From 0a3486fa2ae398bb113053ad0823cf59c4a3b1eb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 27 Mar 2021 20:33:43 +0100 Subject: new images --- buch/chapters/60-gruppen/symmetrien.tex | 98 +++++++++++++++++++++++++++++++++ 1 file changed, 98 insertions(+) (limited to 'buch/chapters/60-gruppen/symmetrien.tex') diff --git a/buch/chapters/60-gruppen/symmetrien.tex b/buch/chapters/60-gruppen/symmetrien.tex index 8d5c0e0..cb07475 100644 --- a/buch/chapters/60-gruppen/symmetrien.tex +++ b/buch/chapters/60-gruppen/symmetrien.tex @@ -7,4 +7,102 @@ \section{Symmetrien \label{buch:section:symmetrien}} \rhead{Symmetrien} +Der geometrische Begriff der Symmetrie meint die Eigenschaft eines +geometrischen Objektes, dass es bei einer Bewegung auf sich selbst +abgebildet wird. +Das Wort stammt aus dem altgriechischen, wo es {\em Gleichmass} +bedeutet. +Spiegelsymmetrische Objekte zeichnen sich zum Beispiel dadurch aus, +dass Messungen von Strecken die gleichen Werte ergeben wie die Messungen +der entsprechenden gespiegelten Strecken (siehe auch +Abbildung~\ref{buch:lie:bild:castlehoward}, was die Herkunft des +Begriffs verständlich macht. +\begin{figure} +\centering +\includegraphics[width=\textwidth]{chapters/60-gruppen/images/castle.jpeg} +\caption{Das Castle Howard in Yorkshire war in dieser ausgeprägt symmetrischen +Form geplant, wurde dann aber in modifizeirter Form gebaut. +Messungen zwischen Punkten in der rechten Hälfte des Bildes +ergeben die gleichen Werte wie Messungen entsprechenden Strecken +in der linken Hälfte, was den Begriff Symmetrie rechtfertigt. +\label{buch:lie:bild:castlehoward}} +\end{figure} +In der Physik wird dem Begriff der Symmetrie daher auch eine erweiterte +Bedeutung gegeben. +Jede Transformation eines Systems, welche bestimmte Grössen nicht +verändert, wird als Symmetrie bezeichnet. +Die Gesetze der Physik sind typischerweise unabhängig davon, wo man den +den Nullpunkt der Zeit oder das räumlichen Koordinatensystems ansetzt, +eine Transformation des Zeitnullpunktes oder des Ursprungs des +Koordinatensystems ändert daher die Bewegungsgleichungen nicht, sie ist +eine Symmetrie des Systems. + +Umgekehrt kann man fragen, welche Symmetrien ein System hat. +Da sich Symmetrien zusammensetzen und umkehren lassen, kann man in davon +ausgehen, dass die Symmetrietransformationen eine Gruppe bilden. +Besonders interessant ist dies im Falle von Transformationen, die +durch Matrizen beschrieben weren. +Eine unter der Symmetrie erhaltene Eigenschaft definiert so eine +Untergruppe der Gruppe $\operatorname{GL}_n(\mathbb{R})$ der +invertierbaren Matrizen. +Die erhaltenen Eigenschaften definieren eine Menge von Gleichungen, +denen die Elemente der Untergruppe genügen müssen. +Als Lösungsmenge einer Gleichung erhält die Untergruppe damit eine +zusätzliche geometrische Struktur, man nennt sie eine differenzierbare +Mannigfaltigkeit. +Dieser Begriff wird im Abschnitt~\ref{buch:subsection:mannigfaltigkeit} +eingeführt. +Es wird sich zum Beispiel zeigen, dass die Menge der Drehungen der +Ebene mit den Punkten eines Kreises parametrisieren lassen, +die Lösungen der Gleichung $x^2+y^2=1$ sind. + +Eine Lie-Gruppe ist eine Gruppe, die gleichzeitig eine differenzierbare +Mannigfaltigkeit ist. +Die Existenz von geometrischen Konzepten wie Tangentialvektoren +ermöglicht zusätzliche Werkzeuge, mit denen diese Gruppe untersucht +und verstanden werden können. +Ziel dieses Abschnitts ist, die Grundlagen für diese Untersuchung zu +schaffen, die dann im Abschnitt~\ref{buch:section:lie-algebren} +durchgeführt werden soll. + +\subsection{Algebraische Symmetrien +\label{buch:subsection:algebraische-symmetrien}} +Mit Matrizen lassen sich Symmetrien in einem geometrischen Problem +oder in einem physikalischen System beschreiben. +Man denkt dabei gerne zuerst an geometrische Symmetrien wie die +Symmetrie unter Punktspiegelung oder die Spiegelung an der $x_1$-$x_2$-Ebene, +wie sie zum Beispiel durch die Abbildungen +\[ +\mathbb{R}^3\to\mathbb{R}^3 : x\mapsto -x +\qquad\text{oder}\qquad +\mathbb{R}^3\to\mathbb{R}^3 : +\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} +\mapsto +\begin{pmatrix}-x_1\\x_2\\x_3\end{pmatrix} +\] +dargestellt werden. +Beide haben zunächst die Eigenschaft, dass Längen und Winkel und damit +das Skalarprodukt erhalten sind. +Diese Eigenschaft allein erlaubt aber noch nicht, die beiden Transformationen +zu unterscheiden. +Die Punktspiegelung zeichnet sich dadurch aus, das alle Geraden und alle +Ebenen durch den Ursprung auf sich selbst abgebildet werden. +Dies funktioniert für die Ebenenspiegelung nicht, dort bleibt nur die +Spiegelungsebene (die $x_1$-$x_2$-Ebene im vorliegenden Fall) und +ihre Normale erhalten. +Die folgenden Beispiele sollen zeigen, wie solche Symmetriedefinitionen +auf algebraische Bedingungen an die Matrixelemente führen. + + +\subsection{Manningfaltigkeiten +\label{buch:subsection:mannigfaltigkeit}} + +\subsection{Der Satz von Noether +\label{buch:subsection:noether}} + + + + + + -- cgit v1.2.1