha\cap U_\beta) +\] +als Abbildung von offenen Teilmengen von $\mathbb{R}^n$ differenzierbar +ist. +Eine {$n$-dimensionale differenzierbare Mannigfaltigkeit} ist eine +Menge $M$ mit einem differenzierbaren Atlas. +\end{definition} + +Karten und Atlanten regeln also nur, wie sich verschiedene lokale +Koordinatensysteme ineinander umrechnen lassen. + +\begin{beispiel} +$M=\mathbb{R}^n$ ist eine differenzierbare Mannigfaltigkeit denn +die identische Abbildung $M\to \mathbb{R}^n$ ist eine Karte und ein +Atlas von $M$. +\end{beispiel} + +\begin{beispiel} +\begin{figure} +\centering +\includegraphics{chapters/60-gruppen/images/kartenkreis.pdf} +\caption{Karten für die Kreislinie $S^1\subset\mathbb{R}^2$. +\label{buch:gruppen:fig:kartenkreis}} +\end{figure} +Die Kreislinie in in der Ebene ist eine $1$-dimensionale Mannigfaltigkeit. +Natürlich kann sie nicht mit einer einzigen Karte beschrieben werden, +da es keine umkehrbaren Abbildungen zwischen $\mathbb{R}$ und der Kreislinie +gibt. +Man kann aber die folgenden vier Karten verwenden: +\begin{align*} +\varphi_1&\colon U_{x>0}\{(x,y)\;|\;x^2+y^2=1\wedge x>0\} \to +: +(x,y) \mapsto y\\ +\varphi_2&\colon U_{x<0}\{(x,y)\;|\;x^2+y^2=1\wedge x<0\} \to +: +(x,y) \mapsto y\\ +\varphi_3&\colon U_{y>0}\{(x,y)\;|\;x^2+y^2=1\wedge y>0\} \to +: +(x,y) \mapsto x\\ +\varphi_4&\colon U_{y<0}\{(x,y)\;|\;x^2+y^2=1\wedge y<0\} \to +: +(x,y) \mapsto x +\end{align*} +Die Werte der Kartenabbildungen sind genau die $x$- und $y$-Koordinaten +auf der in den Raum $\mathbb{R}^2$ eingebetteten Kreislinie. + +Für $\varphi_1$ und $\varphi_2$ sind die Definitionsgebiete disjunkt, +hier gibt es also keine Notwendigkeit, Koordinatenumrechnungen vornehmen +zu können. +Dasselbe gilt für $\varphi_3$ und $\varphi_4$. + +Die nichtleeren Schnittmengen der verschiedenen Kartengebiete beschreiben +jeweils die Punkte der Kreislinie in einem Quadranten. +Die Umrechnung zwischen den Koordinaten erfolgt je nach Quadrant durch +\[ +x\mapsto y=\pm\sqrt{1-x^2\mathstrut} +\qquad\text{oder}\qquad +y\mapsto x=\pm\sqrt{1-y^2\mathstrut}, +\] +diese Abbildungen sind im offenen Intervall $(-1,1)$ differenzierbar, +Schwierigkeiten mit der Ableitungen ergeben sich nur an den Stellen +$x=\pm1$ und $y=\pm 1$, die in einem Überschneidungsgebiet von Karten +nicht vorkommen können. +Somit bilden die vier Karten einen differenzierbaren Atlas für +die Kreislinie (Abbildung~\ref{buch:gruppen:fig:kartenkreis}). +\end{beispiel} + +\begin{beispiel} +Ganz analog zum vorangegangenen Beispiel über die Kreisline lässt sich +für eine $n$-di\-men\-sio\-nale Sphäre +\[ +S^n = \{ (x_1,\dots,x_{n+1})\;|\; x_0^2+\dots+x_n^2=1\} +\] +immer ein Atlas aus $2^{n+1}$ Karten mit den Koordinatenabbildungen +\[ +\varphi_{i,\pm} +\colon +U_{i,\pm} += +\{p\in S^n\;|\; \pm x_i >0\} +\to +\mathbb{R}^n +: +p\mapsto (x_1,\dots,\hat{x}_i,\dots,x_{n+1}) +\] +konstruieren, der $S^n$ zu einer $n$-dimensionalen Mannigfaltigkeit macht. +\end{beispiel} + +\subsubsection{Tangentialraum} + +\subsubsection{Einbettung und Karten} \subsection{Der Satz von Noether \label{buch:subsection:noether}} -- cgit v1.2.1