From 3dc190b1151b67bfd47d148b5e466e19d6890e12 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 23 Mar 2021 19:54:10 +0100 Subject: intro Lie-Gruppen --- buch/chapters/60-gruppen/chapter.tex | 24 ++++++ buch/chapters/60-gruppen/lie-gruppen.tex | 139 +++++++++++++++++++++++++++++++ 2 files changed, 163 insertions(+) (limited to 'buch/chapters/60-gruppen') diff --git a/buch/chapters/60-gruppen/chapter.tex b/buch/chapters/60-gruppen/chapter.tex index d07db3f..c2aa68d 100644 --- a/buch/chapters/60-gruppen/chapter.tex +++ b/buch/chapters/60-gruppen/chapter.tex @@ -7,6 +7,30 @@ \label{buch:chapter:matrizengruppen}} \lhead{Matrizengruppen} \rhead{} +Matrizen können dazu verwendet werden, Symmetrien von geometrischen oder +physikalischen Systemen zu beschreiben. +Neben diskreten Symmetrien wie zum Beispiel Spiegelungen gehören dazu +auch kontinuierliche Symmetrien wie Translationen oder Invarianz einer +phyisikalischen Grösse über die Zeit. +Solche Symmetrien müssen durch Matrizen beschrieben werden können, +die auf stetige oder sogar differenzierbare Art von der Zeit abhängen. +Die Menge der Matrizen, die zur Beschreibung solcher Symmetrien benutzt +werden, muss also eine zusätzliche Struktur haben, die ermöglicht, +sinnvoll über Stetigkeit und Differenzierbarkeit bei Matrizen +zu sprechen. + +Die Menge der Matrizen bilden zunächst eine Gruppe, +die zusätzliche differenziarbare Struktur macht daraus +eine sogenannte Lie-Gruppe. +Die Ableitungen nach einem Parameter liegen in der sogenannten +Lie-Algebra, einer Matrizen-Algebra mit dem antisymmetrischen +Lie-Klammer-Produkt $[A,B]=AB-BA$, auch Kommutator genannt. +Lie-Gruppe und Lie-Algebra sind eng miteinander verknüpft, +so eng, dass sich die meisten Eigenschaften der Gruppe aus den Eigenschaften +der Lie-Gruppe aus der Lie-Algebra ableiten lassen. +Die Verbindung wird hergestellt durch die Exponentialabbildung. +Ziel dieses Kapitels ist, die Grundzüge dieses interessanten +Zusammenhangs darzustellen. \input{chapters/60-gruppen/symmetrien.tex} \input{chapters/60-gruppen/lie-gruppen.tex} diff --git a/buch/chapters/60-gruppen/lie-gruppen.tex b/buch/chapters/60-gruppen/lie-gruppen.tex index cb1ca84..022de97 100644 --- a/buch/chapters/60-gruppen/lie-gruppen.tex +++ b/buch/chapters/60-gruppen/lie-gruppen.tex @@ -6,3 +6,142 @@ \section{Lie-Gruppen \label{buch:section:lie-gruppen}} \rhead{Lie-Gruppen} + +\subsection{Drehungen in der Ebene +\label{buch:gruppen:drehungen2d}} +Drehungen der Ebene können in einer orthonormierten Basis durch +Matrizen der Form +\[ +D_{\alpha} += +\begin{pmatrix} +\cos\alpha&-\sin\alpha\\ +\sin\alpha& \cos\alpha +\end{pmatrix} +\] +dargestellt werden. +Wir bezeichnen die Menge der Drehmatrizen in der Ebene mit +$\operatorname{SO}(2)\subset\operatorname{GL}_2(\mathbb{R})$. +Die Abbildung +\[ +D_{\bullet} +\colon +\mathbb{R}\to \operatorname{SO}(2) +: +\alpha \mapsto D_{\alpha} +\] +hat die Eigenschaften +\begin{align*} +D_{\alpha+\beta}&= D_{\alpha}D_{\beta} +\\ +D_0&=I +\\ +D_{2k\pi}&=I\qquad \forall k\in\mathbb{Z}. +\end{align*} +Daraus folgt zum Beispiel, dass $D_{\bullet}$ eine $2\pi$-periodische +Funktion ist. +$D_{\bullet}$ bildet die Menge der Winkel $[0,2\pi)$ bijektiv auf +die Menge der Drehmatrizen in der Ebene ab. + +Ein alternatives Bild für die Drehungen der Ebene kann man in der komplexen +Ebene $\mathbb{C}$ erhalten. +Die Multiplikation mit der komplexen Zahl $e^{i\alpha}$ beschreibt eine +Drehung der komplexen Ebene um den Winkel $\alpha$. +Die Zahlen der Form $e^{i\alpha}$ haben den Betrag $1$ und die Abbildung +\[ +f\colon \mathbb{R}\to \mathbb{C}:\alpha \mapsto e^{i\alpha} +\] +hat die Eigenschaften +\begin{align*} +f(\alpha+\beta) &= f(\alpha)f(\beta) +\\ +f(0)&=1 +\\ +f(2\pi k)&=1\qquad\forall k\in\mathbb{Z}, +\end{align*} +die zu den Eigenschaften der Abbildung $\alpha\mapsto D_{\alpha}$ +analog sind. + +Jede komplexe Zahl $z$ vom Betrag $1$ kann geschrieben werden in der Form +$z=e^{i\alpha}$, die Abbildung $f$ ist also eine Parametrisierung des +Einheitskreises in der Ebene. +Wir bezeichen $S^1=\{z\in\mathbb{C}\;|\; |z|=1\}$ die komplexen Zahlen vom +Betrag $1$. +$S^1$ ist eine Gruppe bezüglich der Multiplikation, da für jede Zahl +$z,w\in S^1$ gilt +$|z^{-1}|=1$ und $|zw|=1$ und damit $z^{-1}\in S^1$ und $zw\in S^1$. + +Zu einer komplexen Zahl $z\in S^1$ gibt es einen bis auf Vielfache +von $2\pi$ eindeutigen Winkel $\alpha(z)$ derart, dass $e^{i\alpha(z)}=z$. +Damit kann man jetzt die Abbildung +\[ +\varphi +\colon +S^1\to \operatorname{SO}(2) +: +z\mapsto D_{\alpha(z)} +\] +konstruieren. +Da $D_{\alpha}$ $2\pi$-periodisch ist, geben um Vielfache +von $2\pi$ verschiedene Wahlen von $\alpha(z)$ die gleiche +Matrix $D_{\alpha(z)}$, die Abbildung $\varphi$ ist daher +wohldefiniert. +$\varphi$ erfüllt ausserdem die Bedingungen +\begin{align*} +\varphi(z_1z_2) +&= +D_{\alpha(z_1z_2)} += +D_{\alpha(z_1)+\alpha(z_2)} += +D_{\alpha(z_1)}D_{\alpha(z_2)} += +\varphi(z_1)\varphi(z_2) +\\ +\varphi(1) +&= +D_{\alpha(1)} += +D_0 += +I +\end{align*} +Die Abbildung $\varphi$ ist ein Homomorphismus der Gruppe $S^1$ +in die Gruppe $\operatorname{SO}(2)$. +Die Menge der Drehmatrizen in der Ebene kann also mit dem Einheitskreis +in der komplexen Ebene identifiziert werden. + +\subsection{Isometrien von $\mathbb{R}^n$ +\label{buch:gruppen:isometrien}} +Lineare Abbildungen der Ebene $\mathbb{R}^n$ mit dem üblichen Skalarprodukt +können durch $n\times n$-Matrizen beschrieben werden. +Die Matrizen, die das Skalarprodukt erhalten, bilden eine Gruppe, +die in diesem Abschnitt genauer untersucht werden soll. +Eine Matrix $A\in M_{2}(\mathbb{R})$ ändert das Skalarprodukt nicht, wenn +für jedes beliebige Paar $x,y$ von Vektoren gilt +$\langle Ax,Ay\rangle = \langle x,y\rangle$. +Das Standardskalarprodukt kann mit dem Matrixprodukt ausgedrückt werden: +\[ +\langle Ax,Ay\rangle += +(Ax)^tAy += +x^tA^tAy += +x^ty += +\langle x,y\rangle +\] +für jedes Paar von Vektoren $x,y\in\mathbb{R}$. + +Mit dem Skalarprodukt kann man auch die Matrixelemente einer Matrix +einer Abbildung $f$ in der Standardbasis bestimmen. +Das Skalarprodukt $\langle e_i, v\rangle$ ist die Länge der Projektion +des Vektors $v$ auf die Richtung $e_i$. +Die Komponenten von $Ae_j$ sind daher $a_{ij}=\langle e_i,f(e_j)\rangle$. +Die Matrix $A$ der Abbildung $f$ hat also die Matrixelemente +$a_{ij}=e_i^tAe_j$. + + +\subsection{Die Gruppe $\operatorname{SU}(2)$ +\label{buch:gruppen:su2}} -- cgit v1.2.1 From 0a3486fa2ae398bb113053ad0823cf59c4a3b1eb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 27 Mar 2021 20:33:43 +0100 Subject: new images --- buch/chapters/60-gruppen/images/castle.jpeg | Bin 0 -> 148054 bytes buch/chapters/60-gruppen/lie-algebren.tex | 255 ++++++++++++++++++++++++++++ buch/chapters/60-gruppen/lie-gruppen.tex | 179 +++++++++++++++++++ buch/chapters/60-gruppen/symmetrien.tex | 98 +++++++++++ 4 files changed, 532 insertions(+) create mode 100644 buch/chapters/60-gruppen/images/castle.jpeg (limited to 'buch/chapters/60-gruppen') diff --git a/buch/chapters/60-gruppen/images/castle.jpeg b/buch/chapters/60-gruppen/images/castle.jpeg new file mode 100644 index 0000000..bf90a36 Binary files /dev/null and b/buch/chapters/60-gruppen/images/castle.jpeg differ diff --git a/buch/chapters/60-gruppen/lie-algebren.tex b/buch/chapters/60-gruppen/lie-algebren.tex index 69d4b1d..6c6b74b 100644 --- a/buch/chapters/60-gruppen/lie-algebren.tex +++ b/buch/chapters/60-gruppen/lie-algebren.tex @@ -6,3 +6,258 @@ \section{Lie-Algebren \label{buch:section:lie-algebren}} \rhead{Lie-Algebren} +Im vorangegangenen Abschnitt wurde gezeigt, dass alle beschriebenen +Matrizengruppen als Untermannigfaltigkeiten im $n^2$-dimensionalen +Vektorraum $M_n(\mathbb{R}9$ betrachtet werden können. +Die Gruppen haben damit nicht nur die algebraische Struktur einer +Matrixgruppe, sie haben auch die geometrische Struktur einer +Mannigfaltigkeit. +Insbesondere ist es sinnvoll, von Ableitungen zu sprechen. + +Eindimensionale Untergruppen einer Gruppe können auch als Kurven +innerhalb der Gruppe angesehen werden. +In diesem Abschnitt soll gezeigt werden, wie man zu jeder eindimensionalen +Untergruppe einen Vektor in $M_n(\mathbb{R})$ finden kann derart, dass +der Vektor als Tangentialvektor an diese Kurve gelten kann. +Aus einer Abbildung zwischen der Gruppe und diesen Tagentialvektoren +erhält man dann auch eine algebraische Struktur auf diesen Tangentialvektoren, +die sogenannte Lie-Algebra. +Sie ist charakteristisch für die Gruppe. +Insbesondere werden wir sehen, wie die Gruppen $\operatorname{SO}(3)$ +und $\operatorname{SU}(2)$ die gleich Lie-Algebra haben und dass die +Lie-Algebra von $\operatorname{SO}(3)$ mit dem Vektorprodukt in $\mathbb{R}^3$ +übereinstimmt. + +% +% Tangentialvektoren und SO(2) +% +\subsection{Tangentialvektoren und $\operatorname{SO}(2)$} +Die Drehungen in der Ebene können reell als Matrizen der Form +\[ +D_{\alpha} += +\begin{pmatrix} +\cos\alpha&-\sin\alpha\\ +\sin\alpha& \cos\alpha +\end{pmatrix} +\] +als eidimensionale Kurve innerhalb von $M_2(\mathbb{R})$ beschrieben +werden. +Alternativ können Drehungen um den Winkel $\alpha$ als mit Hilfe von +der Abbildung +$ +\alpha\mapsto e^{i\alpha} +$ +als komplexe Zahlen vom Betrag $1$ beschrieben werden. +Dies sind zwei verschiedene Parametrisierungen der gleichen +geometrischen Transformation. + +Die Ableitung nach $\alpha$ ist $ie^{i\alpha}$, der Tangentialvektor +im Punkt $e^{i\alpha}$ ist also $ie^{i\alpha}$. +Die Multiplikation mit $i$ ist die Drehung um $90^\circ$, der Tangentialvektor +ist also der um $90^\circ$ gedrehte Ortsvektor zum Punkt auf der Kurve. + +In der Darstelllung als $2\times 2$-Matrix ist die Ableitung +\[ +\frac{d}{d\alpha}D_\alpha += +\frac{d}{d\alpha} +\begin{pmatrix} +\cos\alpha& -\sin\alpha\\ +\sin\alpha& \cos\alpha +\end{pmatrix} += +\begin{pmatrix} +-\sin\alpha & -\cos\alpha \\ + \cos\alpha & -\sin\alpha +\end{pmatrix}. +\] +Die rechte Seite kann wieder mit der Drehmatrix $D_\alpha$ geschrieben +werden, es ist nämlich +\[ +\frac{d}{d\alpha}D_\alpha += +\begin{pmatrix} +-\sin\alpha & -\cos\alpha \\ + \cos\alpha & -\sin\alpha +\end{pmatrix} += +\begin{pmatrix} +\cos\alpha & -\sin\alpha\\ +\sin\alpha & \cos\alpha +\end{pmatrix} +\begin{pmatrix} +0&-1\\ +1& 0 +\end{pmatrix} += +D_\alpha J. +\] +Der Tangentialvektor an die Kurve $\alpha\mapsto D_\alpha$ innerhalb +$M_2(\mathbb{R})$ im Punkt $D_\alpha$ ist also die Matrix +$JD_\alpha$. +Die Matrix $J$ ist die Drehung um $90^\circ$, denn $J=D_{\frac{\pi}2}$. +Der Zusammenhang zwischen dem Punkt $D_\alpha$ und dem Tangentialvektor +ist also analog zur Beschreibug mit komplexen Zahlen. + +Im Komplexen vermittelt die Exponentialfunktion den Zusammenhang zwischen +dem Winkel $\alpha$ und dre Drehung $e^{i\alpha}$. +Der Grund dafür ist natürlich die Differentialgleichung +\[ +\frac{d}{d\alpha} z(\alpha) = iz(\alpha). +\] +Die analoge Differentialgleichung +\[ +\frac{d}{d\alpha} D_\alpha = J D_\alpha +\] +führt auf die Matrix-Exponentialreihe +\begin{align*} +D_\alpha += +\exp (J\alpha) +&= +\sum_{k=0}^\infty \frac{(J\alpha)^k}{k!} += +\biggl( +1-\frac{\alpha^2}{2!} + \frac{\alpha^4}{4!} -\frac{\alpha^6}{6!}+\dots +\biggr) ++ +J\biggl( +\alpha - \frac{\alpha^3}{3!} ++ \frac{\alpha^5}{5!} +- \frac{\alpha^7}{7!}+\dots +\biggr) +\\ +&= +I\cos\alpha ++ +J\sin\alpha, +\end{align*} +welche der Eulerschen Formel $e^{i\alpha} = \cos\alpha + i \sin\alpha$ +analog ist. + +In diesem Beispiel gibt es nur eine Tangentialrichtung und alle in Frage +kommenden Matrizen vertauschen miteinander. +Es ist daher nicht damit zu rechnen, dass sich eine interessante +Algebrastruktur für die Ableitungen konstruieren lässt. + +% +% Die Lie-Algebra einer Matrizengruppe +% +\subsection{Lie-Algebra einer Matrizengruppe} +Das eindimensionale Beispiel $\operatorname{SO}(2)$ hat gezeigt, dass +die Tangentialvektoren in einem beliebigen Punkt $D_\alpha$ aus dem +Tangentialvektor im Punkt $I$ durch Anwendung der Drehung hervorgehen, +die $I$ in $D_\alpha$ abbildet. +Die Drehungen einer eindimensionalen Untergruppe transportieren daher +den Tangentialvektor in $I$ entlang der Kurve auf jeden beliebigen +anderen Punkt. +Zu jedem Tangentialvektor im Punkt $I$ dürfte es daher genau eine +eindimensionale Untergruppe geben. + +Sei die Abbildung $\varrho\colon\mathbb{R}\to G$ eine Einparameter-Untergruppe +von $G\subset M_n(\mathbb{R})$. +Durch Ableitung der Gleichung $\varrho(t+x) = \varrho(t)\varrho(x)$ nach +$x$ folgt die Differentialgleichung +\[ +\varrho'(t) += +\frac{d}{dx}\varrho(t+x)\bigg|_{x=0} += +\varrho(t) \frac{d}{dx}\varrho(0)\bigg|_{x=0} += +\varrho(t) \varrho'(0). +\] +Der Tangentialvektor in $\varrho'(t)$ in $\varrho(t)$ ist daher +der Tangentialvektor $\varrho'(0)$ in $I$ transportiert in den Punkt +$\varrho(t)$ mit Hilfe der Matrix $\varrho(t)$. + +Aus der Differentialgleichung folgt auch, dass +\[ +\varrho(t) = \exp (t\varrho'(0)). +\] +Zu einem Tangentialvektor in $I$ kann man also immer die +Einparameter-Untergruppe mit Hilfe der Differentialgleichung +oder der expliziten Exponentialreihe rekonstruieren. + +Die eindimensionale Gruppe $\operatorname{SO}(2)$ ist abelsch und +hat einen eindimensionalen Tangentialraum, man kann also nicht mit +einer interessanten Algebrastruktur rechnen. +Für eine höherdimensionale, nichtabelsche Gruppe sollte sich aus +der Tatsache, dass es verschiedene eindimensionale Untergruppen gibt, +deren Elemente nicht mit den Elemente einer anderen solchen Gruppe +vertauschen, eine interessante Algebra konstruieren lassen, deren +Struktur die Nichtvertauschbarkeit wiederspiegelt. + +Seien also $A$ und $B$ Tangentialvektoren einer Matrizengruppe $G$, +die zu den Einparameter-Untergruppen $\varphi(t)=\exp At$ und +$\varrho(t)=\exp Bt$ gehören. +Insbesondere gilt $\varphi'(0)=A$ und $\varrho'(0)=B$. +Das Produkt $\pi(t)=\varphi(t)\varrho(t)$ ist allerdings nicht notwendigerweise +eine Einparametergruppe, denn dazu müsste gelten +\begin{align*} +\pi(t+s) +&= +\varphi(t+s)\varrho(t+s) += +\varphi(t)\varphi(s)\varrho(t)\varrho(s) +\\ += +\pi(t)\pi(s) +&= +\varphi(t)\varrho(t)\varphi(s)\varrho(s) +\end{align*} +Durch Multiplikation von links mit $\varphi(t)^{-1}$ und +mit $\varrho(s)^{-1}$ von rechts folgt, dass dies genau dann gilt, +wenn +\[ +\varphi(s)\varrho(t)=\varrho(t)\varphi(s). +\] +Die beiden Seiten dieser Gleichung sind erneut verschiedene Punkte +in $G$. +Durch Multiplikation mit $\varrho(t)^{-1}$ von links und mit +$\varphi(s)^{-1}$ von rechts erhält man die äquivaliente +Bedingung +\begin{equation} +\varrho(-t)\varphi(s)\varrho(t)\varphi(-s)=I. +\label{buch:lie:konjugation} +\end{equation} +Ist die Gruppe $G$ nicht kommutativ, kann man nicht +annehmen, dass diese Bedingung erfüllt ist. + +Aus \eqref{buch:lie:konjugation} erhält man jetzt eine Kurve +\[ +t \mapsto \gamma(t,s) = \varrho(-t)\varphi(s)\varrho(t)\varphi(-s) \in G +\] +in der Gruppe, die für $t=0$ durch $I$ geht. +Ihren Tangentialvektor kann man durch Ableitung bekommen: +\begin{align*} +\frac{d}{dt}\gamma(t,s) +&= +-\varrho'(-t)\varphi(s)\varrho(t)\varphi(-s) ++\varrho(-t)\varphi(s)\varrho'(t)\varphi(-t) +\\ +\frac{d}{dt}\gamma(t)\bigg|_{t=0} +&= +-B\varphi(s) + \varphi(-s)B +\end{align*} +Durch erneute Ableitung nach $s$ erhält man dann +\begin{align*} +\frac{d}{ds} \frac{d}{dt}\gamma(t,s)\bigg|_{t=0} +&= +-B\varphi'(s) - \varphi(-s)B +\end{align*} + +% +% Die Lie-Algebra von SO(3) +% +\subsection{Die Lie-Algebra von $\operatorname{SO}(3)$} + +% +% Die Lie-Algebra von SU(2) +% +\subsection{Die Lie-Algebra von $\operatorname{SU}(2)$} + + + + diff --git a/buch/chapters/60-gruppen/lie-gruppen.tex b/buch/chapters/60-gruppen/lie-gruppen.tex index 022de97..1268ce2 100644 --- a/buch/chapters/60-gruppen/lie-gruppen.tex +++ b/buch/chapters/60-gruppen/lie-gruppen.tex @@ -111,6 +111,9 @@ in die Gruppe $\operatorname{SO}(2)$. Die Menge der Drehmatrizen in der Ebene kann also mit dem Einheitskreis in der komplexen Ebene identifiziert werden. +% +% Isometrien von R^n +% \subsection{Isometrien von $\mathbb{R}^n$ \label{buch:gruppen:isometrien}} Lineare Abbildungen der Ebene $\mathbb{R}^n$ mit dem üblichen Skalarprodukt @@ -142,6 +145,182 @@ Die Komponenten von $Ae_j$ sind daher $a_{ij}=\langle e_i,f(e_j)\rangle$. Die Matrix $A$ der Abbildung $f$ hat also die Matrixelemente $a_{ij}=e_i^tAe_j$. +\subsubsection{Die orthogonale Gruppe $\operatorname{O}(n)$} +Die Matrixelemente von $A^tA$ sind +$\langle A^tAe_i, e_j\rangle =\langle e_i,e_j\rangle = \delta_{ij}$ +sind diejenigen der Einheitsmatrix, +die Matrix $A$ erfüllt $AA^t=I$ oder $A^{-1}=A^t$. +Dies sind die {\em orthogonalen} Matrizen. +Die Menge $\operatorname{O}(n)$ der isometrischen Abbildungen besteht +daher aus den Matrizen +\[ +\operatorname{O}(n) += +\{ A\in M_n(\mathbb{R})\;|\; AA^t=I\}. +\] +Die Matrixgleichung $AA^t=I$ liefert $n(n+1)/2$ unabhängige Bedingungen, +die die orthogonalen Matrizen innerhalb der $n^2$-dimensionalen +Menge $M_n(\mathbb{R})$ auszeichnen. +Die Menge $\operatorname{O}(n)$ der orthogonalen Matrizen hat daher +die Dimension +\[ +n^2 - \frac{n(n+1)}{2} += +\frac{2n^2-n^2-n}{2} += +\frac{n(n-1)}2. +\] +Im Spezialfall $n=2$ ist die Gruppe $O(2)$ eindimensional. + +\subsubsection{Die Gruppe $\operatorname{SO}(n)$} +Die Gruppe $\operatorname{O}(n)$ enhält