From 2db90bfe4b174570424c408f04000902411d8755 Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Mon, 12 Apr 2021 21:51:55 +0200 Subject: update to current state of book --- buch/chapters/60-gruppen/uebungsaufgaben/6001.tex | 466 +++++++++++----------- 1 file changed, 233 insertions(+), 233 deletions(-) (limited to 'buch/chapters/60-gruppen/uebungsaufgaben/6001.tex') diff --git a/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex b/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex index 2acf6f6..5c973fd 100644 --- a/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex +++ b/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex @@ -1,233 +1,233 @@ -Eine Drehung eines Vektors $\vec{x}$ der Ebene $\mathbb{R}^2$ -um den Winkel $\alpha$ gefolgt von einer Translation um $\vec{t}$ -ist gegeben durch $D_\alpha\vec{x}+\vec{t}$. -Darauf lässt sich jedoch die Theorie der Matrizengruppen nicht -darauf anwenden, weil die Operation nicht die Form einer Matrixmultiplikation -schreiben. -Die Drehung und Translation kann in eine Matrix zusammengefasst werden, -indem zunächst die Ebene mit -\[ -\mathbb{R}^2\to\mathbb{R}^3 -: -\begin{pmatrix}x\\y\end{pmatrix} -\mapsto -\begin{pmatrix}x\\y\\1\end{pmatrix} -\qquad\text{oder in Vektorschreibweise }\qquad -\vec{x}\mapsto\begin{pmatrix}\vec{x}\\1\end{pmatrix} -\] -in den dreidimensionalen Raum eingebettet wird. -Die Drehung und Verschiebung kann damit in der Form -\[ -\begin{pmatrix}D_\alpha\vec{x}+\vec{t}\\1 -\end{pmatrix} -= -\begin{pmatrix}D_\alpha&\vec{t}\\0&1\end{pmatrix} -\begin{pmatrix}\vec{x}\\1\end{pmatrix} -\] -als Matrizenoperation geschrieben werden. -Die Gruppe der Drehungen und Verschiebungen der Ebene ist daher -die Gruppe -\[ -G -= -\left\{ -\left. -A -= -\begin{pmatrix} -D_\alpha&\vec{t}\\ -0&1 -\end{pmatrix} -= -\begin{pmatrix} -\cos\alpha & -\sin\alpha & t_x \\ -\sin\alpha & \cos\alpha & t_y \\ - 0 & 0 & 1 -\end{pmatrix} -\; -\right| -\; -\alpha\in\mathbb{R},\vec{t}\in\mathbb{R}^2 -\right\} -\] -Wir kürzen die Elemente von $G$ auch als $(\alpha,\vec{t})$ ab. -\begin{teilaufgaben} -\item -Verifizieren Sie, dass das Produkt zweier solcher Matrizen -$(\alpha_1,\vec{t}_1)$ und $(\alpha_2,\vec{t}_2)$ -wieder die selbe Form $(\alpha,\vec{t})$ hat und berechnen Sie -$\alpha$ und $\vec{t}_j$. -\item -Bestimmen Sie das inverse Element zu $(\alpha,\vec{t}) \in G$. -\item -Die Elemente der Gruppe $G$ sind parametrisiert durch den Winkel $\alpha$ -und die Translationskomponenten $t_x$ und $t_y$. -Rechnen Sie nach, dass -\[ -\alpha\mapsto \begin{pmatrix} D_{\alpha}&0\\0&1\end{pmatrix}, -\quad -t_x\mapsto -\begin{pmatrix} I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix}, -\qquad -t_y\mapsto -\begin{pmatrix} I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix} -\] -Einparameteruntergruppen von $G$ sind. -\item -Berechnen Sie die Tangentialvektoren $D$, $X$ und $Y$, -die zu den Einparameteruntergruppen von c) gehören. -\item -Berechnen Sie die Lie-Klammer für alle Paare von Tangentialvektoren. -\end{teilaufgaben} - -\begin{loesung} -\begin{teilaufgaben} -\item -Die Wirkung beider Gruppenelemente auf dem Vektor $\vec{x}$ ist -\begin{align*} -\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix} -\begin{pmatrix}D_{\alpha_2}&\vec{t}_2\\0&1\end{pmatrix} -\begin{pmatrix}\vec{x}\\1\end{pmatrix} -&= -\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix} -\begin{pmatrix}D_{\alpha_2}\vec{x}+\vec{t}_2\\1\end{pmatrix} -= -\begin{pmatrix} -D_{\alpha_1}(D_{\alpha_2}\vec{x}+\vec{t}_2)+\vec{t}_1\\1 -\end{pmatrix} -\\ -&= -\begin{pmatrix} -D_{\alpha_1}D_{\alpha_2}\vec{x} + D_{\alpha_1}\vec{t}_2+\vec{t}_1\\1 -\end{pmatrix} -= -\begin{pmatrix} -D_{\alpha_1+\alpha_2}&D_{\alpha_1}\vec{t}_2+\vec{t}_1\\ -0&1 -\end{pmatrix} -\begin{pmatrix}\vec{x}\\1\end{pmatrix}. -\end{align*} -Das Produkt in der Gruppe $G$ kann daher -\[ -(\alpha_1,\vec{t}_1) (\alpha_2,\vec{t}_2) -= -(\alpha_1+\alpha_2,\vec{t}_1+D_{\alpha_1}\vec{t}_2) -\] -geschrieben werden. -\item -Die Inverse der Abbildung $\vec{x}\mapsto \vec{y}=D_\alpha\vec{x}+\vec{t}$ -kann gefunden werden, indem man auf der rechten Seite nach $\vec{x}$ -auflöst: -\begin{align*} -\vec{y}&=D_\alpha\vec{x}+\vec{t} -&&\Rightarrow& -D_{\alpha}^{-1}( \vec{y}-\vec{t}) &= \vec{x} -\\ -&&&& \vec{x} &= D_{-\alpha}\vec{y} + (-D_{-\alpha}\vec{t}) -\end{align*} -Die Inverse von $(\alpha,\vec{t})$ ist also $(-\alpha,-D_{-\alpha}\vec{t})$. -\item -Da $D_\alpha$ eine Einparameteruntergruppe von $\operatorname{SO}(2)$ ist, -ist $\alpha\mapsto (D_\alpha,0)$ ebenfalls eine Einparameteruntergruppe. -Für die beiden anderen gilt -\[ -\biggl(I,\begin{pmatrix}t_{x1}\\0\end{pmatrix}\biggr) -\biggl(I,\begin{pmatrix}t_{x2}\\0\end{pmatrix}\biggr) -= -\biggl(I,\begin{pmatrix}t_{x1}+t_{x2}\\0\end{pmatrix}\biggr) -\quad\text{und}\quad -\biggl(I,\begin{pmatrix}0\\t_{y1}\end{pmatrix}\biggr) -\biggl(I,\begin{pmatrix}0\\t_{y2}\end{pmatrix}\biggr) -= -\biggl(I,\begin{pmatrix}0\\t_{y1}+t_{y2}\end{pmatrix}\biggr), -\] -also sind dies auch Einparameteruntergruppen. -\item -Die Ableitungen sind -\begin{align*} -D -&= -\frac{d}{d\alpha}\begin{pmatrix}D_\alpha&0\\0&1\end{pmatrix}\bigg|_{\alpha=0} -= -\begin{pmatrix}J&0\\0&0\end{pmatrix} -= -\begin{pmatrix} -0&-1&0\\ -1& 0&0\\ -0& 0&0 -\end{pmatrix} -\\ -X -&= -\frac{d}{dt_x} -\left. -\begin{pmatrix}I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix} -\right|_{t_x=0} -= -\begin{pmatrix} -0&0&1\\ -0&0&0\\ -0&0&0 -\end{pmatrix} -& -Y -&= -\frac{d}{dt_y} -\left. -\begin{pmatrix}I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix} -\right|_{t_y=0} -= -\begin{pmatrix} -0&0&0\\ -0&0&1\\ -0&0&0 -\end{pmatrix} -\end{align*} -\item -Die Vertauschungsrelationen sind -\begin{align*} -[D,X] -&= -DX-XD -= -\begin{pmatrix} -0&0&0\\ -0&0&1\\ -0&0&0 -\end{pmatrix} -- -\begin{pmatrix} -0&0&0\\ -0&0&0\\ -0&0&0 -\end{pmatrix} -= -Y -\\ -[D,Y] -&= -DY-YD -= -\begin{pmatrix} -0&0&-1\\ -0&0&0\\ -0&0&0 -\end{pmatrix} -- -\begin{pmatrix} -0&0&0\\ -0&0&0\\ -0&0&0 -\end{pmatrix} -= --X -\\ -[X,Y] -&= -XY-YX -= -0-0=0 -\qedhere -\end{align*} -\end{teilaufgaben} -\end{loesung} +Eine Drehung eines Vektors $\vec{x}$ der Ebene $\mathbb{R}^2$ +um den Winkel $\alpha$ gefolgt von einer Translation um $\vec{t}$ +ist gegeben durch $D_\alpha\vec{x}+\vec{t}$. +Darauf lässt sich jedoch die Theorie der Matrizengruppen nicht +darauf anwenden, weil die Operation nicht die Form einer Matrixmultiplikation +schreiben. +Die Drehung und Translation kann in eine Matrix zusammengefasst werden, +indem zunächst die Ebene mit +\[ +\mathbb{R}^2\to\mathbb{R}^3 +: +\begin{pmatrix}x\\y\end{pmatrix} +\mapsto +\begin{pmatrix}x\\y\\1\end{pmatrix} +\qquad\text{oder in Vektorschreibweise }\qquad +\vec{x}\mapsto\begin{pmatrix}\vec{x}\\1\end{pmatrix} +\] +in den dreidimensionalen Raum eingebettet wird. +Die Drehung und Verschiebung kann damit in der Form +\[ +\begin{pmatrix}D_\alpha\vec{x}+\vec{t}\\1 +\end{pmatrix} += +\begin{pmatrix}D_\alpha&\vec{t}\\0&1\end{pmatrix} +\begin{pmatrix}\vec{x}\\1\end{pmatrix} +\] +als Matrizenoperation geschrieben werden. +Die Gruppe der Drehungen und Verschiebungen der Ebene ist daher +die Gruppe +\[ +G += +\left\{ +\left. +A += +\begin{pmatrix} +D_\alpha&\vec{t}\\ +0&1 +\end{pmatrix} += +\begin{pmatrix} +\cos\alpha & -\sin\alpha & t_x \\ +\sin\alpha & \cos\alpha & t_y \\ + 0 & 0 & 1 +\end{pmatrix} +\; +\right| +\; +\alpha\in\mathbb{R},\vec{t}\in\mathbb{R}^2 +\right\} +\] +Wir kürzen die Elemente von $G$ auch als $(\alpha,\vec{t})$ ab. +\begin{teilaufgaben} +\item +Verifizieren Sie, dass das Produkt zweier solcher Matrizen +$(\alpha_1,\vec{t}_1)$ und $(\alpha_2,\vec{t}_2)$ +wieder die selbe Form $(\alpha,\vec{t})$ hat und berechnen Sie +$\alpha$ und $\vec{t}_j$. +\item +Bestimmen Sie das inverse Element zu $(\alpha,\vec{t}) \in G$. +\item +Die Elemente der Gruppe $G$ sind parametrisiert durch den Winkel $\alpha$ +und die Translationskomponenten $t_x$ und $t_y$. +Rechnen Sie nach, dass +\[ +\alpha\mapsto \begin{pmatrix} D_{\alpha}&0\\0&1\end{pmatrix}, +\quad +t_x\mapsto +\begin{pmatrix} I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix}, +\qquad +t_y\mapsto +\begin{pmatrix} I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix} +\] +Einparameteruntergruppen von $G$ sind. +\item +Berechnen Sie die Tangentialvektoren $D$, $X$ und $Y$, +die zu den Einparameteruntergruppen von c) gehören. +\item +Berechnen Sie die Lie-Klammer für alle Paare von Tangentialvektoren. +\end{teilaufgaben} + +\begin{loesung} +\begin{teilaufgaben} +\item +Die Wirkung beider Gruppenelemente auf dem Vektor $\vec{x}$ ist +\begin{align*} +\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix} +\begin{pmatrix}D_{\alpha_2}&\vec{t}_2\\0&1\end{pmatrix} +\begin{pmatrix}\vec{x}\\1\end{pmatrix} +&= +\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix} +\begin{pmatrix}D_{\alpha_2}\vec{x}+\vec{t}_2\\1\end{pmatrix} += +\begin{pmatrix} +D_{\alpha_1}(D_{\alpha_2}\vec{x}+\vec{t}_2)+\vec{t}_1\\1 +\end{pmatrix} +\\ +&= +\begin{pmatrix} +D_{\alpha_1}D_{\alpha_2}\vec{x} + D_{\alpha_1}\vec{t}_2+\vec{t}_1\\1 +\end{pmatrix} += +\begin{pmatrix} +D_{\alpha_1+\alpha_2}&D_{\alpha_1}\vec{t}_2+\vec{t}_1\\ +0&1 +\end{pmatrix} +\begin{pmatrix}\vec{x}\\1\end{pmatrix}. +\end{align*} +Das Produkt in der Gruppe $G$ kann daher +\[ +(\alpha_1,\vec{t}_1) (\alpha_2,\vec{t}_2) += +(\alpha_1+\alpha_2,\vec{t}_1+D_{\alpha_1}\vec{t}_2) +\] +geschrieben werden. +\item +Die Inverse der Abbildung $\vec{x}\mapsto \vec{y}=D_\alpha\vec{x}+\vec{t}$ +kann gefunden werden, indem man auf der rechten Seite nach $\vec{x}$ +auflöst: +\begin{align*} +\vec{y}&=D_\alpha\vec{x}+\vec{t} +&&\Rightarrow& +D_{\alpha}^{-1}( \vec{y}-\vec{t}) &= \vec{x} +\\ +&&&& \vec{x} &= D_{-\alpha}\vec{y} + (-D_{-\alpha}\vec{t}) +\end{align*} +Die Inverse von $(\alpha,\vec{t})$ ist also $(-\alpha,-D_{-\alpha}\vec{t})$. +\item +Da $D_\alpha$ eine Einparameteruntergruppe von $\operatorname{SO}(2)$ ist, +ist $\alpha\mapsto (D_\alpha,0)$ ebenfalls eine Einparameteruntergruppe. +Für die beiden anderen gilt +\[ +\biggl(I,\begin{pmatrix}t_{x1}\\0\end{pmatrix}\biggr) +\biggl(I,\begin{pmatrix}t_{x2}\\0\end{pmatrix}\biggr) += +\biggl(I,\begin{pmatrix}t_{x1}+t_{x2}\\0\end{pmatrix}\biggr) +\quad\text{und}\quad +\biggl(I,\begin{pmatrix}0\\t_{y1}\end{pmatrix}\biggr) +\biggl(I,\begin{pmatrix}0\\t_{y2}\end{pmatrix}\biggr) += +\biggl(I,\begin{pmatrix}0\\t_{y1}+t_{y2}\end{pmatrix}\biggr), +\] +also sind dies auch Einparameteruntergruppen. +\item +Die Ableitungen sind +\begin{align*} +D +&= +\frac{d}{d\alpha}\begin{pmatrix}D_\alpha&0\\0&1\end{pmatrix}\bigg|_{\alpha=0} += +\begin{pmatrix}J&0\\0&0\end{pmatrix} += +\begin{pmatrix} +0&-1&0\\ +1& 0&0\\ +0& 0&0 +\end{pmatrix} +\\ +X +&= +\frac{d}{dt_x} +\left. +\begin{pmatrix}I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix} +\right|_{t_x=0} += +\begin{pmatrix} +0&0&1\\ +0&0&0\\ +0&0&0 +\end{pmatrix} +& +Y +&= +\frac{d}{dt_y} +\left. +\begin{pmatrix}I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix} +\right|_{t_y=0} += +\begin{pmatrix} +0&0&0\\ +0&0&1\\ +0&0&0 +\end{pmatrix} +\end{align*} +\item +Die Vertauschungsrelationen sind +\begin{align*} +[D,X] +&= +DX-XD += +\begin{pmatrix} +0&0&0\\ +0&0&1\\ +0&0&0 +\end{pmatrix} +- +\begin{pmatrix} +0&0&0\\ +0&0&0\\ +0&0&0 +\end{pmatrix} += +Y +\\ +[D,Y] +&= +DY-YD += +\begin{pmatrix} +0&0&-1\\ +0&0&0\\ +0&0&0 +\end{pmatrix} +- +\begin{pmatrix} +0&0&0\\ +0&0&0\\ +0&0&0 +\end{pmatrix} += +-X +\\ +[X,Y] +&= +XY-YX += +0-0=0 +\qedhere +\end{align*} +\end{teilaufgaben} +\end{loesung} -- cgit v1.2.1