auch Isometrien, die +die Orientierung des Raumes umkehren, wie zum Beispiel Spiegelungen. +Wegen $\det (AA^t)=\det A\det A^t = (\det A)^2=1$ kann die Determinante +einer orthogonalen Matrix nur $\pm 1$ sein. +Orientierungserhaltende Isometrien haben Determinante $1$. + +Die Gruppe +\[ +\operatorname{SO}(n) += +\{A\in\operatorname{O}(n)\;|\; \det A=1\} +\] +heisst die {\em spezielle orthogonale Gruppe}. +Die Dimension der Gruppe $\operatorname{O}(n)$ ist $n(n-1)/2$. + +\subsubsection{Die Gruppe $\operatorname{SO}(3)$} +Die Gruppe $\operatorname{SO}(3)$ der Drehungen des dreidimensionalen +Raumes hat die Dimension $3(3-1)/2=3$. +Eine Drehung wird festgelegt durch die Richtung der Drehachse und den +Drehwinkel. +Die Richtung der Drehachse ist ein Einheitsvektor, also ein Punkt +auf der zweidimensionalen Kugel. +Der Drehwinkel ist der dritte Parameter. +Drehungen mit kleinen Drehwinkeln können zusammengesetzt werden +aus den Matrizen +\[ +D_{x,\alpha} += +\begin{pmatrix} +1&0&0\\ +0&\cos\alpha&-\sin\alpha\\ +0&\sin\alpha& \cos\alpha +\end{pmatrix}, +\qquad +D_{y,\beta} += +\begin{pmatrix} + \cos\beta&0&\sin\beta\\ + 0 &1& 0 \\ +-\sin\beta&0&\cos\beta +\end{pmatrix}, +\qquad +D_{z,\gamma} += +\begin{pmatrix} +\cos\gamma&-\sin\gamma&0\\ +\sin\gamma& \cos\gamma&0\\ + 0 & 0 &1 +\end{pmatrix}, +\] +die Drehungen um die Koordinatenachsen um den Winkel $\alpha$ +beschreiben. +Auch die Winkel $\alpha$, $\beta$ und $\gamma$ können als die +drei Koordinaten der Mannigkfaltigkeit $\operatorname{SO}(3)$ +angesehen werden. + +% +% Die Gruppe SU(2) +% \subsection{Die Gruppe $\operatorname{SU}(2)$ \label{buch:gruppen:su2}} +Die Menge der Matrizen +\[ +\operatorname{SU}(2) += +\left\{ +\left. +A=\begin{pmatrix} a&b\\c&d\end{pmatrix} +\;\right|\; +a,b,c,d\in\mathbb{C},\det(A)=1, AA^*=I +\right\} +\] +heisst die {\em spezielle unitäre Gruppe}. +Wegen $\det(AB)=\det(A)\det(B)=1$ und $(AB)^*AB=B^*A^*AB=B^*B=I$ ist +$\operatorname{SU}(2)$ eine Untergruppe von $\operatorname{GL}_2(\mathbb{C})$. +Die Bedingungen $\det A=1$ und $AA^*=I$ schränken die möglichen Werte +von $a$ und $b$ weiter ein. +Aus +\[ +A^* += +\begin{pmatrix} +\overline{a}&\overline{c}\\ +\overline{b}&\overline{d} +\end{pmatrix} +\] +und den Bedingungen führen die Gleichungen +\[ +\begin{aligned} +a\overline{a}+b\overline{b}&=1 +&&\Rightarrow&|a|^2+|b|^2&=1 +\\ +a\overline{c}+b\overline{d}&=0 +&&\Rightarrow& +\frac{a}{b}&=-\frac{\overline{d}}{\overline{c}} +\\ +c\overline{a}+d\overline{b}&=0 +&&\Rightarrow& +\frac{c}{d}&=-\frac{\overline{b}}{\overline{a}} +\\ +c\overline{c}+d\overline{d}&=1&&\Rightarrow&|c|^2+|d|^2&=1 +\\ +ad-bc&=1 +\end{aligned} +\] +Aus der zweiten Gleichung kann man ableiten, dass es eine Zahl $t\in\mathbb{C}$ +gibt derart, dass $c=-t\overline{b}$ und $d=t\overline{a}$. +Damit wird die Bedingung an die Determinante zu +\[ +1 += +ad-bc = at\overline{a} - b(-t\overline{b}) += +t(|a|^2+|b|^2) += +t, +\] +also muss die Matrix $A$ die Form haben +\[ +A += +\begin{pmatrix} +a&b\\ +-\overline{b}&\overline{a} +\end{pmatrix} +\qquad\text{mit}\quad |a|^2+|b|^2=1. +\] +Schreibt man $a=a_1+ia_2$ und $b=b_1+ib_2$ mit rellen $a_i$ und $b_i$, +dann besteht $SU(2)$ aus den Matrizen der Form +\[ +A= +\begin{pmatrix} + a_1+ia_2&b_1+ib_2\\ +-b_1+ib_2&a_1-ia_2 +\end{pmatrix} +\] +mit der zusätzlichen Bedingung +\[ +|a|^2+|b|^2 += +a_1^2 + a_2^2 + b_1^2 + b_2^2 = 1. +\] +Die Matrizen von $\operatorname{SU}(2)$ stehen daher in einer +eins-zu-eins-Beziehung zu den Vektoren $(a_1,a_2,b_1,b_2)\in\mathbb{R}^4$ +eines vierdimensionalen reellen Vektorraums mit Länge $1$. +Geometrisch betrachtet ist also $\operatorname{SU}(2)$ eine dreidmensionalen +Kugel, die in einem vierdimensionalen Raum eingebettet ist. + + + diff --git a/buch/chapters/60-gruppen/symmetrien.tex b/buch/chapters/60-gruppen/symmetrien.tex index 8d5c0e0..cb07475 100644 --- a/buch/chapters/60-gruppen/symmetrien.tex +++ b/buch/chapters/60-gruppen/symmetrien.tex @@ -7,4 +7,102 @@ \section{Symmetrien \label{buch:section:symmetrien}} \rhead{Symmetrien} +Der geometrische Begriff der Symmetrie meint die Eigenschaft eines +geometrischen Objektes, dass es bei einer Bewegung auf sich selbst +abgebildet wird. +Das Wort stammt aus dem altgriechischen, wo es {\em Gleichmass} +bedeutet. +Spiegelsymmetrische Objekte zeichnen sich zum Beispiel dadurch aus, +dass Messungen von Strecken die gleichen Werte ergeben wie die Messungen +der entsprechenden gespiegelten Strecken (siehe auch +Abbildung~\ref{buch:lie:bild:castlehoward}, was die Herkunft des +Begriffs verständlich macht. +\begin{figure} +\centering +\includegraphics[width=\textwidth]{chapters/60-gruppen/images/castle.jpeg} +\caption{Das Castle Howard in Yorkshire war in dieser ausgeprägt symmetrischen +Form geplant, wurde dann aber in modifizeirter Form gebaut. +Messungen zwischen Punkten in der rechten Hälfte des Bildes +ergeben die gleichen Werte wie Messungen entsprechenden Strecken +in der linken Hälfte, was den Begriff Symmetrie rechtfertigt. +\label{buch:lie:bild:castlehoward}} +\end{figure} +In der Physik wird dem Begriff der Symmetrie daher auch eine erweiterte +Bedeutung gegeben. +Jede Transformation eines Systems, welche bestimmte Grössen nicht +verändert, wird als Symmetrie bezeichnet. +Die Gesetze der Physik sind typischerweise unabhängig davon, wo man den +den Nullpunkt der Zeit oder das räumlichen Koordinatensystems ansetzt, +eine Transformation des Zeitnullpunktes oder des Ursprungs des +Koordinatensystems ändert daher die Bewegungsgleichungen nicht, sie ist +eine Symmetrie des Systems. + +Umgekehrt kann man fragen, welche Symmetrien ein System hat. +Da sich Symmetrien zusammensetzen und umkehren lassen, kann man in davon +ausgehen, dass die Symmetrietransformationen eine Gruppe bilden. +Besonders interessant ist dies im Falle von Transformationen, die +durch Matrizen beschrieben weren. +Eine unter der Symmetrie erhaltene Eigenschaft definiert so eine +Untergruppe der Gruppe $\operatorname{GL}_n(\mathbb{R})$ der +invertierbaren Matrizen. +Die erhaltenen Eigenschaften definieren eine Menge von Gleichungen, +denen die Elemente der Untergruppe genügen müssen. +Als Lösungsmenge einer Gleichung erhält die Untergruppe damit eine +zusätzliche geometrische Struktur, man nennt sie eine differenzierbare +Mannigfaltigkeit. +Dieser Begriff wird im Abschnitt~\ref{buch:subsection:mannigfaltigkeit} +eingeführt. +Es wird sich zum Beispiel zeigen, dass die Menge der Drehungen der +Ebene mit den Punkten eines Kreises parametrisieren lassen, +die Lösungen der Gleichung $x^2+y^2=1$ sind. + +Eine Lie-Gruppe ist eine Gruppe, die gleichzeitig eine differenzierbare +Mannigfaltigkeit ist. +Die Existenz von geometrischen Konzepten wie Tangentialvektoren +ermöglicht zusätzliche Werkzeuge, mit denen diese Gruppe untersucht +und verstanden werden können. +Ziel dieses Abschnitts ist, die Grundlagen für diese Untersuchung zu +schaffen, die dann im Abschnitt~\ref{buch:section:lie-algebren} +durchgeführt werden soll. + +\subsection{Algebraische Symmetrien +\label{buch:subsection:algebraische-symmetrien}} +Mit Matrizen lassen sich Symmetrien in einem geometrischen Problem +oder in einem physikalischen System beschreiben. +Man denkt dabei gerne zuerst an geometrische Symmetrien wie die +Symmetrie unter Punktspiegelung oder die Spiegelung an der $x_1$-$x_2$-Ebene, +wie sie zum Beispiel durch die Abbildungen +\[ +\mathbb{R}^3\to\mathbb{R}^3 : x\mapsto -x +\qquad\text{oder}\qquad +\mathbb{R}^3\to\mathbb{R}^3 : +\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} +\mapsto +\begin{pmatrix}-x_1\\x_2\\x_3\end{pmatrix} +\] +dargestellt werden. +Beide haben zunächst die Eigenschaft, dass Längen und Winkel und damit +das Skalarprodukt erhalten sind. +Diese Eigenschaft allein erlaubt aber noch nicht, die beiden Transformationen +zu unterscheiden. +Die Punktspiegelung zeichnet sich dadurch aus, das alle Geraden und alle +Ebenen durch den Ursprung auf sich selbst abgebildet werden. +Dies funktioniert für die Ebenenspiegelung nicht, dort bleibt nur die +Spiegelungsebene (die $x_1$-$x_2$-Ebene im vorliegenden Fall) und +ihre Normale erhalten. +Die folgenden Beispiele sollen zeigen, wie solche Symmetriedefinitionen +auf algebraische Bedingungen an die Matrixelemente führen. + + +\subsection{Manningfaltigkeiten +\label{buch:subsection:mannigfaltigkeit}} + +\subsection{Der Satz von Noether +\label{buch:subsection:noether}} + + + + + + -- cgit v1.2.1 From f62357e61d1a1cb647bc5e208946ac5be018bd85 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 1 Apr 2021 13:33:00 +0200 Subject: add missing files --- buch/chapters/60-gruppen/lie-algebren.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/chapters/60-gruppen') diff --git a/buch/chapters/60-gruppen/lie-algebren.tex b/buch/chapters/60-gruppen/lie-algebren.tex index 6c6b74b..366d280 100644 --- a/buch/chapters/60-gruppen/lie-algebren.tex +++ b/buch/chapters/60-gruppen/lie-algebren.tex @@ -118,7 +118,7 @@ D_\alpha &= \sum_{k=0}^\infty \frac{(J\alpha)^k}{k!} = -\biggl( +I\biggl( 1-\frac{\alpha^2}{2!} + \frac{\alpha^4}{4!} -\frac{\alpha^6}{6!}+\dots \biggr) + -- cgit v1.2.1 From ea9c6380f729ddd512fa59c2d0b67cc7cc8ab56c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 2 Apr 2021 21:43:03 +0200 Subject: kontinuierliche Symmetrien --- buch/chapters/60-gruppen/images/phasenraum.pdf | Bin 0 -> 24581 bytes buch/chapters/60-gruppen/images/phasenraum.tex | 45 +++++++ buch/chapters/60-gruppen/symmetrien.tex | 177 ++++++++++++++++++++++++- 3 files changed, 221 insertions(+), 1 deletion(-) create mode 100644 buch/chapters/60-gruppen/images/phasenraum.pdf create mode 100644 buch/chapters/60-gruppen/images/phasenraum.tex (limited to 'buch/chapters/60-gruppen') diff --git a/buch/chapters/60-gruppen/images/phasenraum.pdf b/buch/chapters/60-gruppen/images/phasenraum.pdf new file mode 100644 index 0000000..2ab46e4 Binary files /dev/null and b/buch/chapters/60-gruppen/images/phasenraum.pdf differ diff --git a/buch/chapters/60-gruppen/images/phasenraum.tex b/buch/chapters/60-gruppen/images/phasenraum.tex new file mode 100644 index 0000000..136d91d --- /dev/null +++ b/buch/chapters/60-gruppen/images/phasenraum.tex @@ -0,0 +1,45 @@ +% +% phasenraum.tex -- +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\pgfmathparse{1/sqrt(2)} +\xdef\o{\pgfmathresult} + +\def\punkt#1#2{ ({#2*cos(#1)},{\o*#2*sin(#1)}) } + +\foreach \r in {1,2,...,6}{ + \draw[line width=0.5pt] + plot[domain=0:359,samples=360] + ({\r*cos(\x)},{\o*\r*sin(\x)}) -- cycle; +} +\draw[color=red,line width=1.4pt] + plot[domain=0:359,samples=360] + ({4*cos(\x)},{\o*4*sin(\x)}) -- cycle; + +\draw[->] (-6.1,0) -- (6.3,0) coordinate[label={$x$}]; +\draw[->] (0,-4.4) -- (0,4.7) coordinate[label={right:$p$}]; + +\node at \punkt{0}{4} [below right] {$x_0$}; +\node at \punkt{90}{4} [above left] {$\omega x_0$}; + +\fill[color=white] \punkt{60}{4} rectangle \punkt{58}{5.9}; + +\fill[color=red] \punkt{60}{4} circle[radius=0.08]; +\node[color=red] at \punkt{60}{4} [above right] + {$\begin{pmatrix}x(t)\\p(t)\end{pmatrix}$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/60-gruppen/symmetrien.tex b/buch/chapters/60-gruppen/symmetrien.tex index cb07475..80f6534 100644 --- a/buch/chapters/60-gruppen/symmetrien.tex +++ b/buch/chapters/60-gruppen/symmetrien.tex @@ -93,8 +93,183 @@ ihre Normale erhalten. Die folgenden Beispiele sollen zeigen, wie solche Symmetriedefinitionen auf algebraische Bedingungen an die Matrixelemente führen. +Zu jeder Abbildung $f\colon\mathbb{R}^n\to\mathbb{R}^n$, unter der +ein geometrisches Objekt in $\mathbb{R}^n$ symmetrisch ist, können wir +sofort weitere Abbildungen angeben, die ebenfalls Symmetrien sind. +Zum Beispiel sind die iterierten Abbildungen $f\circ f$, $f\circ f\circ f$ +u.~s.~w., die wir auch $f^n$ mit $n\in\mathbb{N}$ schreiben werden, +ebenfalls Symmetrien. +Wenn die Symmetrie auch umkehrbar ist, dann gilt dies sogar für alle +$n\in\mathbb{Z}$. +Wir erhalten so eine Abbildung +$\varphi\colon \mathbb{Z}\to \operatorname{GL}_n(\mathbb{R}):n\mapsto f^n$ +mit den Eigenschaften $\varphi(0)=f^0 = I$ und +$\varphi(n+m)=f^{n+m}=f^n\circ f^m = \varphi(n)\circ\varphi(m)$. +$\varphi$ ist ein Homomorphismus der Gruppe $\mathbb{Z}$ in die Gruppe +$\operatorname{GL}_n(\mathbb{R})$. +Wir nennen dies eine {\em diskrete Symmetrie}. -\subsection{Manningfaltigkeiten +\subsection{Kontinuierliche Symmetrien +\label{buch:subsection:kontinuierliche-symmetrien}} +Von besonderem Interesse sind kontinuierliche Symmetrien. +Dies sind Abbildungen eines Systems, die von einem Parameter +abhängen. +Zum Beispiel können wir Drehungen der Ebene $\mathbb{R}^2$ um den +Winkel $\alpha$ durch Matrizen +\[ +D_{\alpha} += +\begin{pmatrix} +\cos\alpha&-\sin\alpha\\ +\sin\alpha& \cos\alpha +\end{pmatrix} +\] +beschrieben werden. +Ein Kreis um den Nullpunkt bleibt unter jeder dieser Drehungen invariant. +Im Gegensatz dazu sind alle $3n$-Ecke mit Schwerpunkt $0$ nur invariant +unter der einen Drehung $D_{\frac{2\pi}3}$ invariant. +Die kleinste Menge, die einen vorgegebenen Punkt enthält und unter +allen Drehungen $D_\alpha$ invariant ist, ist immer ein Kreis um +den Nullpunkt. + +\begin{definition} +Ein Homomorphismus $\varphi\colon\mathbb{R}\to\operatorname{GL}_n(\mathbb{R})$ +von der additiven Gruppe $\mathbb{R}$ in die allgemeine lineare Gruppe +heisst eine {\em Einparameter-Untergruppe} von +$\operatorname{GL}(\mathbb{R})$. +\end{definition} + +Die Abbildung +\[ +\varphi +\colon +\mathbb{R}\to\operatorname{GL}_n(\mathbb{R}) +: +\alpha \mapsto +D_{\alpha} += +\begin{pmatrix} +\cos\alpha&-\sin\alpha\\ +\sin\alpha& \cos\alpha +\end{pmatrix} +\] +ist also eine Einparameter-Untergruppe von $\operatorname{GL}_2(\mathbb{R})$. + +\subsubsection{Der harmonische Oszillator} +Eine Masse $m$ verbunden mit einer Feder mit der Federkonstanten $K$ +schwingt um die Ruhelage $x=0$ entsprechend der Differentialgleichung +\[ +m\frac{d^2}{dt^2} x(t) = -Kx(t). +\] +Die Kreisfrequenz der Schwingung ist +\[ +\omega = \sqrt{\frac{K}{m}}. +\] +Das System kann als zweidimensionales System im Phasenraum mit den +Koordinaten $x_1=x$ und $x_2=p=m\dot{x}$ beschrieben werden. +Die zweidimensionale Differentialgleichung ist +\begin{equation} +\left. +\begin{aligned} +\dot{x}(t) &= \frac{1}{m}p(t)\\ +\dot{p}(t) &= -Kx(t) +\end{aligned} +\quad +\right\} +\qquad\Rightarrow\qquad +\frac{d}{dt} +\begin{pmatrix}x(t)\\p(t)\end{pmatrix} += +\begin{pmatrix} +0&\frac{1}{m}\\ +-K&0 +\end{pmatrix} +\begin{pmatrix}x(t)\\p(t)\end{pmatrix}. +\label{chapter:gruppen:eqn:phasenraumdgl} +\end{equation} +Die Lösung der Differentialgleichung für die Anfangsbedingung $x(0)=1$ und +$p(0)=0$ ist +\[ +x(t) += +\cos \omega t +\qquad\Rightarrow\qquad +p(t) += +-\omega \sin\omega t, +\] +die Lösung zur Anfangsbedingung $x(0)=0$ und $p(0)=1$ ist +\[ +x(t) = \frac{1}{\omega} \sin\omega t, +\qquad +p(t) = \cos \omega t. +\] +In Matrixform kann man die allgemeine Lösung zur Anfangsbedingun $x(0)=x_0$ +und $p(0)=p_0$ +\[ +\begin{pmatrix} +x(t)\\ +p(t) +\end{pmatrix} += +\underbrace{ +\begin{pmatrix} + \cos \omega t & \frac{1}{\omega} \sin\omega t \\ +-\omega \sin\omega t & \cos\omega t +\end{pmatrix} +}_{\Phi_t} +\begin{pmatrix}x_0\\p_0\end{pmatrix} +\] +schreiben. +Die Matrizen $\Phi_t$ bilden eine Einparameter-Untergruppe von +$\operatorname{GL}_n(\mathbb{R})$, da +\begin{align*} +\Phi_s\Phi_t +&= +\begin{pmatrix} + \cos\omega s & \frac{1}{\omega} \sin\omega s \\ +-\omega \sin\omega s & \cos\omega s +\end{pmatrix} +\begin{pmatrix} + \cos\omega t & \frac{1}{\omega} \sin\omega t \\ +-\omega \sin\omega t & \cos\omega t +\end{pmatrix} +\\ +&= +\begin{pmatrix} +\cos\omega s \cos\omega t - \sin\omega s \sin\omega t +& \frac{1}{\omega} ( \cos\omega s \sin\omega t + \sin\omega s \cos \omega t) +\\ +-\omega (\sin\omega s \cos\omega t + \cos\omega s \sin\omega t ) +& \cos\omega s \cos\omega t -\sin\omega s \sin\omega t +\end{pmatrix} +\\ +&= +\begin{pmatrix} + \cos\omega(s+t) & \frac{1}{\omega}\sin\omega(s+t) \\ +-\omega \sin\omega(s+t) & \cos\omega(s+t) +\end{pmatrix} += +\Phi_{s+t} +\end{align*} +gilt. +Die Lösungen der +Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl} +sind in Abbildung~\ref{chapter:gruppen:fig:phasenraum} +Die Matrizen $\Phi_t$ beschreiben eine kontinuierliche Symmetrie +des Differentialgleichungssystems, welches den harmonischen Oszillator +beschreibt. + +\begin{figure} +\centering +\includegraphics{chapters/60-gruppen/images/phasenraum.pdf} +\caption{Die Lösungen der +Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl} +im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$. +\label{chapter:gruppen:fig:phasenraum}} +\end{figure} + +\subsection{Mannigfaltigkeiten \label{buch:subsection:mannigfaltigkeit}} \subsection{Der Satz von Noether -- cgit v1.2.1 From 260bd654d33b27c69b47e07217fa2212ef835fbd Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 3 Apr 2021 16:53:38 +0200 Subject: add new images --- buch/chapters/60-gruppen/images/Makefile | 19 ++ buch/chapters/60-gruppen/images/karten.pdf | Bin 0 -> 486440 bytes buch/chapters/60-gruppen/images/karten.tex | 111 ++++++++++ buch/chapters/60-gruppen/images/kartenkreis.pdf | Bin 0 -> 26310 bytes buch/chapters/60-gruppen/images/kartenkreis.tex | 179 ++++++++++++++++ buch/chapters/60-gruppen/images/phasenraum.pdf | Bin 24581 -> 72789 bytes buch/chapters/60-gruppen/images/phasenraum.tex | 72 +++++-- buch/chapters/60-gruppen/images/torus.png | Bin 0 -> 456476 bytes buch/chapters/60-gruppen/images/torus.pov | 189 +++++++++++++++++ buch/chapters/60-gruppen/symmetrien.tex | 264 +++++++++++++++++++++++- 10 files changed, 812 insertions(+), 22 deletions(-) create mode 100644 buch/chapters/60-gruppen/images/Makefile create mode 100644 buch/chapters/60-gruppen/images/karten.pdf create mode 100644 buch/chapters/60-gruppen/images/karten.tex create mode 100644 buch/chapters/60-gruppen/images/kartenkreis.pdf create mode 100644 buch/chapters/60-gruppen/images/kartenkreis.tex create mode 100644 buch/chapters/60-gruppen/images/torus.png create mode 100644 buch/chapters/60-gruppen/images/torus.pov (limited to 'buch/chapters/60-gruppen') diff --git a/buch/chapters/60-gruppen/images/Makefile b/buch/chapters/60-gruppen/images/Makefile new file mode 100644 index 0000000..bc65a71 --- /dev/null +++ b/buch/chapters/60-gruppen/images/Makefile @@ -0,0 +1,19 @@ +# +# Makefile +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +all: phasenraum.pdf kartenkreis.pdf karten.pdf + +phasenraum.pdf: phasenraum.tex + pdflatex phasenraum.tex + +kartenkreis.pdf: kartenkreis.tex + pdflatex kartenkreis.tex + +torus.png: torus.pov + povray +A0.1 -W1920 -H1080 -Otorus.png torus.pov + +karten.pdf: karten.tex torus.png + pdflatex karten.tex + diff --git a/buch/chapters/60-gruppen/images/karten.pdf b/buch/chapters/60-gruppen/images/karten.pdf new file mode 100644 index 0000000..f0a9879 Binary files /dev/null and b/buch/chapters/60-gruppen/images/karten.pdf differ diff --git a/buch/chapters/60-gruppen/images/karten.tex b/buch/chapters/60-gruppen/images/karten.tex new file mode 100644 index 0000000..a13d7c7 --- /dev/null +++ b/buch/chapters/60-gruppen/images/karten.tex @@ -0,0 +1,111 @@ +% +% karten.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\node at (0,0) {\includegraphics[width=10cm]{torus.png}}; + +\def\s{3} + +\node at (-3.5,-0.4) {$U_\alpha$}; +\node at (2.0,-0.4) {$U_\beta$}; + +\draw[->] (-2,-2.2) -- (-3,-4.3); +\node at (-2.5,-3.25) [left] {$\varphi_\alpha$}; + +\draw[->] (1.4,-1.7) -- (3,-4.3); +\node at (2.5,-3.25) [right] {$\varphi_\beta$}; + +\begin{scope}[xshift=-4.5cm,yshift=-8cm] + \begin{scope} + \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s}); + \begin{scope}[xshift=1.8cm,yshift=0.6cm,rotate=30] + \fill[color=gray!20] + (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s}); + \foreach \x in {0,0.2,...,1}{ + \draw[color=darkgreen] + ({\x*\s},{-0.2*\s}) + -- + ({\x*\s},{1.2*\s}); + } + \foreach \y in {-0.2,0,...,1.2}{ + \draw[color=orange] + (0,{\y*\s}) + -- + ({1*\s},{\y*\s}); + } + \end{scope} + \end{scope} + + \foreach \x in {0,0.2,...,1}{ + \draw[color=blue,line width=1.4pt] + ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s}); + } + \foreach \y in {-0.2,0,...,1.2}{ + \draw[color=red,line width=1.4pt] + (0,{\y*\s}) -- ({1*\s},{\y*\s}); + } + + \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}]; + \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}]; + + \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$}; + +\end{scope} + +\begin{scope}[xshift=1.5cm,yshift=-8cm] + \begin{scope} + \clip (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s}); + % x = - [ (sqrt(3)/2)*0.6+(1/2)*0.2 ] = -0.6196 + % y = - [ (-1/2)*0.6 + (sqrt(3)/2)*0.2 ] = + \begin{scope}[xshift=-1.8588cm,yshift=0.3804cm,rotate=-30] + \fill[color=gray!20] + (0,{-0.2*\s}) rectangle ({1*\s},{1.2*\s}); + \foreach \x in {0,0.2,...,1}{ + \draw[color=blue] + ({\x*\s},{-0.2*\s}) + -- + ({\x*\s},{1.2*\s}); + } + \foreach \y in {-0.2,0,...,1.2}{ + \draw[color=red] + (0,{\y*\s}) + -- + ({1*\s},{\y*\s}); + } + \end{scope} + \end{scope} + + \foreach \x in {0,0.2,...,1}{ + \draw[color=darkgreen,line width=1.4pt] + ({\x*\s},{-0.2*\s}) -- ({\x*\s},{1.2*\s}); + } + \foreach \y in {-0.2,0,...,1.2}{ + \draw[color=orange,line width=1.4pt] (0,{\y*\s}) -- ({1*\s},{\y*\s}); + } + \draw[->] ({\s*(-0.1)},0) -- ({1.1*\s},0) coordinate[label={$x_1$}]; + \draw[->] (0,{-0.3*\s}) -- (0,{1.3*\s}) coordinate[label={left:$x_2$}]; + \node at ({1*\s},{1.2*\s}) [above right] {$\mathbb{R}^2$}; +\end{scope} + +\draw[<-,color=white,opacity=0.8,line width=5pt] (2.5,-6.5) arc (55:100:6.5); +\draw[<-,shorten >= 0.1cm,shorten <= 0.3cm] (2.5,-6.5) arc (55:100:6.5); + +\node at (0,-5.8) {$\varphi_\beta\circ\varphi_\alpha^{-1}$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/60-gruppen/images/kartenkreis.pdf b/buch/chapters/60-gruppen/images/kartenkreis.pdf new file mode 100644 index 0000000..3235779 Binary files /dev/null and b/buch/chapters/60-gruppen/images/kartenkreis.pdf differ diff --git a/buch/chapters/60-gruppen/images/kartenkreis.tex b/buch/chapters/60-gruppen/images/kartenkreis.tex new file mode 100644 index 0000000..be6d6b3 --- /dev/null +++ b/buch/chapters/60-gruppen/images/kartenkreis.tex @@ -0,0 +1,179 @@ +% +% kartenkreis.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{3} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\fill[color=red!20] (0,-1) rectangle (1.5,1); +\fill[color=blue!20] (-1.5,-1) rectangle (0,1); +\fill[color=darkgreen!40,opacity=0.5] (-1,0) rectangle (1,1.5); +\fill[color=orange!40,opacity=0.5] (-1,-1.5) rectangle (1,0); +\fill[color=white] (0,0) circle[radius=1]; + +\fill[color=gray!20] + (0,-1.5) -- (0.02,-1.6) -- (0.5,-1.8) -- (0.98,-1.6) -- (1,-1.5) + -- cycle; +\fill[color=gray!20] + (0,1.5) -- (0.02,1.6) -- (0.5,1.8) -- (0.98,1.6) -- (1,1.5) + -- cycle; +\fill[color=gray!20] + (0,-1.5) -- (-0.02,-1.6) -- (-0.5,-1.8) -- (-0.98,-1.6) -- (-1,-1.5) + -- cycle; +\fill[color=gray!20] + (0,1.5) -- (-0.02,1.6) -- (-0.5,1.8) -- (-0.98,1.6) -- (-1,1.5) + -- cycle; + +\fill[color=gray!20] + (1.5,0) -- (1.6,0.02) -- (1.8,0.5) -- (1.6,0.98) -- (1.5,1) + -- cycle; +\fill[color=gray!20] + (-1.5,0) -- (-1.6,0.02) -- (-1.8,0.5) -- (-1.6,0.98) -- (-1.5,1) + -- cycle; +\fill[color=gray!20] + (1.5,0) -- (1.6,-0.02) -- (1.8,-0.5) -- (1.6,-0.98) -- (1.5,-1) + -- cycle; +\fill[color=gray!20] + (-1.5,0) -- (-1.6,-0.02) -- (-1.8,-0.5) -- (-1.6,-0.98) -- (-1.5,-1) + -- cycle; + +\draw[->] (0.5,-1.8) arc (-180:-90:0.1) arc (-90:0:1.3) arc (0:90:0.1); +\draw[->] (1.8,0.5) arc (-90:0:0.1) arc (0:90:1.3) arc (90:180:0.1); +\draw[->] (-0.5,1.8) arc (0:90:0.1) arc (90:180:1.3) arc (180:270:0.1); +\draw[->] (-1.8,-0.5) arc (90:180:0.1) arc (180:270:1.3) arc (270:360:0.1); + +\node at (1.01,1.32) + [right] {$\varphi_3\circ \varphi_1^{-1}(y)=\sqrt{1-y^2}$}; +\node at (1.01,-1.28) + [right] {$\varphi_1\circ \varphi_4^{-1}(x)=-\sqrt{1-x^2}$}; +\node at (-1.24,1.32) + [left] {$\varphi_2\circ\varphi_4^{-1}(x)=\sqrt{1-x^2}$}; +\node at (-1.18,-1.28) + [left] {$\varphi_4\circ\varphi_2^{-1}(y)=-\sqrt{1-y^2}$}; + +\foreach \y in {0.1,0.3,...,0.9}{ + \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm] + ({sqrt(1-\y*\y)},{\y}) -- (1.5,\y); + \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm] + ({sqrt(1-\y*\y)},{-\y}) -- (1.5,-\y); + \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm] + ({-sqrt(1-\y*\y)},{\y}) -- (-1.5,\y); + \draw[->,color=blue,shorten >= 0.1cm,shorten <= 0.3cm] + ({-sqrt(1-\y*\y)},{-\y}) -- (-1.5,-\y); +} +\foreach \x in {0.1,0.3,...,0.9}{ + \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm] + ({\x},{sqrt(1-\x*\x)}) -- ({\x},1.5); + \draw[->,color=darkgreen,shorten >= 0.1cm,shorten <= 0.3cm] + ({-\x},{sqrt(1-\x*\x)}) -- ({-\x},1.5); + \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm] + ({\x},{-sqrt(1-\x*\x)}) -- ({\x},-1.5); + \draw[->,color=orange,shorten >= 0.1cm,shorten <= 0.3cm] + ({-\x},{-sqrt(1-\x*\x)}) -- ({-\x},-1.5); +} + +\draw[color=gray!20,line width=3pt] (0,0) circle[radius=1]; + +\def\r{1.02} + +\begin{scope} + \clip (0,-1.1) rectangle (1.1,1.1); + \draw[color=red,line width=1.4pt] (-89:\r) arc (-89:89:\r); + \draw[color=red,line width=1.4pt] (0,-\r) circle[radius=0.02]; + \draw[color=red,line width=1.4pt] (0,\r) circle[radius=0.02]; +\end{scope} + +\begin{scope} + \clip (-1.1,-1.1) rectangle (0,1.1); + \draw[color=blue,line width=1.4pt] (91:\r) arc (91:269:\r); + \draw[color=blue,line width=1.4pt] (0,-\r) circle[radius=0.02]; + \draw[color=blue,line width=1.4pt] (0,\r) circle[radius=0.02]; +\end{scope} + +\xdef\r{0.98} + +\begin{scope} + \clip (-1.1,0) rectangle (1.1,1.1); + \draw[color=darkgreen,line width=1.4pt] (1:\r) arc (1:179:\r); + \draw[color=darkgreen,line width=1.4pt] (\r,0) circle[radius=0.02]; + \draw[color=darkgreen,line width=1.4pt] (-\r,0) circle[radius=0.02]; +\end{scope} + +\begin{scope} + \clip (-1.1,-1.1) rectangle (1.1,0); + \draw[color=orange,line width=1.4pt] (181:\r) arc (181:359:\r); + \draw[color=orange,line width=1.4pt] (\r,0) circle[radius=0.02]; + \draw[color=orange,line width=1.4pt] (-\r,0) circle[radius=0.02]; +\end{scope} + +\begin{scope}[yshift=1.5cm] + \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$\mathbb{R}$}]; + \begin{scope} + \clip (-1,-0.1) rectangle (1,0.1); + \draw[color=darkgreen,line width=1.4pt] (-0.98,0) -- (0.98,0); + \draw[color=darkgreen,line width=1.4pt] (-1,0) + circle[radius=0.02]; + \draw[color=darkgreen,line width=1.4pt] (1,0) + circle[radius=0.02]; + \end{scope} +\end{scope} + +\begin{scope}[yshift=-1.5cm] + \draw[->] (-1.1,0) -- (1.15,0) coordinate[label={below:$\mathbb{R}$}]; + \begin{scope} + \clip (-1,-0.1) rectangle (1,0.1); + \draw[color=orange,line width=1.4pt] (-0.98,0) -- (0.98,0); + \draw[color=orange,line width=1.4pt] (-1,0) circle[radius=0.02]; + \draw[color=orange,line width=1.4pt] (1,0) circle[radius=0.02]; + \end{scope} +\end{scope} + +\begin{scope}[xshift=1.5cm] + \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$\mathbb{R}$}]; + \begin{scope} + \clip (-0.1,-1) rectangle (0.1,1); + \draw[color=red,line width=1.4pt] (0,-0.98) -- (0,0.98); + \draw[color=red,line width=1.4pt] (0,-1) circle[radius=0.02]; + \draw[color=red,line width=1.4pt] (0,1) circle[radius=0.02]; + \end{scope} +\end{scope} + +\begin{scope}[xshift=-1.5cm] + \draw[->] (0,-1.1) -- (0,1.15) coordinate[label={left:$\mathbb{R}$}]; + \begin{scope} + \clip (-0.1,-1) rectangle (0.1,1); + \draw[color=blue,line width=1.4pt] (0,-0.98) -- (0,0.98); + \draw[color=blue,line width=1.4pt] (0,-1) circle[radius=0.02]; + \draw[color=blue,line width=1.4pt] (0,1) circle[radius=0.02]; + \end{scope} +\end{scope} + +\node[color=red] at (23:1) [right] {$U_{x>0}$}; +\node[color=red] at (1.25,0) [right] {$\varphi_1$}; + +\node[color=blue] at (157:1) [left] {$U_{x<0}$}; +\node[color=blue] at (-1.25,0) [left] {$\varphi_2$}; + +\node[color=darkgreen] at (115:1) [below right] {$U_{y>0}$}; +\node[color=darkgreen] at (0,1.25) [above] {$\varphi_4$}; + +\node[color=orange] at (-115:1) [above right] {$U_{y<0}$}; +\node[color=orange] at (0,-1.25) [below] {$\varphi_4$}; + +\draw[->] (-1.1,0) -- (1.15,0) coordinate[label={$x$}]; +\draw[->] (0,-1.1) -- (0,1.15) coordinate[label={right:$y$}]; + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/60-gruppen/images/phasenraum.pdf b/buch/chapters/60-gruppen/images/phasenraum.pdf index 2ab46e4..adfb0c6 100644 Binary files a/buch/chapters/60-gruppen/images/phasenraum.pdf and b/buch/chapters/60-gruppen/images/phasenraum.pdf differ diff --git a/buch/chapters/60-gruppen/images/phasenraum.tex b/buch/chapters/60-gruppen/images/phasenraum.tex index 136d91d..2bccc27 100644 --- a/buch/chapters/60-gruppen/images/phasenraum.tex +++ b/buch/chapters/60-gruppen/images/phasenraum.tex @@ -14,32 +14,80 @@ \def\skala{1} \begin{tikzpicture}[>=latex,thick,scale=\skala] -\pgfmathparse{1/sqrt(2)} +\def\m{1} +\def\K{0.444} + +\pgfmathparse{sqrt(\K/\m)} \xdef\o{\pgfmathresult} \def\punkt#1#2{ ({#2*cos(#1)},{\o*#2*sin(#1)}) } -\foreach \r in {1,2,...,6}{ - \draw[line width=0.5pt] - plot[domain=0:359,samples=360] +\foreach \r in {0.5,1,...,6}{ + \draw plot[domain=0:359,samples=360] ({\r*cos(\x)},{\o*\r*sin(\x)}) -- cycle; } -\draw[color=red,line width=1.4pt] - plot[domain=0:359,samples=360] - ({4*cos(\x)},{\o*4*sin(\x)}) -- cycle; -\draw[->] (-6.1,0) -- (6.3,0) coordinate[label={$x$}]; -\draw[->] (0,-4.4) -- (0,4.7) coordinate[label={right:$p$}]; +\def\tangente#1#2{ + \pgfmathparse{#2/\m} + \xdef\u{\pgfmathresult} + + \pgfmathparse{-#1*\K} + \xdef\v{\pgfmathresult} + + \pgfmathparse{sqrt(\u*\u+\v*\v)} + \xdef\l{\pgfmathresult} -\node at \punkt{0}{4} [below right] {$x_0$}; -\node at \punkt{90}{4} [above left] {$\omega x_0$}; + \fill[color=blue] (#1,#2) circle[radius=0.03]; + \draw[color=blue,line width=0.5pt] + ({#1-0.2*\u/\l},{#2-0.2*\v/\l}) + -- + ({#1+0.2*\u/\l},{#2+0.2*\v/\l}); +} + +\foreach \x in {-6.25,-5.75,...,6.3}{ + \foreach \y in {-4.25,-3.75,...,4.3}{ + \tangente{\x}{\y} + } +} -\fill[color=white] \punkt{60}{4} rectangle \punkt{58}{5.9}; +%\foreach \x in {0.5,1,...,5.5,6}{ +% \tangente{\x}{0} +% \tangente{-\x}{0} +% \foreach \y in {0.5,1,...,4}{ +% \tangente{\x}{\y} +% \tangente{-\x}{\y} +% \tangente{\x}{-\y} +% \tangente{-\x}{-\y} +% } +%} +%\foreach \y in {0.5,1,...,4}{ +% \tangente{0}{\y} +% \tangente{0}{-\y} +%} + +\fill[color=white,opacity=0.7] \punkt{60}{4} rectangle \punkt{59}{5.8}; +\fill[color=white,opacity=0.7] \punkt{0}{4} rectangle \punkt{18}{4.9}; + +\draw[->,color=red,line width=1.4pt] + plot[domain=0:60,samples=360] + ({4*cos(\x)},{\o*4*sin(\x)}); + +\draw[->] (-6.5,0) -- (6.7,0) coordinate[label={$x$}]; +\draw[->] (0,-4.5) -- (0,4.7) coordinate[label={right:$p$}]; \fill[color=red] \punkt{60}{4} circle[radius=0.08]; \node[color=red] at \punkt{60}{4} [above right] {$\begin{pmatrix}x(t)\\p(t)\end{pmatrix}$}; +\fill[color=red] \punkt{0}{4} circle[radius=0.08]; +\node[color=red] at \punkt{0}{4} [above right] + {$\begin{pmatrix}x_0\\0\end{pmatrix}$}; + +\fill[color=white] (4,0) circle[radius=0.05]; +\node at (3.9,0) [below right] {$x_0$}; +\fill (0,{\o*4}) circle[radius=0.05]; +\node at (0.1,{\o*4+0.05}) [below left] {$\omega x_0$}; + \end{tikzpicture} \end{document} diff --git a/buch/chapters/60-gruppen/images/torus.png b/buch/chapters/60-gruppen/images/torus.png new file mode 100644 index 0000000..c42440f Binary files /dev/null and b/buch/chapters/60-gruppen/images/torus.png differ diff --git a/buch/chapters/60-gruppen/images/torus.pov b/buch/chapters/60-gruppen/images/torus.pov new file mode 100644 index 0000000..3a8e327 --- /dev/null +++ b/buch/chapters/60-gruppen/images/torus.pov @@ -0,0 +1,189 @@ +// +// diffusion.pov +// +// (c) 2021 Prof Dr Andreas Müller, OST Ostscheizer Fachhochschule +// +#version 3.7; +#include "colors.inc" + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.034; +#declare N = 100; +#declare r = 0.43; +#declare R = 1; + +camera { + location <43, 25, -20> + look_at <0, -0.01, 0> + right 16/9 * x * imagescale + up y * imagescale +} + +light_source { + <10, 20, -40> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + +#macro rotiere(phi, vv) + < cos(phi) * vv.x - sin(phi) * vv.z, vv.y, sin(phi) * vv.x + cos(phi) * vv.z > +#end + +#macro punkt(phi,theta) + rotiere(phi, < R + r * cos(theta), r * sin(theta), 0 >) +#end + +mesh { + #declare phistep = 2 * pi / N; + #declare thetastep = 2 * 2 * pi / N; + #declare phi = 0; + #while (phi < 2 * pi - phistep/2) + #declare theta = 0; + #while (theta < 2 * pi - thetastep/2) + triangle { + punkt(phi , theta ), + punkt(phi + phistep, theta ), + punkt(phi + phistep, theta + thetastep) + } + triangle { + punkt(phi , theta ), + punkt(phi + phistep, theta + thetastep), + punkt(phi , theta + thetastep) + } + #declare theta = theta + thetastep; + #end + #declare phi = phi + phistep; + #end + pigment { + color Gray + } + finish { + specular 0.9 + metallic + } +} + +#declare thetastart = -0.2; +#declare thetaend = 1.2; +#declare phistart = 5; +#declare phiend = 6; + +union { + #declare thetastep = 0.2; + #declare theta = thetastart; + #while (theta < thetaend + thetastep/2) + #declare phistep = (phiend-phistart)/N; + #declare phi = phistart; + #while (phi < phiend - phistep/2) + sphere { punkt(phi,theta), 0.01 } + cylinder { + punkt(phi,theta), + punkt(phi+phistep,theta), + 0.01 + } + #declare phi = phi + phistep; + #end + sphere { punkt(phi,theta), 0.01 } + #declare theta = theta + thetastep; + #end + + pigment { + color Red + } + finish { + specular 0.9 + metallic + } +} + +union { + #declare phistep = 0.2; + #declare phi = phistart; + #while (phi < phiend + phistep/2) + #declare thetastep = (thetaend-thetastart)/N; + #declare theta = thetastart; + #while (theta < thetaend - thetastep/2) + sphere { punkt(phi,theta), 0.01 } + cylinder { + punkt(phi,theta), + punkt(phi,theta+thetastep), + 0.01 + } + #declare theta = theta + thetastep; + #end + sphere { punkt(phi,theta), 0.01 } + #declare phi = phi + phistep; + #end + pigment { + color Blue + } + finish { + specular 0.9 + metallic + } +} + +#macro punkt2(a,b) + punkt(5.6+a*sqrt(3)/2-b/2,0.2+a/2 + b*sqrt(3)/2) +#end + +#declare darkgreen = rgb<0,0.6,0>; + +#declare astart = 0; +#declare aend = 1; +#declare bstart = -0.2; +#declare bend = 1.2; +union { + #declare a = astart; + #declare astep = 0.2; + #while (a < aend + astep/2) + #declare b = bstart; + #declare bstep = (bend - bstart)/N; + #while (b < bend - bstep/2) + sphere { punkt2(a,b), 0.01 } + cylinder { punkt2(a,b), punkt2(a,b+bstep), 0.01 } + #declare b = b + bstep; + #end + sphere { punkt2(a,b), 0.01 } + #declare a = a + astep; + #end + pigment { + color darkgreen + } + finish { + specular 0.9 + metallic + } +} +union { + #declare b = bstart; + #declare bstep = 0.2; + #while (b < bend + bstep/2) + #declare a = astart; + #declare astep = (aend - astart)/N; + #while (a < aend - astep/2) + sphere { punkt2(a,b), 0.01 } + cylinder { punkt2(a,b), punkt2(a+astep,b), 0.01 } + #declare a = a + astep; + #end + sphere { punkt2(a,b), 0.01 } + #declare b = b + bstep; + #end + pigment { + color Orange + } + finish { + specular 0.9 + metallic + } +} diff --git a/buch/chapters/60-gruppen/symmetrien.tex b/buch/chapters/60-gruppen/symmetrien.tex index 80f6534..b686791 100644 --- a/buch/chapters/60-gruppen/symmetrien.tex +++ b/buch/chapters/60-gruppen/symmetrien.tex @@ -156,6 +156,14 @@ D_{\alpha} ist also eine Einparameter-Untergruppe von $\operatorname{GL}_2(\mathbb{R})$. \subsubsection{Der harmonische Oszillator} +\begin{figure} +\centering +\includegraphics{chapters/60-gruppen/images/phasenraum.pdf} +\caption{Die Lösungen der +Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl} +im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$. +\label{chapter:gruppen:fig:phasenraum}} +\end{figure} Eine Masse $m$ verbunden mit einer Feder mit der Federkonstanten $K$ schwingt um die Ruhelage $x=0$ entsprechend der Differentialgleichung \[ @@ -206,7 +214,7 @@ p(t) = \cos \omega t. \] In Matrixform kann man die allgemeine Lösung zur Anfangsbedingun $x(0)=x_0$ und $p(0)=p_0$ -\[ +\begin{equation} \begin{pmatrix} x(t)\\ p(t) @@ -217,9 +225,10 @@ p(t) \cos \omega t & \frac{1}{\omega} \sin\omega t \\ -\omega \sin\omega t & \cos\omega t \end{pmatrix} -}_{\Phi_t} +}_{\displaystyle =\Phi_t} \begin{pmatrix}x_0\\p_0\end{pmatrix} -\] +\label{buch:gruppen:eqn:phi} +\end{equation} schreiben. Die Matrizen $\Phi_t$ bilden eine Einparameter-Untergruppe von $\operatorname{GL}_n(\mathbb{R})$, da @@ -260,17 +269,252 @@ Die Matrizen $\Phi_t$ beschreiben eine kontinuierliche Symmetrie des Differentialgleichungssystems, welches den harmonischen Oszillator beschreibt. -\begin{figure} -\centering -\includegraphics{chapters/60-gruppen/images/phasenraum.pdf} -\caption{Die Lösungen der +\subsubsection{Fluss einer Differentialgleichung} +Die Abbildungen $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} sind jeweils +Matrizen in $\operatorname{GL}_n(\mathbb{R})$. +Der Grund dafür ist, dass die Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl} -im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$. -\label{chapter:gruppen:fig:phasenraum}} -\end{figure} +linear ist. +Dies hat zur Folge, dass für zwei Anfangsbedingungen $x_1,x_2\in\mathbb{R}^2$ +die Lösung für Linearkombinationen $\lambda x_1+\mu x_2$ durch +Linearkombination der Lösungen erhalten werden kann, also +aus der Formel +\[ +\Phi_t (\lambda x_1 + \mu x_2) = \lambda \Phi_t x_1 + \mu \Phi_t x_2. +\] +Dies zeigt, dass $\Phi_t$ für jedes $t$ eine lineare Abbildung sein muss. + +Für eine beliebige Differentialgleichung kann man immer noch eine Abbildung +$\Phi$ konstruieren, die aber nicht mehr linear ist. +Sei dazu die Differentialgleichung erster Ordnung +\begin{equation} +\frac{dx}{dt} += +f(t,x) +\qquad\text{mit}\qquad +f\colon \mathbb{R}\times\mathbb{R}^n \to \mathbb{R}^n +\label{buch:gruppen:eqn:dgl} +\end{equation} +gegeben. +Für jeden Anfangswert $x_0\in\mathbb{R}^n$ kann man mindestens für eine +gewisse Zeit $t <\varepsilon$ eine Lösung $x(t,x_0)$ finden mit $x(t,x_0)=x_0$. +Aus der Theorie der gewöhnlichen Differentialgleichungen ist auch +bekannt, dass $x(t,x_0)$ mindestens in der Nähe von $x_0$ differenzierbar von +$x_0$ abhängt. +Dies erlaubt eine Abbildung +\[ +\Phi\colon \mathbb{R}\times \mathbb{R}^n \to \mathbb{R}^n +: +(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0) +\] +zu definieren, die sowohl von $t$ als auch von $x_0$ differenzierbar +abhängt. +Aus der Definition folgt unmittelbar, dass $\Phi_0(x_0)=x_0$ ist, dass +also $\Phi_0$ die identische Abbildung von $\mathbb{R}^n$ ist. + +Aus der Definition lässt sich auch ableiten, dass +$\Phi_{s+t}=\Phi_s\circ\Phi_t$ gilt. +$\Phi_t(x_0)=x(t,x_0)$ ist der Endpunkt der Bahn, die bei $x_0$ beginnt +und sich während der Zeit $t$ entwickelt. +$\Phi_s(x(t,x_0))$ ist dann der Endpunkt der Bahn, die bei $x(t,x_0)$ +beginnt und sich während der Zeit $s$ entwickelt. +Somit ist $\Phi_s\circ \Phi_t(x_0)$ der Endpunkt der Bahn, die bei +$x_0$ beginnt und sich über die Zeit $s+t$ entwickelt. +In Formeln bedeutet dies +\[ +\Phi_{s+t} = \Phi_s\circ \Phi_t. +\] +Die Abbildung $t\mapsto \Phi_t$ ist also wieder ein Homomorphismus +von der additiven Gruppe $\mathbb{R}$ in eine Gruppe von differenzierbaren +Abbildungen $\mathbb{R}^n\to\mathbb{R}^n$. + +\begin{definition} +Die Abbildung +\[ +\Phi\colon \mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n +: +(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0) +\] +heisst der {\em Fluss} der Differentialgleichung +\eqref{buch:gruppen:eqn:dgl}, +wenn für jedes $x_0\in\mathbb{R}^n$ die Kurve $t\mapsto \Phi_t(x_0)$ +eine Lösung der Differentialgleichung ist mit Anfangsbedingung $x_0$. +\end{definition} + +Die Abbildung $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} ist also +der Fluss der Differentialgleichung des harmonischen Oszillators. \subsection{Mannigfaltigkeiten \label{buch:subsection:mannigfaltigkeit}} +Eine Differentialgleichung der Form~\eqref{buch:gruppen:eqn:dgl} +stellt einen Zusammenhang her zwischen einem Punkt $x$ und der +Tangentialrichtung einer Bahnkurve $f(t,x)$. +Die Ableitung liefert die lineare Näherung der Bahkurve +\[ +x(t_0+h) = x(t_0) + h f(t_0,x_0) + o(h) +\] +für $h$ in einer kleinen Umgebung von $0$. +Das funktioniert auch, weil $f(t_0,x_0)$ selbst ein Vektor von +$\mathbb{R}^n$ ist, in dem die Bahnkurve verläuft. + +Diese Idee funktioniert nicht mehr zum Beispiel für eine +Differentialgleichung auf einer Kugeloberfläche, weil alle Punkte +$x(t_0)+hf(t_0,x_0)$ für alle $h\ne 0$ nicht mehr auf der Kugeloberfläche +liegen. +Physikalisch äussert sich das ein einer zusätzlichen Kraft, die nötig +ist, die Bahn auf der Kugeloberfläche zu halten. +Diese Kraft stellt zum Beispiel sicher, dass die Vektoren $f(t,x)$ für +Punkte $x$ auf der Kugeloberfläche immer tangential an die Kugel sind. +Trotzdem ist der Tangentialvektor oder der Geschwindigkeitsvektor +nicht mehr ein Objekt, welches als Teil der Kugeloberfläche definiert +werden kann, er kann nur definiert werden, wenn man sich die Kugel als +in einen höherdimensionalen Raum eingebettet vorstellen kann. + +Um die Idee der Differentialgleichung auf einer beliebigen Fläche +konsistent zu machen ist daher notwendig, die Idee einer Tagentialrichtung +auf eine Art zu definieren, die nicht von der Einbettung der Fläche +in den $n$-dimensionalen Raum abhängig ist. +Das in diesem Abschnitt entwickelte Konzept der {\em Mannigfaltigkeit} +löst dieses Problem. + +\subsubsection{Karten} +Die Navigation auf der Erdoberfläche verwendet das Koordinatensystem +der geographischen Länge und Breite. +Dieses Koordinatensystem funktioniert gut, solange man sich nicht an +den geographischen Polen befindet, denn deren Koordinaten sind +nicht mehr eindeutig. +Alle Punkte mit geographischer Breite $90^\circ$ und beliebiger +geographischer Länge beschreiben den Nordpol. +Auch die Ableitung funktioniert dort nicht mehr. +Bewegt man sich mit konstanter Geschwindigkeit über den Nordpol, +springt die Ableitung der geographischen Breite von einem positiven +Wert auf einen negativen Wert, sie kann also nicht differenzierbar sein. +Diese Einschränkungen sind in der Praxis nur ein geringes Problem dar, +da die meisten Reisen nicht über die Pole erfolgen. + +Der Polarforscher, der in unmittelbarer Umgebung des Poles arbeitet, +kann das Problem lösen, indem er eine lokale Karte für das Gebiet +um den Pol erstellt. +Dafür kann er beliebige Koordinaten verwenden, zum Beispiel auch +ein kartesisches Koordinatensystem, er muss nur eine Methode haben, +wie er seine Koordinaten wieder auf geographische Länge und Breite +umrechnen will. +Und wenn er über Geschwindigkeiten kommunizieren will, dann muss +er auch Ableitungen von Kurven in seinem kartesischen Koordinatensystem +umrechnen können auf die Kugelkoordinaten. +Dazu muss seine Umrechnungsformel von kartesischen Koordinaten +auf Kugelkoordinaten differenzierbar sein. + +Diese Idee wird vom Konzept der Mannigfaltigkeit verallgemeinert. +Eine $n$-dimensionale {\em Mannigfaltigkeit} ist eine Menge $M$ von Punkten, +die lokal, also in der Umgebung eines Punktes, mit möglicherweise mehreren +verschiedenen Koordinatensystemen versehen werden kann. +Ein Koordinatensystem ist eine umkehrbare Abbildung einer offenen Teilmenge +$U\subset M$ in den Raum $\mathbb{R}^n$. +Die Komponenten dieser Abbildung heissen die {\em Koordinaten}. + +\begin{definition} +Eine Karte auf $M$ ist eine umkehrbare Abbildung +$\varphi\colon U\to \mathbb{R}^n$. +Ein differenzierbarer Atlas ist eine Familie von Karten $\varphi_\alpha$ +derart, dass die Definitionsgebiete $U_\alpha$ die ganze Menge $M$ +überdecken, und dass die Kartenwechsel Abbildungen +\[ +\varphi_\beta\circ\varphi_\alpha^{-1} +\colon +\varphi_\alpha(U_\alpha\cap U_\beta) +\to +\varphi_\beta(U_\alpha\cap U_\beta) +\] +als Abbildung von offenen Teilmengen von $\mathbb{R}^n$ differenzierbar +ist. +Eine {$n$-dimensionale differenzierbare Mannigfaltigkeit} ist eine +Menge $M$ mit einem differenzierbaren Atlas. +\end{definition} + +Karten und Atlanten regeln also nur, wie sich verschiedene lokale +Koordinatensysteme ineinander umrechnen lassen. + +\begin{beispiel} +$M=\mathbb{R}^n$ ist eine differenzierbare Mannigfaltigkeit denn +die identische Abbildung $M\to \mathbb{R}^n$ ist eine Karte und ein +Atlas von $M$. +\end{beispiel} + +\begin{beispiel} +\begin{figure} +\centering +\includegraphics{chapters/60-gruppen/images/kartenkreis.pdf} +\caption{Karten für die Kreislinie $S^1\subset\mathbb{R}^2$. +\label{buch:gruppen:fig:kartenkreis}} +\end{figure} +Die Kreislinie in in der Ebene ist eine $1$-dimensionale Mannigfaltigkeit. +Natürlich kann sie nicht mit einer einzigen Karte beschrieben werden, +da es keine umkehrbaren Abbildungen zwischen $\mathbb{R}$ und der Kreislinie +gibt. +Man kann aber die folgenden vier Karten verwenden: +\begin{align*} +\varphi_1&\colon U_{x>0}\{(x,y)\;|\;x^2+y^2=1\wedge x>0\} \to +: +(x,y) \mapsto y\\ +\varphi_2&\colon U_{x<0}\{(x,y)\;|\;x^2+y^2=1\wedge x<0\} \to +: +(x,y) \mapsto y\\ +\varphi_3&\colon U_{y>0}\{(x,y)\;|\;x^2+y^2=1\wedge y>0\} \to +: +(x,y) \mapsto x\\ +\varphi_4&\colon U_{y<0}\{(x,y)\;|\;x^2+y^2=1\wedge y<0\} \to +: +(x,y) \mapsto x +\end{align*} +Die Werte der Kartenabbildungen sind genau die $x$- und $y$-Koordinaten +auf der in den Raum $\mathbb{R}^2$ eingebetteten Kreislinie. + +Für $\varphi_1$ und $\varphi_2$ sind die Definitionsgebiete disjunkt, +hier gibt es also keine Notwendigkeit, Koordinatenumrechnungen vornehmen +zu können. +Dasselbe gilt für $\varphi_3$ und $\varphi_4$. + +Die nichtleeren Schnittmengen der verschiedenen Kartengebiete beschreiben +jeweils die Punkte der Kreislinie in einem Quadranten. +Die Umrechnung zwischen den Koordinaten erfolgt je nach Quadrant durch +\[ +x\mapsto y=\pm\sqrt{1-x^2\mathstrut} +\qquad\text{oder}\qquad +y\mapsto x=\pm\sqrt{1-y^2\mathstrut}, +\] +diese Abbildungen sind im offenen Intervall $(-1,1)$ differenzierbar, +Schwierigkeiten mit der Ableitungen ergeben sich nur an den Stellen +$x=\pm1$ und $y=\pm 1$, die in einem Überschneidungsgebiet von Karten +nicht vorkommen können. +Somit bilden die vier Karten einen differenzierbaren Atlas für +die Kreislinie (Abbildung~\ref{buch:gruppen:fig:kartenkreis}). +\end{beispiel} + +\begin{beispiel} +Ganz analog zum vorangegangenen Beispiel über die Kreisline lässt sich +für eine $n$-di\-men\-sio\-nale Sphäre +\[ +S^n = \{ (x_1,\dots,x_{n+1})\;|\; x_0^2+\dots+x_n^2=1\} +\] +immer ein Atlas aus $2^{n+1}$ Karten mit den Koordinatenabbildungen +\[ +\varphi_{i,\pm} +\colon +U_{i,\pm} += +\{p\in S^n\;|\; \pm x_i >0\} +\to +\mathbb{R}^n +: +p\mapsto (x_1,\dots,\hat{x}_i,\dots,x_{n+1}) +\] +konstruieren, der $S^n$ zu einer $n$-dimensionalen Mannigfaltigkeit macht. +\end{beispiel} + +\subsubsection{Tangentialraum} + +\subsubsection{Einbettung und Karten} \subsection{Der Satz von Noether \label{buch:subsection:noether}} -- cgit v1.2.1 From e4713250376d10840dbfd23ca353e394aa84be08 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 3 Apr 2021 20:52:04 +0200 Subject: =?UTF-8?q?Info=20=C3=BCber=20Mannigfaltigkeiten=20hinzuf=C3=BCgen?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/chapters/60-gruppen/images/karten.pdf | Bin 486440 -> 487946 bytes buch/chapters/60-gruppen/images/karten.tex | 3 +- buch/chapters/60-gruppen/lie-gruppen.tex | 99 +++++++++++++++++++++++++++++ buch/chapters/60-gruppen/symmetrien.tex | 83 ++++++++++++++++++++++-- 4 files changed, 179 insertions(+), 6 deletions(-) (limited to 'buch/chapters/60-gruppen') diff --git a/buch/chapters/60-gruppen/images/karten.pdf b/buch/chapters/60-gruppen/images/karten.pdf index f0a9879..d769cca 100644 Binary files a/buch/chapters/60-gruppen/images/karten.pdf and b/buch/chapters/60-gruppen/images/karten.pdf differ diff --git a/buch/chapters/60-gruppen/images/karten.tex b/buch/chapters/60-gruppen/images/karten.tex index a13d7c7..c8eb4a3 100644 --- a/buch/chapters/60-gruppen/images/karten.tex +++ b/buch/chapters/60-gruppen/images/karten.tex @@ -104,7 +104,8 @@ \draw[<-,color=white,opacity=0.8,line width=5pt] (2.5,-6.5) arc (55:100:6.5); \draw[<-,shorten >= 0.1cm,shorten <= 0.3cm] (2.5,-6.5) arc (55:100:6.5); -\node at (0,-5.8) {$\varphi_\beta\circ\varphi_\alpha^{-1}$}; +\node at (0,-5.9) + {$\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}$}; \end{tikzpicture} \end{document} diff --git a/buch/chapters/60-gruppen/lie-gruppen.tex b/buch/chapters/60-gruppen/lie-gruppen.tex index 1268ce2..48d6b43 100644 --- a/buch/chapters/60-gruppen/lie-gruppen.tex +++ b/buch/chapters/60-gruppen/lie-gruppen.tex @@ -6,6 +6,105 @@ \section{Lie-Gruppen \label{buch:section:lie-gruppen}} \rhead{Lie-Gruppen} +Die in bisherigen Beispielen untersuchten Matrizengruppen zeichnen sich +durch zusätzliche Eigenschaften aus. +Die Gruppe +\[ +\operatorname{GL}_n(\mathbb{R}) += +\{ A \in M_n(\mathbb{R})\;|\; \det A \ne 0\} +\] +besteht aus den Matrizen, deren Determinante nicht $0$ ist. +Da die Menge der Matrizen mit $\det A=0$ eine abgeschlossene Menge +in $M_n(\mathbb{R}) \simeq \mathbb{R}^{n^2}$ ist, ist +$\operatorname{GL}_n(\mathbb{R})$ eine offene Teilmenge in $\mathbb{R}^{n^2}$, +sie besitzt also automatisch die Struktur einer $n^2$-Mannigfaltigkeit. +Dies gilt jedoch auch für alle anderen Matrizengruppen, die in diesem +Abschnitt genauer untersucht werden sollen. + +\subsection{Mannigfaltigkeitsstruktur der Matrizengruppen +\label{buch:subsection:mannigfaltigkeitsstruktur-der-matrizengruppen}} +Eine Matrizengruppe wird automatsich zu einer Mannigfaltigkeit, +wenn es gelingt, eine Karte für eine Umgebung des neutralen Elements +zu finden. +Dazu muss gezeigt werden, dass sich aus einer solchen Karte für jedes +andere Gruppenelement eine Karte für eine Umgebung ableiten lässt. +Sei also $\varphi_e\colon U_e\mathbb{R}^N$ eine Karte für die Umgebung +$U_e\subset G$ von $e\in G$. +Für $g\in G$ ist dann die Abbildung +\[ +\varphi_g +\colon +U_g += +gU_e +\to +\mathbb{R} +: +h\mapsto \varphi_e(g^{-1}h) +\] +eine Karte für die Umgebung $U_g$ des Gruppenelementes $g$. +schreibt man $l_{g}$ für die Abbildung $h\mapsto gh$, dann +kann man die Kartenabbildung auch $\varphi_g = \varphi_e\circ l_{g^{-1}}$ +schreiben. + +Die Kartenwechsel-Abbildungen für zwei Karten $\varphi_{g_1}$ +und $\varphi_{g_2}$ ist die Abbildung +\[ +\varphi_{g_1,g_2} += +\varphi_{g_1}\circ \varphi_{g_2}^{-1} += +\varphi_e\circ l_{g_1^{-1}} \circ (\varphi_e\circ l_{g_2^{-1}})^{-1} += +\varphi_e\circ l_{g_1^{-1}} \circ l_{g_2^{-1}}^{-1} \varphi_e^{-1} += +\varphi_e\circ l_{g_1^{-1}} \circ l_{g_2}\varphi_e^{-1} += +\varphi_e\circ l_{g_1^{-1}g_2}\varphi_e^{-1} +\] +mit der Ableitung +\[ +D\varphi_e\circ Dl_{g_1^{-1}g_2} D\varphi_e^{-1} += +D\varphi_e\circ Dl_{g_1^{-1}g_2} (D\varphi_e)^{-1}. +\] +Die Abbildung $l_{g_1^{-1}g_2}$ ist aber nur die Multiplikation mit +einer Matrix, also eine lineare Abbildung, so dass der Kartenwechsel +nichts anderes ist als die Darstellung der Matrix der Linksmultiplikation +$l_{g_1^{-1}g_2}$ im Koordinatensystem der Karte $U_e$ ist. +Differenzierbarkeit der Kartenwechsel ist damit sichergestellt, +die Matrizengruppen sind automatisch differenzierbare Mannigfaltigkeiten. + +Die Konstruktion aller Karten aus einer einzigen Karte für eine +Umgebung des neutralen Elements zeigt auch, dass es für die Matrizengruppen +reicht, wenn man die Elemente in einer Umgebung des neutralen +Elementes parametrisieren kann. +Dies ist jedoch nicht nur für die Matrizengruppen möglich. +Wenn eine Gruppe gleichzeitig eine differenzierbare Mannigfaltigkeit +ist, dann können Karten über die ganze Gruppe transportiert werden, +wenn die Multiplikation mit Gruppenelementen eine differenzierbare +Abbildung ist. +Solche Gruppen heissen auch Lie-Gruppen gemäss der folgenden Definition. + +\begin{definition} +\index{Lie-Gruppe}% +Eine {\em Lie-Gruppe} ist eine Gruppe, die gleichzeitig eine differenzierbare +Mannigfaltigkeit ist derart, dass die Abbildungen +\begin{align*} +G\times G \to G &: (g_1,g_2)\mapsto g_1g_2 +G\to G &: g \mapsto g^{-1} +\end{align*} +differenzierbare Abbildungen zwischen Mannigfaltigkeiten sind. +\end{definition} + +Die Abstraktheit dieser Definition täuscht etwas über die +Tatsache hinweg, dass sich mit Hilfe der Darstellungstheorie +jede beliebige Lie-Gruppe als Untermannigfaltigkeit einer +Matrizengruppe verstehen lässt. +Das Studium der Matrizengruppen erlaubt uns daher ohne grosse +Einschränkungen ein Verständnis für die Theorie der Lie-Gruppen +zu entwickeln. \subsection{Drehungen in der Ebene \label{buch:gruppen:drehungen2d}} diff --git a/buch/chapters/60-gruppen/symmetrien.tex b/buch/chapters/60-gruppen/symmetrien.tex index b686791..e7c3240 100644 --- a/buch/chapters/60-gruppen/symmetrien.tex +++ b/buch/chapters/60-gruppen/symmetrien.tex @@ -405,7 +405,7 @@ umrechnen können auf die Kugelkoordinaten. Dazu muss seine Umrechnungsformel von kartesischen Koordinaten auf Kugelkoordinaten differenzierbar sein. -Diese Idee wird vom Konzept der Mannigfaltigkeit verallgemeinert. +Diese Idee wird durch das Konzept der Mannigfaltigkeit verallgemeinert. Eine $n$-dimensionale {\em Mannigfaltigkeit} ist eine Menge $M$ von Punkten, die lokal, also in der Umgebung eines Punktes, mit möglicherweise mehreren verschiedenen Koordinatensystemen versehen werden kann. @@ -413,14 +413,30 @@ Ein Koordinatensystem ist eine umkehrbare Abbildung einer offenen Teilmenge $U\subset M$ in den Raum $\mathbb{R}^n$. Die Komponenten dieser Abbildung heissen die {\em Koordinaten}. +\begin{figure} +\centering +\includegraphics{chapters/60-gruppen/images/karten.pdf} +\caption{Karten +$\varphi_\alpha\colon U_\alpha\to \mathbb{R}^2$ +und +$\varphi_\beta\colon U_\beta\to \mathbb{R}^2$ +auf einem Torus. +Auf dem Überschneidungsgebiet $\varphi_\alpha^{-1}(U_\alpha\cap U_\beta)$ +ist der Kartenwechsel $\varphi_\beta\circ\varphi_\alpha^{-1}$ wohldefiniert +und muss differnzierbar sein, wenn eine differenzierbare Mannigfaltigkeit +entstehen soll. +\label{buch:gruppen:fig:karten}} +\end{figure} + \begin{definition} Eine Karte auf $M$ ist eine umkehrbare Abbildung -$\varphi\colon U\to \mathbb{R}^n$. +$\varphi\colon U\to \mathbb{R}^n$ (siehe auch +Abbildung~\ref{buch:gruppen:fig:karten}). Ein differenzierbarer Atlas ist eine Familie von Karten $\varphi_\alpha$ derart, dass die Definitionsgebiete $U_\alpha$ die ganze Menge $M$ überdecken, und dass die Kartenwechsel Abbildungen \[ -\varphi_\beta\circ\varphi_\alpha^{-1} +\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1} \colon \varphi_\alpha(U_\alpha\cap U_\beta) \to @@ -513,8 +529,65 @@ konstruieren, der $S^n$ zu einer $n$-dimensionalen Mannigfaltigkeit macht. \end{beispiel} \subsubsection{Tangentialraum} - -\subsubsection{Einbettung und Karten} +Mit Hilfe einer Karte $\varphi_\alpha\colon U_\alpha\to\mathbb{R}^n$ +kann das Geschehen in einer Mannigfaltigkeit in den vertrauten +$n$-dimensionalen Raum $\mathbb{B}^n$ transportiert werden. +Eine Kurve $\gamma\colon \mathbb{R}\to M$, die so parametrisiert sein +soll, dass $\gamma(t)\in U_\alpha$ für $t$ in einer Umgebung $I$ von $0$ ist, +wird von der Karte in eine Kurve +$\gamma_\alpha=\varphi_\alpha\circ\gamma\colon I\to \mathbb{R}^n$ +abgebildet, +deren Tangentialvektor wieder ein Vektor in $\mathbb{R}^n$ ist. + +Eine zweite Karte $\varphi_\beta$ führt auf eine andere Kurve +mit der Parametrisierung +$\gamma_\beta=\varphi_\beta\circ\gamma\colon I \to \mathbb{R}^n$ +und einem anderen Tangentialvektor. +Die beiden Tangentialvektoren können aber mit der Ableitung der +Koordinatenwechsel-Abbildung +$\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}\colon +\varphi_\alpha(U_\alpha\cap U_\beta)\to \mathbb{R}^n$ +ineinander umgerechnet werden. +Aus +\[ +\gamma_\beta += +\varphi_\beta\circ \gamma += +( +\varphi_\beta +\circ +\varphi_\alpha^{-1} +) +\circ +\varphi_\alpha\circ\gamma += +\varphi_{\beta\alpha} +\circ +\varphi_\alpha\circ\gamma += +\varphi_{\beta\alpha}\circ\gamma_\alpha +\] +folgt durch Ableitung nach dem Kurvenparameter $t$, dass +\[ +\frac{d}{dt}\gamma_\beta(t) += +D\varphi_{\beta\alpha} \frac{d}{dt}\gamma_\alpha(t). +\] +Die Ableitung $D\varphi_{\beta\alpha}$ von $\varphi_{\beta\alpha}$ +an der Stelle $\gamma_\alpha(t)$ berechnet also aus dem Tangentialvektor +einer Kurve in der Karte $\varphi_\alpha$ den Tangentialvektor der +Kurve in der Karte $\varphi_\beta$. + +Die Forderung nach Differenzierbarkeit der Kartenwechselabbildungen +$\varphi_{\beta\alpha}$ stellt also nur sicher, dass die Beschreibung +eines Systemes mit Differentialgleichungen in verschiedenen +Koordinatensystemen auf die gleichen Lösungskurven in der +Mannigfaltigkeit führt. +Insbesondere ist die Verwendung von Karten ist also nur ein Werkzeug, +mit dem die Unmöglichkeit einer globalen Besschreibung einer +Mannigfaltigkeit $M$ mit einem einzigen globalen Koordinatensystem +ohne Singularitäten umgangen werden kann. \subsection{Der Satz von Noether \label{buch:subsection:noether}} -- cgit v1.2.1 From b4867d6eecff66204bd083e3fe1da46a7f1aef42 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 4 Apr 2021 10:02:05 +0200 Subject: fix phi_4 --- buch/chapters/60-gruppen/images/kartenkreis.tex | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) (limited to 'buch/chapters/60-gruppen') diff --git a/buch/chapters/60-gruppen/images/kartenkreis.tex b/buch/chapters/60-gruppen/images/kartenkreis.tex index be6d6b3..8f2d9d5 100644 --- a/buch/chapters/60-gruppen/images/kartenkreis.tex +++ b/buch/chapters/60-gruppen/images/kartenkreis.tex @@ -55,12 +55,19 @@ \node at (1.01,1.32) [right] {$\varphi_3\circ \varphi_1^{-1}(y)=\sqrt{1-y^2}$}; +\node at (1.6,1.6) {$\varphi_{31}$}; + \node at (1.01,-1.28) [right] {$\varphi_1\circ \varphi_4^{-1}(x)=-\sqrt{1-x^2}$}; +\node at (1.6,-1.6) {$\varphi_{14}$}; + \node at (-1.24,1.32) [left] {$\varphi_2\circ\varphi_4^{-1}(x)=\sqrt{1-x^2}$}; +\node at (-1.6,-1.6) {$\varphi_{42}$}; + \node at (-1.18,-1.28) [left] {$\varphi_4\circ\varphi_2^{-1}(y)=-\sqrt{1-y^2}$}; +\node at (-1.6,1.6) {$\varphi_{23}$}; \foreach \y in {0.1,0.3,...,0.9}{ \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm] @@ -166,7 +173,7 @@ \node[color=blue] at (-1.25,0) [left] {$\varphi_2$}; \node[color=darkgreen] at (115:1) [below right] {$U_{y>0}$}; -\node[color=darkgreen] at (0,1.25) [above] {$\varphi_4$}; +\node[color=darkgreen] at (0,1.25) [above] {$\varphi_3$}; \node[color=orange] at (-115:1) [above right] {$U_{y<0}$}; \node[color=orange] at (0,-1.25) [below] {$\varphi_4$}; -- cgit v1.2.1 From cca51799a95ab64faa3f0dfb841883c2852037d4 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 4 Apr 2021 16:11:42 +0200 Subject: tangentialvektoren von o(n), sl_n --- buch/chapters/60-gruppen/images/Makefile | 5 +- buch/chapters/60-gruppen/images/kartenkreis.pdf | Bin 26310 -> 26755 bytes buch/chapters/60-gruppen/images/kartenkreis.tex | 11 +- buch/chapters/60-gruppen/images/sl2.pdf | Bin 0 -> 27116 bytes buch/chapters/60-gruppen/images/sl2.tex | 146 ++++++++ buch/chapters/60-gruppen/lie-gruppen.tex | 469 +++++++++++++++++++++++- buch/chapters/60-gruppen/symmetrien.tex | 159 +++++++- 7 files changed, 755 insertions(+), 35 deletions(-) create mode 100644 buch/chapters/60-gruppen/images/sl2.pdf create mode 100644 buch/chapters/60-gruppen/images/sl2.tex (limited to 'buch/chapters/60-gruppen') diff --git a/buch/chapters/60-gruppen/images/Makefile b/buch/chapters/60-gruppen/images/Makefile index bc65a71..8824d75 100644 --- a/buch/chapters/60-gruppen/images/Makefile +++ b/buch/chapters/60-gruppen/images/Makefile @@ -3,7 +3,7 @@ # # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -all: phasenraum.pdf kartenkreis.pdf karten.pdf +all: phasenraum.pdf kartenkreis.pdf karten.pdf sl2.pdf phasenraum.pdf: phasenraum.tex pdflatex phasenraum.tex @@ -17,3 +17,6 @@ torus.png: torus.pov karten.pdf: karten.tex torus.png pdflatex karten.tex +sl2.pdf: sl2.tex + pdflatex sl2.tex + diff --git a/buch/chapters/60-gruppen/images/kartenkreis.pdf b/buch/chapters/60-gruppen/images/kartenkreis.pdf index 3235779..4619b56 100644 Binary files a/buch/chapters/60-gruppen/images/kartenkreis.pdf and b/buch/chapters/60-gruppen/images/kartenkreis.pdf differ diff --git a/buch/chapters/60-gruppen/images/kartenkreis.tex b/buch/chapters/60-gruppen/images/kartenkreis.tex index 8f2d9d5..4f19937 100644 --- a/buch/chapters/60-gruppen/images/kartenkreis.tex +++ b/buch/chapters/60-gruppen/images/kartenkreis.tex @@ -62,12 +62,13 @@ \node at (1.6,-1.6) {$\varphi_{14}$}; \node at (-1.24,1.32) - [left] {$\varphi_2\circ\varphi_4^{-1}(x)=\sqrt{1-x^2}$}; -\node at (-1.6,-1.6) {$\varphi_{42}$}; + [left] {$\varphi_2\circ\varphi_3^{-1}(x)=\sqrt{1-x^2}$}; +\node at (-1.6,1.6) {$\varphi_{23}$}; \node at (-1.18,-1.28) [left] {$\varphi_4\circ\varphi_2^{-1}(y)=-\sqrt{1-y^2}$}; -\node at (-1.6,1.6) {$\varphi_{23}$}; +\node at (-1.6,-1.6) {$\varphi_{42}$}; + \foreach \y in {0.1,0.3,...,0.9}{ \draw[->,color=red,shorten >= 0.1cm,shorten <= 0.3cm] @@ -90,7 +91,9 @@ ({-\x},{-sqrt(1-\x*\x)}) -- ({-\x},-1.5); } -\draw[color=gray!20,line width=3pt] (0,0) circle[radius=1]; +%\draw[color=gray!50,line width=3pt] (0,0) circle[radius=1]; +\draw[color=yellow!30,line width=3pt] (0,0) circle[radius=1]; +\node[color=yellow] at ({1/sqrt(2)},{1/sqrt(2)}) [above right] {$S^1$}; \def\r{1.02} diff --git a/buch/chapters/60-gruppen/images/sl2.pdf b/buch/chapters/60-gruppen/images/sl2.pdf new file mode 100644 index 0000000..ffc0759 Binary files /dev/null and b/buch/chapters/60-gruppen/images/sl2.pdf differ diff --git a/buch/chapters/60-gruppen/images/sl2.tex b/buch/chapters/60-gruppen/images/sl2.tex new file mode 100644 index 0000000..0e44aa9 --- /dev/null +++ b/buch/chapters/60-gruppen/images/sl2.tex @@ -0,0 +1,146 @@ +% +% sl2.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\begin{scope}[xshift=-4.5cm] + \fill[color=blue!20] + (1.4,0) -- (0,1.4) -- (-1.4,0) -- (0,-1.4) -- cycle; + \fill[color=red!40,opacity=0.5] + (1.96,0) -- (0,1) -- (-1.96,0) -- (0,-1) -- cycle; + + \begin{scope} + \clip (-2.1,-2.1) rectangle (2.3,2.3); + \draw[color=darkgreen] + plot[domain=-1:1,samples=100] + ({(1/1.4)*exp(\x)},{(1/1.4)*exp(-\x)}); + \draw[color=darkgreen] + plot[domain=-1:1,samples=100] + ({(1/1.4)*exp(\x)},{-(1/1.4)*exp(-\x)}); + \draw[color=darkgreen] + plot[domain=-1:1,samples=100] + ({-(1/1.4)*exp(\x)},{(1/1.4)*exp(-\x)}); + \draw[color=darkgreen] + plot[domain=-1:1,samples=100] + ({-(1/1.4)*exp(\x)},{-(1/1.4)*exp(-\x)}); + \end{scope} + + \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}]; + \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}]; + + \draw[->,color=blue] (0,0) -- (1.4,0); + \draw[->,color=blue] (0,0) -- (0,1.4); + + \draw[->,color=red] (0,0) -- (1.96,0); + \draw[->,color=red] (0,0) -- (0,1); + \node at (0,-3.2) + {$\displaystyle + \begin{aligned} + A&=\begin{pmatrix}1&0\\0&-1\end{pmatrix} + \\ + e^{At} + &=\begin{pmatrix}e^t&0\\0&e^{-t}\end{pmatrix} + \end{aligned} + $}; + +\end{scope} + + +\begin{scope} + \fill[color=blue!20] + (0:1.4) -- (90:1.4) -- (180:1.4) -- (270:1.4) -- cycle; + \fill[color=red!40,opacity=0.5] + (33:1.4) -- (123:1.4) -- (213:1.4) -- (303:1.4) -- cycle; + + \draw[color=darkgreen] (0,0) circle[radius=1.4]; + + \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}]; + \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}]; + + \draw[->,color=blue] (0,0) -- (1.4,0); + \draw[->,color=blue] (0,0) -- (0,1.4); + + \draw[->,color=red] (0,0) -- (33:1.4); + \draw[->,color=red] (0,0) -- (123:1.4); + + \node at (0,-3.2) + {$\displaystyle + \begin{aligned} + B + &=\begin{pmatrix}0&-1\\1&0 \end{pmatrix} + \\ + e^{Bt} + &= + \begin{pmatrix} + \cos t&-\sin t\\ + \sin t& \cos t + \end{pmatrix} + \end{aligned}$}; +\end{scope} + + +\begin{scope}[xshift=4.5cm] + \fill[color=blue!20] + (0:1.4) -- (90:1.4) -- (180:1.4) -- (270:1.4) -- cycle; + \def\x{0.5} + \fill[color=red!40,opacity=0.5] + ({1.4*cosh(\x)},{1.4*sinh(\x}) + -- + ({1.4*sinh(\x},{1.4*cosh(\x)}) + -- + ({-1.4*cosh(\x)},{-1.4*sinh(\x}) + -- + ({-1.4*sinh(\x},{-1.4*cosh(\x)}) + -- cycle; + + \begin{scope} + \clip (-2.1,-2.1) rectangle (2.2,2.2); + \draw[color=darkgreen] + plot[domain=-1:1,samples=100] ({1.4*cosh(\x)},{1.4*sinh(\x)}); + \draw[color=darkgreen] + plot[domain=-1:1,samples=100] ({1.4*sinh(\x)},{1.4*cosh(\x)}); + \draw[color=darkgreen] + plot[domain=-1:1,samples=100] ({-1.4*cosh(\x)},{1.4*sinh(\x)}); + \draw[color=darkgreen] + plot[domain=-1:1,samples=100] ({1.4*sinh(\x)},{-1.4*cosh(\x)}); + \end{scope} + + \draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}]; + \draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}]; + + \draw[->,color=blue] (0,0) -- (1.4,0); + \draw[->,color=blue] (0,0) -- (0,1.4); + + \draw[->,color=red] (0,0) -- ({1.4*cosh(\x)},{1.4*sinh(\x)}); + \draw[->,color=red] (0,0) -- ({1.4*sinh(\x)},{1.4*cosh(\x)}); + + \node at (0,-3.2) {$\displaystyle + \begin{aligned} + C&=\begin{pmatrix}0&1\\1&0\end{pmatrix} + \\ + e^{Ct} + &= + \begin{pmatrix} + \cosh t&\sinh t\\ + \sinh t&\cosh t + \end{pmatrix} + \end{aligned} + $}; +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/60-gruppen/lie-gruppen.tex b/buch/chapters/60-gruppen/lie-gruppen.tex index 48d6b43..6d2531a 100644 --- a/buch/chapters/60-gruppen/lie-gruppen.tex +++ b/buch/chapters/60-gruppen/lie-gruppen.tex @@ -48,6 +48,7 @@ schreibt man $l_{g}$ für die Abbildung $h\mapsto gh$, dann kann man die Kartenabbildung auch $\varphi_g = \varphi_e\circ l_{g^{-1}}$ schreiben. +\subsubsection{Kartenwechsel} Die Kartenwechsel-Abbildungen für zwei Karten $\varphi_{g_1}$ und $\varphi_{g_2}$ ist die Abbildung \[ @@ -93,6 +94,7 @@ Eine {\em Lie-Gruppe} ist eine Gruppe, die gleichzeitig eine differenzierbare Mannigfaltigkeit ist derart, dass die Abbildungen \begin{align*} G\times G \to G &: (g_1,g_2)\mapsto g_1g_2 +\\ G\to G &: g \mapsto g^{-1} \end{align*} differenzierbare Abbildungen zwischen Mannigfaltigkeiten sind. @@ -106,8 +108,79 @@ Das Studium der Matrizengruppen erlaubt uns daher ohne grosse Einschränkungen ein Verständnis für die Theorie der Lie-Gruppen zu entwickeln. +\subsubsection{Tangentialvektoren und die Exponentialabbildung} +Die Matrizengruppen sind alle in der +$n^2$-dimensionalen Mannigfaltigkeit $\operatorname{GL}_n(\mathbb{R})$ +enthalten. +Diffferenzierbare Kurven $\gamma(t)$ in $\operatorname{GL}_n(\mathbb{R})$ +haben daher in jedem Punkt Tangentialvektoren, die als Matrizen in +$M_n(\mathbb{R})$ betrachtet werden können. +Wenn $\gamma(t)$ die Matrixelemente $\gamma_{ij}(t)$ hat, dann ist der +Tangentialvektor im Punkt $\gamma(t)$ durch +\[ +\frac{d}{dt} +\gamma(t) += +\begin{pmatrix} +\dot{\gamma}_{11}(t)&\dots &\dot{\gamma}_{1n}(t)\\ +\vdots &\ddots&\vdots \\ +\dot{\gamma}_{n1}(t)&\dots &\dot{\gamma}_{nn}(t) +\end{pmatrix} +\] +gegeben. + +Im Allgemeinen kann man Tangentialvektoren in verschiedenen Punkten +einer Mannigfaltigkeit nicht miteinander vergleichen. +Die Multiplikation $l_g$, die den Punkt $e$ in den Punkt $g$ verschiebt, +transportiert auch die Tangentialvektoren im Punkt $e$ in +Tangentialvektoren im Punkt $g$. + +\begin{aufgabe} +Gibt es eine Kurve $\gamma(t)\in\mathbb{GL}_n(\mathbb{R})$ mit +$\gamma(0)=e$ derart, dass der Tangentialvektor im Punkt $\gamma(t)$ +für $t>0$ derselbe ist wie der Tangentialvektor im Punkt $e$, transportiert +durch Matrixmultiplikation mit $\gamma(t)$? +\end{aufgabe} + +Eine solche Kurve muss die Differentialgleichung +\begin{equation} +\frac{d}{dt}\gamma(t) += +\gamma(t)\cdot A +\label{buch:gruppen:eqn:expdgl} +\end{equation} +erfüllen, wobei $A\in M_n(\mathbb{R})$ der gegebene Tangentialvektor +in $e=I$ ist. + +Die Matrixexponentialfunktion +\[ +e^{At} += +1+At+\frac{A^2t^2}{2!}+\frac{A^3t^3}{3!}+\frac{A^4t^4}{4!}+\dots +\] +liefert eine Einparametergruppe +$\mathbb{R}\to \operatorname{GL}_n(\mathbb{R})$ mit der Ableitung +\[ +\frac{d}{dt} e^{At} += +\lim_{h\to 0} \frac{e^{A(t+h)}-e^{At}}{h} += +\lim_{h\to 0} e^{At}\frac{e^{Ah}-I}{h} += +e^{At} A. +\] +Sie ist also Lösung der Differentialgleichung~\eqref{buch:gruppen:eqn:expdgl}. + \subsection{Drehungen in der Ebene \label{buch:gruppen:drehungen2d}} +Die Drehungen der Ebene sind die orientierungserhaltenden Symmetrien +des Einheitskreises, der in Abbildung~\ref{buch:gruppen:fig:kartenkreis} +als Mannigfaltigkeit erkannt wurde. +Sie bilden eine Lie-Gruppe, die auf verschiedene Arten als Matrix +beschrieben werden kann. + +\subsubsection{Die Untergruppe +$\operatorname{SO}(2)\subset \operatorname{GL}_2(\mathbb{R})$} Drehungen der Ebene können in einer orthonormierten Basis durch Matrizen der Form \[ @@ -142,6 +215,21 @@ Funktion ist. $D_{\bullet}$ bildet die Menge der Winkel $[0,2\pi)$ bijektiv auf die Menge der Drehmatrizen in der Ebene ab. +Für jedes Intervall $(a,b)\subset\mathbb{R}$ mit Länge +$b-a < 2\pi$ ist die Abbildung $\alpha\mapsto D_{\alpha}$ umkehrbar, +die Umkehrung kann als Karte verwendet werden. +Zwei verschiedene Karten $\alpha_1\colon U_1\to\mathbb{R}$ und +$\alpha_2\colon U_2\to\mathbb{R}$ bilden die Elemente $g\in U_1\cap U_2$ +in Winkel $\alpha_1(g)$ und $\alpha_2(g)$ ab, für die +$D_{\alpha_1(g)}=D_{\alpha_2(g)}$ gilt. +Dies ist gleichbedeutend damit, dass $\alpha_1(g)=\alpha_2(g)+2\pi k$ +mit $k\in \mathbb{Z}$. +In einem Intervall in $U_1\cap U_2$ muss $k$ konstant sein. +Die Kartenwechselabblidung ist also nur die Addition eines Vielfachen +von $2\pi$, mit der identischen Abbildung als Ableitung. +Diese Karten führen also auf besonders einfache Kartenwechselabbildungen. + +\subsubsection{Die Untergruppe $S^1\subset\mathbb{C}$} Ein alternatives Bild für die Drehungen der Ebene kann man in der komplexen Ebene $\mathbb{C}$ erhalten. Die Multiplikation mit der komplexen Zahl $e^{i\alpha}$ beschreibt eine @@ -210,16 +298,60 @@ in die Gruppe $\operatorname{SO}(2)$. Die Menge der Drehmatrizen in der Ebene kann also mit dem Einheitskreis in der komplexen Ebene identifiziert werden. +\subsubsection{Tangentialvektoren von $\operatorname{SO}(2)$} +Da die Gruppe $\operatorname{SO}(2)$ eine eindimensionale Gruppe +ist, kann jede Kurve $\gamma(t)$ durch den Drehwinkel $\alpha(t)$ +mit $\gamma(t) = D_{\alpha(t)}$ beschrieben werden. +Die Ableitung in $M_2(\mathbb{R})$ ist +\begin{align*} +\frac{d}{dt} \gamma(t) +&= +\frac{d}{d\alpha} +\begin{pmatrix} +\cos\alpha(t) & - \sin\alpha(t)\\ +\sin\alpha(t) & \cos\alpha(t) +\end{pmatrix} +\cdot +\frac{d\alpha}{dt} +\\ +&= +\begin{pmatrix} +-\sin\alpha(t)&-\cos\alpha(t)\\ + \cos\alpha(t)&-\sin\alpha(t) +\end{pmatrix} +\cdot +\dot{\alpha}(t) +\\ +&= +\begin{pmatrix} +\cos\alpha(t) & - \sin\alpha(t)\\ +\sin\alpha(t) & \cos\alpha(t) +\end{pmatrix} +\begin{pmatrix} +0&-1\\ +1&0 +\end{pmatrix} +\cdot +\dot{\alpha}(t) += +D_{\alpha(t)}J\cdot\dot{\alpha}(t). +\end{align*} +Alle Tangentialvektoren von $\operatorname{SO}(2)$ im Punkt $D_\alpha$ +entstehen aus $J$ durch Drehung mit der Matrix $D_\alpha$ und Skalierung +mit $\dot{\alpha}(t)$. + % % Isometrien von R^n % \subsection{Isometrien von $\mathbb{R}^n$ \label{buch:gruppen:isometrien}} -Lineare Abbildungen der Ebene $\mathbb{R}^n$ mit dem üblichen Skalarprodukt -können durch $n\times n$-Matrizen beschrieben werden. -Die Matrizen, die das Skalarprodukt erhalten, bilden eine Gruppe, -die in diesem Abschnitt genauer untersucht werden soll. -Eine Matrix $A\in M_{2}(\mathbb{R})$ ändert das Skalarprodukt nicht, wenn + +\subsubsection{Skalarprodukt} +Lineare Abbildungen des Raumes $\mathbb{R}^n$ können durch +$n\times n$-Matrizen beschrieben werden. +Die Matrizen, die das Standardskalarprodukt $\mathbb{R}^n$ erhalten, +bilden eine Gruppe, die in diesem Abschnitt genauer untersucht werden soll. +Eine Matrix $A\in M_{n}(\mathbb{R})$ ändert das Skalarprodukt, wenn für jedes beliebige Paar $x,y$ von Vektoren gilt $\langle Ax,Ay\rangle = \langle x,y\rangle$. Das Standardskalarprodukt kann mit dem Matrixprodukt ausgedrückt werden: @@ -271,6 +403,60 @@ n^2 - \frac{n(n+1)}{2} \] Im Spezialfall $n=2$ ist die Gruppe $O(2)$ eindimensional. +\subsubsection{Tangentialvektoren} +Die orthogonalen Matrizen bilden eine abgeschlossene Untermannigfaltigkeit +von $\operatorname{GL}_n(\mathbb{R})$, nicht jede Matrix $M_n(\mathbb{R})$ +kann also ein Tangentialvektor von $O(n)$ sein. +Um herauszufinden, welche Matrizen als Tangentialvektoren in Frage +kommen, betrachten wir eine Kurve $\gamma\colon\mathbb{R}\to O(n)$ +von orthogonalen Matrizen mit $\gamma(0)=I$. +Orthogonal bedeutet +\[ +\begin{aligned} +&& +0 +&= +\frac{d}{dt}I += +\frac{d}{dt} +(\gamma(t)^t\gamma(t)) += +\dot{\gamma}(t)^t\gamma(t)) ++ +\gamma(t)^t\dot{\gamma}(t)) +\\ +&\Rightarrow& +0 +&= +\dot{\gamma}(0)^t \cdot I + I\cdot \dot{\gamma(0)} += +\dot{\gamma}(0)^t + \dot{\gamma}(0) += +A^t+A=0 +\\ +&\Rightarrow& +A^t&=-A +\end{aligned} +\] +Die Tangentialvektoren von $\operatorname{O}(n)$ sind also genau +die antisymmetrischen Matrizen. + +Für $n=2$ sind alle antisymmetrischen Matrizen Vielfache der Matrix +$J$, wie in Abschnitt~\ref{buch:gruppen:drehungen2d} +gezeigt wurde. + +Für jedes Paar $i0}\{(x,y)\;|\;x^2+y^2=1\wedge x>0\} \to +\varphi_1&\colon U_{x>0}\{(x,y)\;|\;x^2+y^2=1\wedge x>0\} \to\mathbb{R} : -(x,y) \mapsto y\\ -\varphi_2&\colon U_{x<0}\{(x,y)\;|\;x^2+y^2=1\wedge x<0\} \to +(x,y) \mapsto y +\\ +\varphi_2&\colon U_{x<0}\{(x,y)\;|\;x^2+y^2=1\wedge x<0\} \to\mathbb{R} : -(x,y) \mapsto y\\ -\varphi_3&\colon U_{y>0}\{(x,y)\;|\;x^2+y^2=1\wedge y>0\} \to +(x,y) \mapsto y +\\ +\varphi_3&\colon U_{y>0}\{(x,y)\;|\;x^2+y^2=1\wedge y>0\} \to\mathbb{R} : -(x,y) \mapsto x\\ -\varphi_4&\colon U_{y<0}\{(x,y)\;|\;x^2+y^2=1\wedge y<0\} \to +(x,y) \mapsto x +\\ +\varphi_4&\colon U_{y<0}\{(x,y)\;|\;x^2+y^2=1\wedge y<0\} \to\mathbb{R} : (x,y) \mapsto x \end{align*} @@ -493,13 +497,47 @@ Dasselbe gilt für $\varphi_3$ und $\varphi_4$. Die nichtleeren Schnittmengen der verschiedenen Kartengebiete beschreiben jeweils die Punkte der Kreislinie in einem Quadranten. -Die Umrechnung zwischen den Koordinaten erfolgt je nach Quadrant durch -\[ -x\mapsto y=\pm\sqrt{1-x^2\mathstrut} -\qquad\text{oder}\qquad -y\mapsto x=\pm\sqrt{1-y^2\mathstrut}, -\] -diese Abbildungen sind im offenen Intervall $(-1,1)$ differenzierbar, +Die Umrechnung zwischen den Koordinaten und ihre Ableitung +ist je nach Quadrant durch +\begin{align*} +&\text{1.~Quadrant}& +\varphi_{31} +&= +\varphi_3\circ\varphi_1^{-1}\colon y\mapsto\phantom{-}\sqrt{1-y^2\mathstrut} +& +D\varphi_{31} +&= +-\frac{y}{\sqrt{1-y^2\mathstrut}} +\\ +&\text{2.~Quadrant}& +\varphi_{24} +&= +\varphi_3\circ\varphi_1^{-1}\colon x\mapsto\phantom{-}\sqrt{1-x^2\mathstrut} +& +D\varphi_{24} +&= +-\frac{x}{\sqrt{1-x^2\mathstrut}} +\\ +&\text{3.~Quadrant}& +\varphi_{42} +&= +\varphi_3\circ\varphi_1^{-1}\colon y\mapsto-\sqrt{1-y^2\mathstrut} +& +D\varphi_{42} +&= +\phantom{-}\frac{y}{\sqrt{1-y^2\mathstrut}} +\\ +&\text{4.~Quadrant}& +\varphi_{14} +&= +\varphi_3\circ\varphi_1^{-1}\colon x\mapsto-\sqrt{1-x^2\mathstrut} +& +D\varphi_{14} +&= +\phantom{-}\frac{x}{\sqrt{1-x^2\mathstrut}} +\end{align*} +gegeben. +Diese Abbildungen sind im offenen Intervall $(-1,1)$ differenzierbar, Schwierigkeiten mit der Ableitungen ergeben sich nur an den Stellen $x=\pm1$ und $y=\pm 1$, die in einem Überschneidungsgebiet von Karten nicht vorkommen können. @@ -572,7 +610,9 @@ folgt durch Ableitung nach dem Kurvenparameter $t$, dass \[ \frac{d}{dt}\gamma_\beta(t) = -D\varphi_{\beta\alpha} \frac{d}{dt}\gamma_\alpha(t). +D\varphi_{\beta\alpha} +\cdot +\frac{d}{dt}\gamma_\alpha(t). \] Die Ableitung $D\varphi_{\beta\alpha}$ von $\varphi_{\beta\alpha}$ an der Stelle $\gamma_\alpha(t)$ berechnet also aus dem Tangentialvektor @@ -589,6 +629,91 @@ mit dem die Unmöglichkeit einer globalen Besschreibung einer Mannigfaltigkeit $M$ mit einem einzigen globalen Koordinatensystem ohne Singularitäten umgangen werden kann. +\begin{beispiel} +Das Beispiel des Kreises in Abbildung~\ref{buch:gruppen:fig:kartenkreis} +zeigt, dass die Tangentialvektoren je nach Karte sehr verschieden +aussehen können. +Der Tangentialvektor der Kurve $\gamma(t) = (x(t), y(t))$ im Punkt +$\gamma(t)$ ist $\dot{y}(t)$ in den Karten $\varphi_1$ und $\varphi_2$ +und $\dot{x}(t)$ in den Karten $\varphi_3$ und $\varphi_4$. + +Die spezielle Kurve $\gamma(t) = (\cos t,\sin t)$ hat in einem Punkt +$t\in (0,\frac{\pi}2)$. +in der Karte $\varphi_1$ den Tangentialvektor $\dot{y}(t)=\cos t$, +in der Karte $\varphi_3$ aber den Tangentialvektor $\dot{x}=-\sin t$. +Die Ableitung des Kartenwechsels in diesem Punkt ist die $1\times 1$-Matrix +\[ +D\varphi_{31}(\gamma(t)) += +-\frac{y(t)}{\sqrt{1-y(t)^2}} += +-\frac{\sin t}{\sqrt{1-\sin^2 t}} += +-\frac{\sin t}{\cos t} += +-\tan t. +\] +Die Koordinatenumrechnung ist gegeben durch +\[ +\dot{x}(t) += +D\varphi_{31}(\gamma(t)) +\dot{y}(t) +\] +wird für die spezielle Kurve $\gamma(t)=(\cos t,\sin t)$ wird dies zu +\[ +D\varphi_{31}(\gamma(t)) +\cdot +\dot{y}(t) += +-\tan t\cdot \cos t += +-\frac{\sin t}{\cos t}\cdot \cos t += +-\sin t += +\dot{x}(t). +\qedhere +\] +\end{beispiel} + +Betrachtet man die Kreislinie als Kurve in $\mathbb{R}^2$, +dann ist der Tangentialvektor durch +$\dot{\gamma}(t)=(\dot{x}(t),\dot{y}(t))$ gegeben. +Da die Karten Projektionen auf die $x$- bzw.~$y$-Achsen sind, +entsteht der Tangentialvektor in der Karte durch Projektion +von $(\dot{x}(t),\dot{y}(t))$ auf die entsprechende Komponente. + +Die Tangentialvektoren in zwei verschiedenen Punkten der Kurve können +im Allgemeinen nicht miteinander verglichen werden. +Darüber hinweg hilft auch die Tatsache nicht, dass die Kreislinie +in den Vektorraum $\mathbb{R}^2$ eingebettet sind, wo sich Vektoren +durch Translation miteinander vergleichen lassen. +Ein nichtverschwindender Tangentialvektor im Punkt $(1,0)$ hat, +betrachtet als Vektor in $\mathbb{R}^2$ verschwindende $x$-Komponente, +für Tangentialvektoren im Inneren eines Quadranten ist dies nicht +der Fall. + +Eine Möglichkeit, einen Tangentialvektor in $(1,0)$ mit einem +Tangentialvektor im Punkt $(\cos t,\sin t)$ zu vergleichen, besteht +darin, den Vektor um den Winkel $t$ zu drehen. +Dies ist möglich, weil die Kreislinie eine kontinuierliche Symmetrie, +nämlich die Drehung um den Winkel $t$ hat, die es erlaubt, den Punkt $(1,0)$ +in den Punkt $(\cos t,\sin t)$ abzubilden. +Erst diese Symmetrie ermöglicht den Vergleich. +Dieser Ansatz ist für alle Matrizen erfolgreich, wie wir später sehen werden. + +Ein weiterer Ansatz, Tangentialvektoren zu vergleichen, ist die Idee, +einen sogenannten Zusammenhang zu definieren, eine Vorschrift, wie +Tangentialvektoren infinitesimal entlang von Kurven in der Mannigfaltigkeit +transportiert werden können. +Auf einer sogenannten {\em Riemannschen Mannigfaltigkeit} ist zusätzlich +zur Mannigfaltigkeitsstruktur die Längenmessung definiert. +Sie kann dazu verwendet werden, den Transport von Vektoren entlang einer +Kurve so zu definieren, dass dabei Längen und Winkel erhalten bleiben. +Dieser Ansatz ist die Basis der Theorie der Krümmung sogenannter +Riemannscher Mannigfaltigkeiten. + \subsection{Der Satz von Noether \label{buch:subsection:noether}} -- cgit v1.2.1 From b2f142c6a525994a61484238b6ce0e6323863953 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 4 Apr 2021 19:37:26 +0200 Subject: fix typos --- buch/chapters/60-gruppen/images/Makefile | 5 +- buch/chapters/60-gruppen/images/scherungen.pdf | Bin 0 -> 24544 bytes buch/chapters/60-gruppen/images/scherungen.tex | 157 +++++++++++++++++++++++++ buch/chapters/60-gruppen/lie-gruppen.tex | 13 ++ 4 files changed, 174 insertions(+), 1 deletion(-) create mode 100644 buch/chapters/60-gruppen/images/scherungen.pdf create mode 100644 buch/chapters/60-gruppen/images/scherungen.tex (limited to 'buch/chapters/60-gruppen') diff --git a/buch/chapters/60-gruppen/images/Makefile b/buch/chapters/60-gruppen/images/Makefile index 8824d75..3ed39e5 100644 --- a/buch/chapters/60-gruppen/images/Makefile +++ b/buch/chapters/60-gruppen/images/Makefile @@ -3,7 +3,7 @@ # # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -all: phasenraum.pdf kartenkreis.pdf karten.pdf sl2.pdf +all: phasenraum.pdf kartenkreis.pdf karten.pdf sl2.pdf scherungen.pdf phasenraum.pdf: phasenraum.tex pdflatex phasenraum.tex @@ -20,3 +20,6 @@ karten.pdf: karten.tex torus.png sl2.pdf: sl2.tex pdflatex sl2.tex +scherungen.pdf: scherungen.tex + pdflatex scherungen.tex + diff --git a/buch/chapters/60-gruppen/images/scherungen.pdf b/buch/chapters/60-gruppen/images/scherungen.pdf new file mode 100644 index 0000000..c7f4988 Binary files /dev/null and b/buch/chapters/60-gruppen/images/scherungen.pdf differ diff --git a/buch/chapters/60-gruppen/images/scherungen.tex b/buch/chapters/60-gruppen/images/scherungen.tex new file mode 100644 index 0000000..893bd12 --- /dev/null +++ b/buch/chapters/60-gruppen/images/scherungen.tex @@ -0,0 +1,157 @@ +% +% scherungen.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\definecolor{blau}{rgb}{0,0.8,1} +\definecolor{blau}{rgb}{0,0.6,0} +\def\s{1.1} + +\begin{scope}[xshift=-4.6cm] + + \fill[color=blue!20] (0,0) rectangle (2,2); + \fill[color=red!40,opacity=0.5] (0,0) -- (2,\s) -- (2,{2+\s}) -- (0,2) + -- cycle; + + \foreach \x in {-1,...,3}{ + \draw[color=blau] (\x,-1) -- (\x,3); + \draw[color=blau] (-1,\x) -- (3,\x); + } + + \begin{scope} + \clip (-1,-1) rectangle (3,3); + \foreach \x in {-1,...,3}{ + \draw[color=orange] (\x,-1) -- (\x,3); + \draw[color=orange] (-1,{\x-0.5*\s}) -- (3,{\x+1.5*\s}); + } + \end{scope} + + \draw[->] (-1.1,0) -- (3.3,0) coordinate[label={$x$}]; + \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}]; + + \node[color=blue] at (0,2) [above left] {$1$}; + \node[color=blue] at (2,0) [below right] {$1$}; + \draw[->,color=blue] (0,0) -- (2,0); + \draw[->,color=blue] (0,0) -- (0,2); + + \draw[->,color=red] (0,0) -- (2,\s); + \draw[->,color=red] (0,0) -- (0,2); + + \node[color=red] at (2,\s) [below right] {$(1,t)$}; + + \node at (0,0) [below right] {$O$}; + \node at (1,-1.1) [below] {$\displaystyle + \begin{aligned} + M &= \begin{pmatrix}0&0\\1&0 \end{pmatrix} + \\ + e^{Mt} + &= + \begin{pmatrix}1&0\\t&1 \end{pmatrix} + \end{aligned} + $}; +\end{scope} + +\begin{scope} + \fill[color=blue!20] (0,0) rectangle (2,2); + \fill[color=red!40,opacity=0.5] (0,0) -- (2,0) -- ({2+\s},2) -- (\s,2) + -- cycle; + + \foreach \x in {-1,...,3}{ + \draw[color=blau] (\x,-1) -- (\x,3); + \draw[color=blau] (-1,\x) -- (3,\x); + } + + \begin{scope} + \clip (-1,-1) rectangle (3,3); + \foreach \x in {-1,...,3}{ + \draw[color=orange] (-1,\x) -- (3,\x); + \draw[color=orange] ({\x-0.5*\s},-1) -- ({\x+1.5*\s},3); + } + \end{scope} + + \draw[->] (-1.1,0) -- (3.3,0) coordinate[label={$x$}]; + \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}]; + + \node[color=blue] at (0,2) [above left] {$1$}; + \node[color=blue] at (2,0) [below right] {$1$}; + \draw[->,color=blue] (0,0) -- (2,0); + \draw[->,color=blue] (0,0) -- (0,2); + + \draw[->,color=red] (0,0) -- (2,0); + \draw[->,color=red] (0,0) -- (\s,2); + + \node[color=red] at (\s,2) [above left] {$(t,1)$}; + + \node at (0,0) [below right] {$O$}; + + \node at (1,-1.1) [below] {$\displaystyle + \begin{aligned} N &= \begin{pmatrix}0&1\\0&0 \end{pmatrix} + \\ + e^{Nt} + &= + \begin{pmatrix}1&t\\0&1 \end{pmatrix} + \end{aligned} + $}; +\end{scope} + +\begin{scope}[xshift=3.6cm,yshift=0cm] + \def\punkt#1#2{({1.6005*(#1)+0.4114*(#2)},{-0.2057*(#1)+0.5719*(#2)})} + \fill[color=blue!20] (0,0) rectangle (2,2); + \fill[color=red!40,opacity=0.5] + (0,0) -- \punkt{2}{0} -- \punkt{2}{2} -- \punkt{0}{2} -- cycle; + + \foreach \x in {0,...,4}{ + \draw[color=blau] (\x,-1) -- (\x,3); + } + \foreach \y in {-1,...,3}{ + \draw[color=blau] (0,\y) -- (4,\y); + } + + \begin{scope} + \clip (-0,-1) rectangle (4,3); + \foreach \x in {-1,...,6}{ + \draw[color=orange] \punkt{\x}{-3} -- \punkt{\x}{6}; + \draw[color=orange] \punkt{-3}{\x} -- \punkt{6}{\x}; + } + \end{scope} + + \draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}]; + \draw[->] (0,-1.1) -- (0,3.5) coordinate[label={right:$y$}]; + + \node[color=blue] at (0,2) [above left] {$1$}; + \node[color=blue] at (2,0) [below right] {$1$}; + \draw[->,color=blue] (0,0) -- (2,0); + \draw[->,color=blue] (0,0) -- (0,2); + + \draw[->,color=red] (0,0) -- \punkt{2}{0}; + \draw[->,color=red] (0,0) -- \punkt{0}{2}; + + \node at (0,0) [below right] {$O$}; + + \node at (2,-1.1) [below] {$\displaystyle + \begin{aligned} D &= \begin{pmatrix}0.5&0.4\\-0.2&-0.5 \end{pmatrix} + \\ + e^{D\cdot 1} + &= + \begin{pmatrix} + 1.6005 & 0.4114\\ + -0.2057 & 0.5719 + \end{pmatrix} + \end{aligned} + $}; +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/chapters/60-gruppen/lie-gruppen.tex b/buch/chapters/60-gruppen/lie-gruppen.tex index 6d2531a..d6fc007 100644 --- a/buch/chapters/60-gruppen/lie-gruppen.tex +++ b/buch/chapters/60-gruppen/lie-gruppen.tex @@ -768,8 +768,21 @@ auch diese Matrizen sind flächenerhaltend. \caption{Tangentialvektoren und die davon erzeugen Einparameteruntergruppen für die Lie-Gruppe $\operatorname{SL}_2(\mathbb{R})$ der flächenerhaltenden linearen Abbildungen von $\mathbb{R}^2$. +In allen drei Fällen wird ein blauer Rhombus mit den Ecken in den +Standardbasisvektoren von einer Matrix der Einparameteruntergruppe zu +zum roten Viereck verzerrt, der Flächeninhalt bleibt aber erhalten. +In den beiden Fällen $B$ und $C$ stellen die grünen Kurven die Bahnen +der Bilder der Standardbasisvektoren dar. \label{buch:gruppen:fig:sl2}} \end{figure}% +\begin{figure} +\centering +\includegraphics{chapters/60-gruppen/images/scherungen.pdf} +\caption{Weitere Matrizen mit Spur $0$ und ihre Wirkung +Die inken beiden Beispiele $M$ und $N$ sind nilpotente Matrizen, +die zugehörigen Einparameter-Untergruppen beschreiben Schwerungen. +\label{buch:gruppen:fig:scherungen}} +\end{figure} \end{beispiel} % -- cgit v1.2.1 From 6fd28b0754e453e3f843b6fbe6493022a846f618 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 4 Apr 2021 22:48:42 +0200 Subject: Lie-Algebra stuff --- buch/chapters/60-gruppen/chapter.tex | 2 +- buch/chapters/60-gruppen/lie-algebren.tex | 718 +++++++++++++++++++++++------- 2 files changed, 552 insertions(+), 168 deletions(-) (limited to 'buch/chapters/60-gruppen') diff --git a/buch/chapters/60-gruppen/chapter.tex b/buch/chapters/60-gruppen/chapter.tex index c2aa68d..8472b58 100644 --- a/buch/chapters/60-gruppen/chapter.tex +++ b/buch/chapters/60-gruppen/chapter.tex @@ -35,7 +35,7 @@ Zusammenhangs darzustellen. \input{chapters/60-gruppen/symmetrien.tex} \input{chapters/60-gruppen/lie-gruppen.tex} \input{chapters/60-gruppen/lie-algebren.tex} -\input{chapters/60-gruppen/homogen.tex} +%\input{chapters/60-gruppen/homogen.tex} diff --git a/buch/chapters/60-gruppen/lie-algebren.tex b/buch/chapters/60-gruppen/lie-algebren.tex index 366d280..cee8510 100644 --- a/buch/chapters/60-gruppen/lie-algebren.tex +++ b/buch/chapters/60-gruppen/lie-algebren.tex @@ -29,234 +29,618 @@ Lie-Algebra von $\operatorname{SO}(3)$ mit dem Vektorprodukt in $\mathbb{R}^3$ übereinstimmt. % -% Tangentialvektoren und SO(2) +% Die Lie-Algebra einer Matrizengruppe +% +\subsection{Lie-Algebra einer Matrizengruppe +\label{buch:section:lie-algebra-einer-matrizengruppe}} +Zu jedem Tangentialvektor $A$ im Punkt $I$ einer Matrizengruppe gibt es +eine Einparameteruntergruppe, die mit Hilfe der Exponentialfunktion +$e^{At}$ konstruiert werden kann. +Für die folgende Konstruktion arbeiten wir in der Gruppe +$\operatorname{GL}_n(\mathbb{R})$, in der jede Matrix auch ein +Tangentialvektor ist. +Wir werden daraus die Lie-Klammer ableiten und später verifizieren, +dass diese auch für die Tangentialvektoren der Gruppen +$\operatorname{SO}(n)$ oder $\operatorname{SL}_n(\mathbb{R})$ funktioniert. + +\subsubsection{Lie-Klammer} +Zu zwei verschiedenen Tagentialvektoren $A\in M_n(\mathbb{R})$ und +$B\in M_n(\mathbb{R})$ gibt es zwei verschiedene Einparameteruntergruppen +$e^{At}$ und $e^{Bt}$. +Wenn die Matrizen $A$ und $B$ oder die Einparameteruntergruppen +$e^{At}$ und $e^{Bt}$ vertauschbar sind, dann stimmen +$e^{At}e^{Bt}$ und $e^{Bt}e^{At}$ nicht überein. +Die zugehörigen Potenzreihen sind: +\begin{align*} +e^{At} +&= +I+At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \dots +\\ +e^{Bt} +&= +I+Bt + \frac{B^2t^2}{2!} + \frac{B^3t^3}{3!} + \dots +\\ +e^{At}e^{Bt} +&= +\biggl(I+At + \frac{A^2t^2}{2!} + \dots\biggr) +\biggl(I+Bt + \frac{B^2t^2}{2!} + \dots\biggr) +\\ +&= +I+(A+B)t + \biggl(\frac{A^2}{2!}+AB+\frac{B^2}{2!}\biggr)t^2 +\dots +\\ +e^{Bt}e^{At} +&= +\biggl(I+Bt + \frac{B^2t^2}{2!} + \dots\biggr) +\biggl(I+At + \frac{A^2t^2}{2!} + \dots\biggr) +\\ +&= +I+(B+A)t + \biggl(\frac{B^2}{2!}+BA+\frac{A^2}{2!}\biggr)t^2 +\dots +\intertext{% +Die beiden Kurven $e^{At}e^{Bt}$ und $e^{Bt}e^{At}$ haben zwar den gleichen +Tangentialvektor für $t=0$, sie unterscheiden +sich aber untereinander, und sie unterscheiden sich von der +Einparameteruntergruppe von $A+B$} +e^{(A+B)t} +&= +I + (A+B)t + \frac{t^2}{2}(A^2 + AB + BA + B^2) + \ldots +\intertext{Für die Unterschiede finden wir} +e^{At}e^{Bt} - e^{(A+B)t} +&= +\biggl(AB-\frac{AB+BA}2\biggr)t^2 ++\ldots += +(AB-BA) \frac{t^2}{2} + \ldots += +[A,B]\frac{t^2}{2}+\ldots +\\ +e^{Bt}e^{At} - e^{(A+B)t} +&= +\biggl(BA-\frac{AB+BA}2\biggr)t^2 ++\ldots += +(BA-AB) +\frac{t^2}{2} ++\ldots += +-[A,B]\frac{t^2}{2} +\\ +e^{At}e^{Bt}-e^{Bt}e^{At} +&= +(AB-BA)t^2+\ldots += +\phantom{-}[A,B]t^2+\ldots +\end{align*} +wobei mit $[A,B]=AB-BA$ abgekürzt wird. + +\begin{definition} +\label{buch:gruppen:def:kommutator} +Der Kommutator zweier Matrizen $A,B\in M_n(\mathbb{R})$ ist die Matrix +$[A,B]=AB-BA$. +\end{definition} + +Der Kommutator ist bilinear und antisymmetrisch, da +\begin{align*} +[\lambda A+\mu B,C] +&= +\lambda AC+\mu BC-\lambda CA -\mu CB += +\lambda[A,C]+\mu[B,C] +\\ +[A,\lambda B+\mu C] +&= +\lambda AB + \mu AC - \lambda BA - \mu CA += +\lambda[A,B]+\mu[A,C] +\\ +[A,B] +&= +AB-BA = -(BA-AB) = -[B,A]. +\end{align*} +Aus der letzten Bedingung folgt insbesodnere $[A,A]=0$ + +Der Kommutator $[A,B]$ misst in niedrigster Ordnung den Unterschied +zwischen den $e^{At}$ und $e^{Bt}$. +Der Kommutator der Tangentialvektoren $A$ und $B$ bildet also die +Nichtkommutativität der Matrizen $e^{At}$ und $e^{Bt}$ ab. + + +\subsubsection{Die Jacobi-Identität} +Der Kommutator hat die folgende zusätzliche algebraische Eigenschaft: +\begin{align*} +[A,[B,C]] ++ +[B,[C,A]] ++ +[C,[A,B]] +&= +[A,BC-CB] ++ +[B,CA-AC] ++ +[C,AB-BA] +\\ +&=\phantom{+} +ABC-ACB-BCA+CBA +\\ +&\phantom{=}+ +BCA-BAC-CAB+ACB +\\ +&\phantom{=}+ +CAB-CBA-ABC+BAC +\\ +&=0. +\end{align*} +Diese Eigenschaft findet man auch bei anderen Strukturen, zum Beispiel +bei Vektorfeldern, die man als Differentialoperatoren auf Funktionen +betrachten kann. +Man kann dann einen Kommutator $[X,Y]$ für zwei Vektorfelder +$X$ und $Y$ definieren. +Dieser Kommutator von Vektorfeldern erfüllt ebenfalls die gleiche +Identität. + +\begin{definition} +\label{buch:gruppen:def:jacobi} +Ein bilineares Produkt $[\;,\;]\colon V\times V\to V$ auf dem Vektorraum +erfüllt die {\em Jacobi-Identität}, wenn +\[ +[u,[v,w]] + [v,[w,u]] + [w,[u,v]]=0 +\] +ist für beliebige Vektoren $u,v,w\in V$. +\end{definition} + +\subsubsection{Lie-Algebra} +Die Tangentialvektoren einer Lie-Gruppe tragen also mit dem Kommutator +eine zusätzliche Struktur, nämlich die Struktur einer Lie-Algebra. + +\begin{definition} +Ein Vektorraum $V$ mit einem bilinearen, Produkt +\[ +[\;,\;]\colon V\times V \to V : (u,v) \mapsto [u,v], +\] +welches zusätzlich die Jacobi-Identität~\ref{buch:gruppen:def:jacobi} +erfüllt, heisst eine {\em Lie-Algebra}. +\end{definition} + +Die Lie-Algebra einer Lie-Gruppe $G$ wird mit $LG$ bezeichnet. +$LG$ besteht aus den Tangentialvektoren im Punkt $I$. +Die Exponentialabbildung $\exp\colon LG\to G:A\mapsto e^A$ +ist eine differenzierbare Abbildung von $LG$ in die Gruppe $G$. +Insbesondere kann die Inverse der Exponentialabbildung als eine +Karte in einer Umgebung von $I$ verwendet werden. + +Für die Lie-Algebren der Matrizengruppen, die früher definiert worden +sind, verwenden wir die als Notationskonvention, dass der Name der +Lie-Algebra der mit kleinen Buchstaben geschrieben Name der Lie-Gruppe ist. +Die Lie-Algebra von $\operatorname{SO}(n)$ ist also +$L\operatorname{SO}(n) = \operatorname{os}(n)$, +die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ ist +$L\operatorname{SL}_n(\mathbb{R})=\operatorname{sl}_n(\mathbb{R})$. + + % -\subsection{Tangentialvektoren und $\operatorname{SO}(2)$} -Die Drehungen in der Ebene können reell als Matrizen der Form +% Die Lie-Algebra von SO(3) +% +\subsection{Die Lie-Algebra von $\operatorname{SO}(3)$ +\label{buch:subsection:die-lie-algebra-von-so3}} +Zur Gruppe $\operatorname{SO}(3)$ der Drehmatrizen gehört die Lie-Algebra +$\operatorname{so}(3)$ der antisymmetrischen $3\times 3$-Matrizen. +Solche Matrizen haben die Form \[ -D_{\alpha} +\Omega = \begin{pmatrix} -\cos\alpha&-\sin\alpha\\ -\sin\alpha& \cos\alpha + 0 & \omega_3&-\omega_2\\ +-\omega_3& 0 & \omega_1\\ + \omega_2&-\omega_1& 0 \end{pmatrix} \] -als eidimensionale Kurve innerhalb von $M_2(\mathbb{R})$ beschrieben -werden. -Alternativ können Drehungen um den Winkel $\alpha$ als mit Hilfe von -der Abbildung -$ -\alpha\mapsto e^{i\alpha} -$ -als komplexe Zahlen vom Betrag $1$ beschrieben werden. -Dies sind zwei verschiedene Parametrisierungen der gleichen -geometrischen Transformation. - -Die Ableitung nach $\alpha$ ist $ie^{i\alpha}$, der Tangentialvektor -im Punkt $e^{i\alpha}$ ist also $ie^{i\alpha}$. -Die Multiplikation mit $i$ ist die Drehung um $90^\circ$, der Tangentialvektor -ist also der um $90^\circ$ gedrehte Ortsvektor zum Punkt auf der Kurve. +Der Vektorraum $\operatorname{so}(3)$ ist also dreidimensional. -In der Darstelllung als $2\times 2$-Matrix ist die Ableitung +Die Wirkung von $I+t\Omega$ auf einem Vektor $x$ ist \[ -\frac{d}{d\alpha}D_\alpha +(I+t\Omega) +\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} = -\frac{d}{d\alpha} \begin{pmatrix} -\cos\alpha& -\sin\alpha\\ -\sin\alpha& \cos\alpha + 1 & t\omega_3&-t\omega_2\\ +-t\omega_3& 1 & t\omega_1\\ + t\omega_2&-t\omega_1& 1 \end{pmatrix} +\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} = \begin{pmatrix} --\sin\alpha & -\cos\alpha \\ - \cos\alpha & -\sin\alpha +x_1-t(-\omega_3x_2+\omega_2x_3)\\ +x_2-t( \omega_3x_1-\omega_1x_3)\\ +x_3-t(-\omega_2x_1+\omega_1x_2) +\end{pmatrix} += +x- t\begin{pmatrix}\omega_1\\\omega_2\\\omega_3\end{pmatrix}\times x += +x+ tx\times \omega. +\] +Die Matrix $\Omega$ ist als die infinitesimale Version einer Drehung +um die Achse $\omega$. + +Wir können die Analogie zwischen Matrizen in $\operatorname{so}(3)$ und +Vektoren in $\mathbb R^3$ noch etwas weiter treiben. Zu jedem Vektor +in $\mathbb R^3$ konstruieren wir eine Matrix in $\operatorname{so}(3)$ +mit Hilfe der Abbildung +\[ +\mathbb R^3\to\operatorname{so}(3) +: +\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix} +\mapsto +\begin{pmatrix} + 0 & v_3&-v_1\\ +-v_3& 0 & v_2\\ + v_1&-v_2& 0 \end{pmatrix}. \] -Die rechte Seite kann wieder mit der Drehmatrix $D_\alpha$ geschrieben -werden, es ist nämlich +Der Kommutator von zwei so aus Vektoren $\vec u$ und $\vec v$ +konstruierten Matrizen $U$ und $V$ ist: +\begin{align*} +[U,V] +&= +UV-VU +\\ +&= +\begin{pmatrix} + 0 & u_3&-u_1\\ +-u_3& 0 & u_2\\ + u_1&-u_2& 0 +\end{pmatrix} +\begin{pmatrix} + 0 & v_3&-v_1\\ +-v_3& 0 & v_2\\ + v_1&-v_2& 0 +\end{pmatrix} +- +\begin{pmatrix} + 0 & v_3&-v_1\\ +-v_3& 0 & v_2\\ + v_1&-v_2& 0 +\end{pmatrix} +\begin{pmatrix} + 0 & u_3&-u_1\\ +-u_3& 0 & u_2\\ + u_1&-u_2& 0 +\end{pmatrix} +\\ +&= +\begin{pmatrix} +u_3v_3+u_1v_1 - u_3v_3 - u_1v_1 + & u_1v_2 - u_2v_1 + & u_3v_2 - u_2v_3 +\\ +u_2v_1 - u_1v_2 + & -u_3v_3-u_2v_2 + u_3v_3+u_2v_2 + & u_3v_1 - u_1v_3 +\\ +u_2v_3 - u_3v_2 + & u_1v_3 - u_3v_1 + &-u_1v_1-u_2v_2 u_1v_1+u_2v_2 +\end{pmatrix} +\\ +&= +\begin{pmatrix} +0 + & u_1v_2 - u_2v_1 + &-(u_2v_3-u_3v_2) +\\ +-( u_1v_2 - u_2v_1) + & 0 + & u_3v_1 - u_1v_3 +\\ +u_2v_3 - u_3v_2 + &-( u_3v_1 - u_1v_3) + & 0 +\end{pmatrix} +\end{align*} +Die Matrix $[U,V]$ gehört zum Vektor $\vec u\times\vec v$. +Damit können wir aus der Jacobi-Identität jetzt folgern, dass +\[ +\vec u\times(\vec v\times w) ++ +\vec v\times(\vec w\times u) ++ +\vec w\times(\vec u\times v) +=0 +\] +für drei beliebige Vektoren $\vec u$, $\vec v$ und $\vec w$ ist. +Dies bedeutet, dass der dreidimensionale Vektorraum $\mathbb R^3$ +mit dem Vektorprodukt zu einer Lie-Algebra wird. +In der Tat verwenden einige Bücher statt der vertrauten Notation +$\vec u\times \vec v$ für das Vektorprodukt die aus der Theorie der +Lie-Algebren entlehnte Notation $[\vec u,\vec v]$, zum Beispiel +das Lehrbuch der Theoretischen Physik \cite{skript:landaulifschitz1} +von Landau und Lifschitz. + +Die Lie-Algebren sind vollständig klassifiziert worden, es gibt +keine nicht trivialen zweidimensionalen Lie-Algebren. +Unser dreidimensionaler Raum ist also auch in dieser Hinsicht speziell: +es ist der kleinste Vektorraum, in dem eine nichttriviale Lie-Algebra-Struktur +möglich ist. + +Die antisymmetrischen Matrizen \[ -\frac{d}{d\alpha}D_\alpha +\omega_{23} += +\begin{pmatrix} 0&1&0\\-1&0&0\\0&0&0\end{pmatrix} +\quad +\omega_{31} = +\begin{pmatrix} 0&0&-1\\0&0&0\\1&0&0\end{pmatrix} +\quad +\omega_{12} += +\begin{pmatrix} 0&0&0\\0&0&1\\0&-1&0\end{pmatrix} +\] +haben die Kommutatoren +\begin{equation} +\begin{aligned} +[\omega_{23},\omega_{31}] +&= \begin{pmatrix} --\sin\alpha & -\cos\alpha \\ - \cos\alpha & -\sin\alpha +0&0&0\\ +0&0&1\\ +0&-1&0 \end{pmatrix} = +\omega_{12} +\\ +[\omega_{31},\omega_{12}] +&= \begin{pmatrix} -\cos\alpha & -\sin\alpha\\ -\sin\alpha & \cos\alpha +0&1&0\\ +-1&0&0\\ +0&0&0 \end{pmatrix} += +\omega_{23} +\\ +[\omega_{12},\omega_{23}] +&= \begin{pmatrix} -0&-1\\ -1& 0 +0&0&-1\\ +0&0&0\\ +1&0&0 \end{pmatrix} = -D_\alpha J. -\] -Der Tangentialvektor an die Kurve $\alpha\mapsto D_\alpha$ innerhalb -$M_2(\mathbb{R})$ im Punkt $D_\alpha$ ist also die Matrix -$JD_\alpha$. -Die Matrix $J$ ist die Drehung um $90^\circ$, denn $J=D_{\frac{\pi}2}$. -Der Zusammenhang zwischen dem Punkt $D_\alpha$ und dem Tangentialvektor -ist also analog zur Beschreibug mit komplexen Zahlen. +\omega_{31} +\end{aligned} +\label{buch:gruppen:eqn:so3-kommutatoren} +\end{equation} -Im Komplexen vermittelt die Exponentialfunktion den Zusammenhang zwischen -dem Winkel $\alpha$ und dre Drehung $e^{i\alpha}$. -Der Grund dafür ist natürlich die Differentialgleichung +\subsection{Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$} +Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ besteht aus den +spurlosen Matrizen in $M_n(\mathbb{R})$. +Der Kommutator solcher Matrizen erfüllt +\[ +\operatorname{Spur}([A,B]) += +\operatorname{Spur}(AB-BA) += +\operatorname{Spur}(AB)-\operatorname{Spur}(BA) += +0, +\] +somit ist \[ -\frac{d}{d\alpha} z(\alpha) = iz(\alpha). +\operatorname{sl}_n(\mathbb{R}) += +\{ +A\in M_n(\mathbb{R})\;|\; \operatorname{Spur}(A)=0 +\} \] -Die analoge Differentialgleichung +mit dem Kommutator eine Lie-Algebra. + +% +% Die Lie-Algebra von U(n) +% +\subsection{Die Lie-Algebra von $\operatorname{U}(n)$} +Die Lie-Gruppe \[ -\frac{d}{d\alpha} D_\alpha = J D_\alpha +U(n) += +\{ +A\in M_n(\mathbb{C} +\;|\; +AA^*=I +\} \] -führt auf die Matrix-Exponentialreihe +heisst die unitäre Gruppe, sie besteht aus den Matrizen, die +das sesquilineare Standardskalarprodukt auf dem komplexen +Vektorraum $\mathbb{C}^n$ invariant lassen. +Sei eine $\gamma(t)$ ein differenzierbare Kurve in $\operatorname{U}(n)$ +derart, dass $\gamma(0)=I$. +Die Ableitung der Identität $AA^*=I$ führt dann auf \begin{align*} -D_\alpha +0 = -\exp (J\alpha) -&= -\sum_{k=0}^\infty \frac{(J\alpha)^k}{k!} +\frac{d}{dt} +\gamma(t)\gamma(t)^* +\bigg|_{t=0} = -I\biggl( -1-\frac{\alpha^2}{2!} + \frac{\alpha^4}{4!} -\frac{\alpha^6}{6!}+\dots -\biggr) +\dot{\gamma}(0)\gamma(0)^* + -J\biggl( -\alpha - \frac{\alpha^3}{3!} -+ \frac{\alpha^5}{5!} -- \frac{\alpha^7}{7!}+\dots -\biggr) -\\ -&= -I\cos\alpha +\gamma(0)\dot{\gamma}(0)^* += +\dot{\gamma}(0) + -J\sin\alpha, +\dot{\gamma}(0)^* +\quad\Rightarrow\quad +\dot{\gamma}(0)&=-\dot{\gamma}(0)^*. +A&=-A^* \end{align*} -welche der Eulerschen Formel $e^{i\alpha} = \cos\alpha + i \sin\alpha$ -analog ist. - -In diesem Beispiel gibt es nur eine Tangentialrichtung und alle in Frage -kommenden Matrizen vertauschen miteinander. -Es ist daher nicht damit zu rechnen, dass sich eine interessante -Algebrastruktur für die Ableitungen konstruieren lässt. - -% -% Die Lie-Algebra einer Matrizengruppe -% -\subsection{Lie-Algebra einer Matrizengruppe} -Das eindimensionale Beispiel $\operatorname{SO}(2)$ hat gezeigt, dass -die Tangentialvektoren in einem beliebigen Punkt $D_\alpha$ aus dem -Tangentialvektor im Punkt $I$ durch Anwendung der Drehung hervorgehen, -die $I$ in $D_\alpha$ abbildet. -Die Drehungen einer eindimensionalen Untergruppe transportieren daher -den Tangentialvektor in $I$ entlang der Kurve auf jeden beliebigen -anderen Punkt. -Zu jedem Tangentialvektor im Punkt $I$ dürfte es daher genau eine -eindimensionale Untergruppe geben. +Die Lie-Algebra $\operatorname{u}(n)$ besteht daher aus den antihermiteschen +Matrizen. -Sei die Abbildung $\varrho\colon\mathbb{R}\to G$ eine Einparameter-Untergruppe -von $G\subset M_n(\mathbb{R})$. -Durch Ableitung der Gleichung $\varrho(t+x) = \varrho(t)\varrho(x)$ nach -$x$ folgt die Differentialgleichung -\[ -\varrho'(t) +Wir sollten noch verifizieren, dass der Kommutator zweier antihermiteschen +Matrizen wieder anithermitesch ist: +\begin{align*} +[A,B]^* +&= +(AB-BA)^* = -\frac{d}{dx}\varrho(t+x)\bigg|_{x=0} +B^*A^*-A^*B^* = -\varrho(t) \frac{d}{dx}\varrho(0)\bigg|_{x=0} +BA - AB = -\varrho(t) \varrho'(0). -\] -Der Tangentialvektor in $\varrho'(t)$ in $\varrho(t)$ ist daher -der Tangentialvektor $\varrho'(0)$ in $I$ transportiert in den Punkt -$\varrho(t)$ mit Hilfe der Matrix $\varrho(t)$. +-[B,A]. +\end{align*} -Aus der Differentialgleichung folgt auch, dass +Eine antihermitesche Matrix erfüllt $a_{ij}=-\overline{a}_{ji}$, +für die Diagonalelemente folgt daher $a_{ii} = -\overline{a}_{ii}$ +oder $\overline{a}_{ii}=-a_{ii}$. +Der Realteil von $a_{ii}$ ist \[ -\varrho(t) = \exp (t\varrho'(0)). +\Re a_{ii} += +\frac{a_{ii}+\overline{a}_{ii}}2 += +0, \] -Zu einem Tangentialvektor in $I$ kann man also immer die -Einparameter-Untergruppe mit Hilfe der Differentialgleichung -oder der expliziten Exponentialreihe rekonstruieren. +die Diagonalelemente einer antihermiteschen Matrix sind daher rein +imaginär. -Die eindimensionale Gruppe $\operatorname{SO}(2)$ ist abelsch und -hat einen eindimensionalen Tangentialraum, man kann also nicht mit -einer interessanten Algebrastruktur rechnen. -Für eine höherdimensionale, nichtabelsche Gruppe sollte sich aus -der Tatsache, dass es verschiedene eindimensionale Untergruppen gibt, -deren Elemente nicht mit den Elemente einer anderen solchen Gruppe -vertauschen, eine interessante Algebra konstruieren lassen, deren -Struktur die Nichtvertauschbarkeit wiederspiegelt. -Seien also $A$ und $B$ Tangentialvektoren einer Matrizengruppe $G$, -die zu den Einparameter-Untergruppen $\varphi(t)=\exp At$ und -$\varrho(t)=\exp Bt$ gehören. -Insbesondere gilt $\varphi'(0)=A$ und $\varrho'(0)=B$. -Das Produkt $\pi(t)=\varphi(t)\varrho(t)$ ist allerdings nicht notwendigerweise -eine Einparametergruppe, denn dazu müsste gelten +% +% Die Lie-Algebra SU(2) +% +\subsection{Die Lie-Algebra von $\operatorname{SU}(2)$} +Die Lie-Algebra $\operatorname{su}(n)$ besteht aus den +spurlosen antihermiteschen Matrizen. +Sie erfüllen daher die folgenden Bedingungen: +\[ +A=\begin{pmatrix}a&b\\c&d\end{pmatrix} +\qquad +\text{mit} +\qquad +\left\{ +\begin{aligned} +a+d&=0&&\Rightarrow& a=is = -d +\\ +b^*&=-c +\end{aligned} +\right. +\] +Damit hat $A$ die Form +\begin{align*} +A=\begin{pmatrix} +is&u+iv\\ +-u+iv&-is +\end{pmatrix} +&= +s +\begin{pmatrix} +i&0\\ +0&-i +\end{pmatrix} ++ +u +\begin{pmatrix} + 0&1\\ +-1&0 +\end{pmatrix} ++ +v +\begin{pmatrix} +0&i\\ +i&0 +\end{pmatrix} +\\ +&= +iv\underbrace{\begin{pmatrix}0&1\\1&0\end{pmatrix}}_{\displaystyle=\sigma_1} ++ +iu\underbrace{\begin{pmatrix}0&-i\\i&0\end{pmatrix}}_{\displaystyle=\sigma_2} ++ +is\underbrace{\begin{pmatrix}1&0\\0&-1\end{pmatrix}}_{\displaystyle=\sigma_3} +\end{align*} +Diese Matrizen heissen die {\em Pauli-Matrizen}, sie haben die Kommutatoren \begin{align*} -\pi(t+s) +[\sigma_1,\sigma_2] &= -\varphi(t+s)\varrho(t+s) +\begin{pmatrix}0&1\\1&0\end{pmatrix} +\begin{pmatrix}0&-i\\i&0\end{pmatrix} +- +\begin{pmatrix}0&-i\\i&0\end{pmatrix} +\begin{pmatrix}0&1\\1&0\end{pmatrix} += +2\begin{pmatrix}i&0\\0&-i \end{pmatrix} = -\varphi(t)\varphi(s)\varrho(t)\varrho(s) +2i\sigma_3, \\ +[\sigma_2,\sigma_3] +&= +\begin{pmatrix}0&-i\\i&0\end{pmatrix} +\begin{pmatrix}1&0\\0&-1\end{pmatrix} +- +\begin{pmatrix}1&0\\0&-1\end{pmatrix} +\begin{pmatrix}0&-i\\i&0\end{pmatrix} += +2 +\begin{pmatrix}0&i\\i&0\end{pmatrix} = -\pi(t)\pi(s) +2i\sigma_1. +\\ +[\sigma_1,\sigma_3] &= -\varphi(t)\varrho(t)\varphi(s)\varrho(s) +\begin{pmatrix}0&1\\1&0\end{pmatrix} +\begin{pmatrix}1&0\\0&-1\end{pmatrix} +- +\begin{pmatrix}1&0\\0&-1\end{pmatrix} +\begin{pmatrix}0&1\\1&0\end{pmatrix} += +2i +\begin{pmatrix}0&-1\\1&0\end{pmatrix} += +2i\sigma_2, \end{align*} -Durch Multiplikation von links mit $\varphi(t)^{-1}$ und -mit $\varrho(s)^{-1}$ von rechts folgt, dass dies genau dann gilt, -wenn -\[ -\varphi(s)\varrho(t)=\varrho(t)\varphi(s). -\] -Die beiden Seiten dieser Gleichung sind erneut verschiedene Punkte -in $G$. -Durch Multiplikation mit $\varrho(t)^{-1}$ von links und mit -$\varphi(s)^{-1}$ von rechts erhält man die äquivaliente -Bedingung -\begin{equation} -\varrho(-t)\varphi(s)\varrho(t)\varphi(-s)=I. -\label{buch:lie:konjugation} -\end{equation} -Ist die Gruppe $G$ nicht kommutativ, kann man nicht -annehmen, dass diese Bedingung erfüllt ist. - -Aus \eqref{buch:lie:konjugation} erhält man jetzt eine Kurve -\[ -t \mapsto \gamma(t,s) = \varrho(-t)\varphi(s)\varrho(t)\varphi(-s) \in G -\] -in der Gruppe, die für $t=0$ durch $I$ geht. -Ihren Tangentialvektor kann man durch Ableitung bekommen: +Bis auf eine Skalierung stimmt dies überein mit den Kommutatorprodukten +der Matrizen $\omega_{23}$, $\omega_{31}$ und $\omega_{12}$ +in \eqref{buch:gruppen:eqn:so3-kommutatoren}. +Die Matrizen $-\frac12i\sigma_j$ haben die Kommutatorprodukte \begin{align*} -\frac{d}{dt}\gamma(t,s) +\bigl[-{\textstyle\frac12}i\sigma_1,-{\textstyle\frac12}i\sigma_2\bigr] +&= +-{\textstyle\frac14}[\sigma_1,\sigma_2] += +-{\textstyle\frac14}\cdot 2i\sigma_3 += +-{\textstyle\frac12}i\sigma_3 +\\ +\bigl[-{\textstyle\frac12}i\sigma_2,-{\textstyle\frac12}i\sigma_3\bigr] &= --\varrho'(-t)\varphi(s)\varrho(t)\varphi(-s) -+\varrho(-t)\varphi(s)\varrho'(t)\varphi(-t) +-{\textstyle\frac14}[\sigma_2,\sigma_3] += +-{\textstyle\frac14}\cdot 2i\sigma_1 += +-{\textstyle\frac12}i\sigma_1 \\ -\frac{d}{dt}\gamma(t)\bigg|_{t=0} +\bigl[-{\textstyle\frac12}i\sigma_3,-{\textstyle\frac12}i\sigma_1\bigr] &= --B\varphi(s) + \varphi(-s)B +-{\textstyle\frac14}[\sigma_3,\sigma_1] += +-{\textstyle\frac14}\cdot 2i\sigma_2 += +-{\textstyle\frac12}i\sigma_2 \end{align*} -Durch erneute Ableitung nach $s$ erhält man dann +Die lineare Abbildung, die \begin{align*} -\frac{d}{ds} \frac{d}{dt}\gamma(t,s)\bigg|_{t=0} -&= --B\varphi'(s) - \varphi(-s)B +\omega_{23}&\mapsto -{\textstyle\frac12}i\sigma_1\\ +\omega_{31}&\mapsto -{\textstyle\frac12}i\sigma_2\\ +\omega_{12}&\mapsto -{\textstyle\frac12}i\sigma_3 \end{align*} +abbildet ist daher ein Isomorphismus der Lie-Algebra $\operatorname{so}(3)$ +auf die Lie-Algebra $\operatorname{su}(2)$. +Die Lie-Gruppen $\operatorname{SO}(3)$ und $\operatorname{SU}(2)$ +haben also die gleiche Lie-Algebra. -% -% Die Lie-Algebra von SO(3) -% -\subsection{Die Lie-Algebra von $\operatorname{SO}(3)$} +Tatsächlich kann man Hilfe von Quaternionen die Matrix $\operatorname{SU}(2)$ +als Einheitsquaternionen beschreiben und damit eine Darstellung der +Drehmatrizen in $\operatorname{SO}(3)$ finden. +Dies wird in Kapitel~\ref{chapter:clifford} dargestellt. -% -% Die Lie-Algebra von SU(2) -% -\subsection{Die Lie-Algebra von $\operatorname{SU}(2)$} -- cgit v1.2.1 From 150b2c4844fb8866cb13218874f0b205187a2157 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 5 Apr 2021 09:53:30 +0200 Subject: add two Lie-Group-Problems --- buch/chapters/60-gruppen/chapter.tex | 8 +- buch/chapters/60-gruppen/uebungsaufgaben/6001.tex | 233 ++++++++++++++++++++++ buch/chapters/60-gruppen/uebungsaufgaben/6002.tex | 162 +++++++++++++++ 3 files changed, 402 insertions(+), 1 deletion(-) create mode 100644 buch/chapters/60-gruppen/uebungsaufgaben/6001.tex create mode 100644 buch/chapters/60-gruppen/uebungsaufgaben/6002.tex (limited to 'buch/chapters/60-gruppen') diff --git a/buch/chapters/60-gruppen/chapter.tex b/buch/chapters/60-gruppen/chapter.tex index 8472b58..3b1abc1 100644 --- a/buch/chapters/60-gruppen/chapter.tex +++ b/buch/chapters/60-gruppen/chapter.tex @@ -37,5 +37,11 @@ Zusammenhangs darzustellen. \input{chapters/60-gruppen/lie-algebren.tex} %\input{chapters/60-gruppen/homogen.tex} - +\section*{Übungsaufgaben} +\rhead{Übungsaufgaben} +\aufgabetoplevel{chapters/60-gruppen/uebungsaufgaben} +\begin{uebungsaufgaben} +\uebungsaufgabe{6002} +\uebungsaufgabe{6001} +\end{uebungsaufgaben} diff --git a/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex b/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex new file mode 100644 index 0000000..2acf6f6 --- /dev/null +++ b/buch/chapters/60-gruppen/uebungsaufgaben/6001.tex @@ -0,0 +1,233 @@ +Eine Drehung eines Vektors $\vec{x}$ der Ebene $\mathbb{R}^2$ +um den Winkel $\alpha$ gefolgt von einer Translation um $\vec{t}$ +ist gegeben durch $D_\alpha\vec{x}+\vec{t}$. +Darauf lässt sich jedoch die Theorie der Matrizengruppen nicht +darauf anwenden, weil die Operation nicht die Form einer Matrixmultiplikation +schreiben. +Die Drehung und Translation kann in eine Matrix zusammengefasst werden, +indem zunächst die Ebene mit +\[ +\mathbb{R}^2\to\mathbb{R}^3 +: +\begin{pmatrix}x\\y\end{pmatrix} +\mapsto +\begin{pmatrix}x\\y\\1\end{pmatrix} +\qquad\text{oder in Vektorschreibweise }\qquad +\vec{x}\mapsto\begin{pmatrix}\vec{x}\\1\end{pmatrix} +\] +in den dreidimensionalen Raum eingebettet wird. +Die Drehung und Verschiebung kann damit in der Form +\[ +\begin{pmatrix}D_\alpha\vec{x}+\vec{t}\\1 +\end{pmatrix} += +\begin{pmatrix}D_\alpha&\vec{t}\\0&1\end{pmatrix} +\begin{pmatrix}\vec{x}\\1\end{pmatrix} +\] +als Matrizenoperation geschrieben werden. +Die Gruppe der Drehungen und Verschiebungen der Ebene ist daher +die Gruppe +\[ +G += +\left\{ +\left. +A += +\begin{pmatrix} +D_\alpha&\vec{t}\\ +0&1 +\end{pmatrix} += +\begin{pmatrix} +\cos\alpha & -\sin\alpha & t_x \\ +\sin\alpha & \cos\alpha & t_y \\ + 0 & 0 & 1 +\end{pmatrix} +\; +\right| +\; +\alpha\in\mathbb{R},\vec{t}\in\mathbb{R}^2 +\right\} +\] +Wir kürzen die Elemente von $G$ auch als $(\alpha,\vec{t})$ ab. +\begin{teilaufgaben} +\item +Verifizieren Sie, dass das Produkt zweier solcher Matrizen +$(\alpha_1,\vec{t}_1)$ und $(\alpha_2,\vec{t}_2)$ +wieder die selbe Form $(\alpha,\vec{t})$ hat und berechnen Sie +$\alpha$ und $\vec{t}_j$. +\item +Bestimmen Sie das inverse Element zu $(\alpha,\vec{t}) \in G$. +\item +Die Elemente der Gruppe $G$ sind parametrisiert durch den Winkel $\alpha$ +und die Translationskomponenten $t_x$ und $t_y$. +Rechnen Sie nach, dass +\[ +\alpha\mapsto \begin{pmatrix} D_{\alpha}&0\\0&1\end{pmatrix}, +\quad +t_x\mapsto +\begin{pmatrix} I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix}, +\qquad +t_y\mapsto +\begin{pmatrix} I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix} +\] +Einparameteruntergruppen von $G$ sind. +\item +Berechnen Sie die Tangentialvektoren $D$, $X$ und $Y$, +die zu den Einparameteruntergruppen von c) gehören. +\item +Berechnen Sie die Lie-Klammer für alle Paare von Tangentialvektoren. +\end{teilaufgaben} + +\begin{loesung} +\begin{teilaufgaben} +\item +Die Wirkung beider Gruppenelemente auf dem Vektor $\vec{x}$ ist +\begin{align*} +\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix} +\begin{pmatrix}D_{\alpha_2}&\vec{t}_2\\0&1\end{pmatrix} +\begin{pmatrix}\vec{x}\\1\end{pmatrix} +&= +\begin{pmatrix}D_{\alpha_1}&\vec{t}_1\\0&1\end{pmatrix} +\begin{pmatrix}D_{\alpha_2}\vec{x}+\vec{t}_2\\1\end{pmatrix} += +\begin{pmatrix} +D_{\alpha_1}(D_{\alpha_2}\vec{x}+\vec{t}_2)+\vec{t}_1\\1 +\end{pmatrix} +\\ +&= +\begin{pmatrix} +D_{\alpha_1}D_{\alpha_2}\vec{x} + D_{\alpha_1}\vec{t}_2+\vec{t}_1\\1 +\end{pmatrix} += +\begin{pmatrix} +D_{\alpha_1+\alpha_2}&D_{\alpha_1}\vec{t}_2+\vec{t}_1\\ +0&1 +\end{pmatrix} +\begin{pmatrix}\vec{x}\\1\end{pmatrix}. +\end{align*} +Das Produkt in der Gruppe $G$ kann daher +\[ +(\alpha_1,\vec{t}_1) (\alpha_2,\vec{t}_2) += +(\alpha_1+\alpha_2,\vec{t}_1+D_{\alpha_1}\vec{t}_2) +\] +geschrieben werden. +\item +Die Inverse der Abbildung $\vec{x}\mapsto \vec{y}=D_\alpha\vec{x}+\vec{t}$ +kann gefunden werden, indem man auf der rechten Seite nach $\vec{x}$ +auflöst: +\begin{align*} +\vec{y}&=D_\alpha\vec{x}+\vec{t} +&&\Rightarrow& +D_{\alpha}^{-1}( \vec{y}-\vec{t}) &= \vec{x} +\\ +&&&& \vec{x} &= D_{-\alpha}\vec{y} + (-D_{-\alpha}\vec{t}) +\end{align*} +Die Inverse von $(\alpha,\vec{t})$ ist also $(-\alpha,-D_{-\alpha}\vec{t})$. +\item +Da $D_\alpha$ eine Einparameteruntergruppe von $\operatorname{SO}(2)$ ist, +ist $\alpha\mapsto (D_\alpha,0)$ ebenfalls eine Einparameteruntergruppe. +Für die beiden anderen gilt +\[ +\biggl(I,\begin{pmatrix}t_{x1}\\0\end{pmatrix}\biggr) +\biggl(I,\begin{pmatrix}t_{x2}\\0\end{pmatrix}\biggr) += +\biggl(I,\begin{pmatrix}t_{x1}+t_{x2}\\0\end{pmatrix}\biggr) +\quad\text{und}\quad +\biggl(I,\begin{pmatrix}0\\t_{y1}\end{pmatrix}\biggr) +\biggl(I,\begin{pmatrix}0\\t_{y2}\end{pmatrix}\biggr) += +\biggl(I,\begin{pmatrix}0\\t_{y1}+t_{y2}\end{pmatrix}\biggr), +\] +also sind dies auch Einparameteruntergruppen. +\item +Die Ableitungen sind +\begin{align*} +D +&= +\frac{d}{d\alpha}\begin{pmatrix}D_\alpha&0\\0&1\end{pmatrix}\bigg|_{\alpha=0} += +\begin{pmatrix}J&0\\0&0\end{pmatrix} += +\begin{pmatrix} +0&-1&0\\ +1& 0&0\\ +0& 0&0 +\end{pmatrix} +\\ +X +&= +\frac{d}{dt_x} +\left. +\begin{pmatrix}I&\begin{pmatrix}t_x\\0\end{pmatrix}\\0&1\end{pmatrix} +\right|_{t_x=0} += +\begin{pmatrix} +0&0&1\\ +0&0&0\\ +0&0&0 +\end{pmatrix} +& +Y +&= +\frac{d}{dt_y} +\left. +\begin{pmatrix}I&\begin{pmatrix}0\\t_y\end{pmatrix}\\0&1\end{pmatrix} +\right|_{t_y=0} += +\begin{pmatrix} +0&0&0\\ +0&0&1\\ +0&0&0 +\end{pmatrix} +\end{align*} +\item +Die Vertauschungsrelationen sind +\begin{align*} +[D,X] +&= +DX-XD += +\begin{pmatrix} +0&0&0\\ +0&0&1\\ +0&0&0 +\end{pmatrix} +- +\begin{pmatrix} +0&0&0\\ +0&0&0\\ +0&0&0 +\end{pmatrix} += +Y +\\ +[D,Y] +&= +DY-YD += +\begin{pmatrix} +0&0&-1\\ +0&0&0\\ +0&0&0 +\end{pmatrix} +- +\begin{pmatrix} +0&0&0\\ +0&0&0\\ +0&0&0 +\end{pmatrix} += +-X +\\ +[X,Y] +&= +XY-YX += +0-0=0 +\qedhere +\end{align*} +\end{teilaufgaben} +\end{loesung} diff --git a/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex b/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex new file mode 100644 index 0000000..43464d7 --- /dev/null +++ b/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex @@ -0,0 +1,162 @@ +Die Elemente der Gruppe $G$ der Translationen und Streckungen von +$\mathbb{R}$ kann durch Paare $(\lambda,t)\in\mathbb{R}^+\times\mathbb{R}$ +beschrieben werden, +wobei $\lambda$ durch Streckung und $t$ durch Translation wirkt: +\[ +(\lambda,t)\colon \mathbb{R}\to\mathbb{R}: x\mapsto \lambda x+t. +\] +Dies ist allerdings noch keine Untergruppe einer Matrizengruppe. +Dazu bettet man $\mathbb{R}$ mit Hilfe der Abbildung +\[ +\mathbb{R}\to\mathbb{R}^2 : x\mapsto \begin{pmatrix}x\\1\end{pmatrix} +\] +in $\mathbb{R}^2$ ein. +Die Wirkung von $(\lambda,t)$ ist dann +\[ +\begin{pmatrix}(\lambda,t)\cdot x\\1\end{pmatrix} += +\begin{pmatrix} \lambda x + t\\1\end{pmatrix} += +\begin{pmatrix}\lambda&1\\0&1\end{pmatrix}\begin{pmatrix}x\\1\end{pmatrix}. +\] +Die Wirkung des Paares $(\lambda,t)$ kann also mit Hilfe einer +$2\times 2$-Matrix beschrieben werden. +Die Abbildung +\[ +G\to \operatorname{GL}_2(\mathbb{R}) +: +(\lambda,t) +\mapsto +\begin{pmatrix}\lambda&t\\0&1\end{pmatrix} +\] +bettet die Gruppe $G$ in $\operatorname{GL}_2(\mathbb{R})$ ein. +\begin{teilaufgaben} +\item +Berechnen Sie das Produkt $g_1g_2$ zweier Elemente +$g_j=(\lambda_j,t_j)$. +\item +Bestimmen Sie das inverse Elemente von $(\lambda,t)$ in $G$. +\item +Der sogenannte Kommutator zweier Elemente ist $g_1g_2g_1^{-1}g_2^{-1}$, +berechnen Sie den Kommutator für die Gruppenelemente von a). +\item +Rechnen Sie nach, dass +\[ +s\mapsto \begin{pmatrix}e^s&0\\0&1\end{pmatrix} +,\qquad +t\mapsto \begin{pmatrix}1&t\\0&1\end{pmatrix} +\] +Einparameteruntergruppen von $\operatorname{GL}_2(\mathbb{R})$ sind. +\item +Berechnen Sie die Tangentialvektoren $S$ und $T$ dieser beiden +Einparameteruntergruppen. +\item +Berechnen Sie den Kommutator $[S,T]$ +\end{teilaufgaben} + +\begin{loesung} +\begin{teilaufgaben} +\item +Die beiden Gruppenelemente wirken auf $x$ nach +\[ +(\lambda_1,t_1) +(\lambda_2,t_2) +\cdot +x += +(\lambda_1,t_1)(\lambda_2x+t_2) += +\lambda_1(\lambda_2x+t_2)+t_1) += +\lambda_1\lambda_2 x + (\lambda_1t_2+t_1), +\] +also ist $g_1g_2=(\lambda_1\lambda_2,\lambda_1t_2+t_1)$. +\item +Die Inverse von $(\lambda,t)$ kann erhalten werden, indem man die +Abbildung $x\mapsto y=\lambda x +t$ nach $x$ auflöst: +\[ +y=\lambda x+t +\qquad\Rightarrow\qquad +\lambda^{-1}(y-t) += +\lambda^{-1}y - \lambda^{-1}t. +\] +Daraus liest man ab, dass $(\lambda,t)^{-1}=(\lambda^{-1},-\lambda^{-1}t)$ +ist. +\item +Mit Hilfe der Identität $g_1g_2g_1^{-1}g_2^{-1}=g_1g_2(g_2g_1)^{-1}$ +kann man den Kommutator leichter berechnen +\begin{align*} +g_1g_2&=(\lambda_1\lambda_2,t_1+\lambda_1t_2) +\\ +g_2g_1&= (\lambda_2\lambda_1,t_2+\lambda_2t_1) +\\ +(g_2g_1)^{-1} +&= +(\lambda_1^{-1}\lambda_2^{-1}, + -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1)) +\\ +g_1g_2g_1^{-1}g_2^{-1} +&= +(\lambda_1\lambda_2,t_1+\lambda_1t_2) +(\lambda_1^{-1}\lambda_2^{-1}, + -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1)) +\\ +&=(1,t_1+\lambda_1t_2 + \lambda_1\lambda_2( + -\lambda_2^{-1}\lambda_1^{-1}(t_2+\lambda_2t_1)) +) +\\ +&=(1, t_1+\lambda_1t_2 - t_2 -\lambda_2t_1) += +(1,(1-\lambda_2)(t_1-t_2)) +\end{align*} +Der Kommutator ist also das neutrale Element, wenn $\lambda_2=1$ ist. +\item +Dies ist am einfachsten in der Matrixform nachzurechnen: +\begin{align*} +\begin{pmatrix} e^{s_1}&0\\0&1\end{pmatrix} +\begin{pmatrix} e^{s_2}&0\\0&1\end{pmatrix} +&= +\begin{pmatrix}e^{s_1+s_2}&0\\0&1\end{pmatrix} +& +\begin{pmatrix} 1&t_1\\0&1\end{pmatrix} +\begin{pmatrix} 1&t_2\\0&1\end{pmatrix} +&= +\begin{pmatrix} 1&t_1+t_2\\0&1\end{pmatrix} +\end{align*} +\item +Die Tangentialvektoren werden erhalten durch ableiten der +Matrixdarstellung nach dem Parameter +\begin{align*} +S +&= +\frac{d}{ds} \begin{pmatrix}e^s&0\\0&1\end{pmatrix}\bigg|_{s=0} += +\begin{pmatrix}1&0\\0&0\end{pmatrix} +\\ +T +&= +\frac{d}{dt} \begin{pmatrix}1&t\\0&1\end{pmatrix}\bigg|_{t=0} += +\begin{pmatrix}0&1\\0&0\end{pmatrix} +\end{align*} +\item Der Kommutator ist +\[ +[S,T] += +\begin{pmatrix}1&0\\0&0\end{pmatrix} +\begin{pmatrix}0&1\\0&0\end{pmatrix} +- +\begin{pmatrix}0&1\\0&0\end{pmatrix} +\begin{pmatrix}1&0\\0&0\end{pmatrix} += +\begin{pmatrix}0&1\\0&0\end{pmatrix} +- +\begin{pmatrix}0&0\\0&0\end{pmatrix} += +T. +\qedhere +\] +\end{teilaufgaben} +\end{loesung} + -- cgit v1.2.1 From c321e5bc7ce152b7509d6f55c0514590f770b22c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 5 Apr 2021 22:08:36 +0200 Subject: new drawings --- buch/chapters/60-gruppen/uebungsaufgaben/6002.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/chapters/60-gruppen') diff --git a/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex b/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex index 43464d7..14fbe2b 100644 --- a/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex +++ b/buch/chapters/60-gruppen/uebungsaufgaben/6002.tex @@ -108,7 +108,7 @@ g_1g_2g_1^{-1}g_2^{-1} \\ &=(1, t_1+\lambda_1t_2 - t_2 -\lambda_2t_1) = -(1,(1-\lambda_2)(t_1-t_2)) +(1,(1-\lambda_2)(t_1-t_2)). \end{align*} Der Kommutator ist also das neutrale Element, wenn $\lambda_2=1$ ist. \item -- cgit v1.2.1 From 0c790bc7f4a0e39efc45b5aa007a4e0d94ae5b74 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 26 May 2021 15:48:00 +0200 Subject: Typo in lie groups --- buch/chapters/60-gruppen/lie-gruppen.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/chapters/60-gruppen') diff --git a/buch/chapters/60-gruppen/lie-gruppen.tex b/buch/chapters/60-gruppen/lie-gruppen.tex index d6fc007..e92c254 100644 --- a/buch/chapters/60-gruppen/lie-gruppen.tex +++ b/buch/chapters/60-gruppen/lie-gruppen.tex @@ -29,7 +29,7 @@ wenn es gelingt, eine Karte für eine Umgebung des neutralen Elements zu finden. Dazu muss gezeigt werden, dass sich aus einer solchen Karte für jedes andere Gruppenelement eine Karte für eine Umgebung ableiten lässt. -Sei also $\varphi_e\colon U_e\mathbb{R}^N$ eine Karte für die Umgebung +Sei also $\varphi_e\colon U_e \to \mathbb{R}^N$ eine Karte für die Umgebung $U_e\subset G$ von $e\in G$. Für $g\in G$ ist dann die Abbildung \[ -- cgit v1.2.1