From 2db90bfe4b174570424c408f04000902411d8755 Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Mon, 12 Apr 2021 21:51:55 +0200 Subject: update to current state of book --- buch/chapters/70-graphen/spektral.tex | 396 +++++++++++++++++----------------- 1 file changed, 198 insertions(+), 198 deletions(-) (limited to 'buch/chapters/70-graphen/spektral.tex') diff --git a/buch/chapters/70-graphen/spektral.tex b/buch/chapters/70-graphen/spektral.tex index f68c814..72e3519 100644 --- a/buch/chapters/70-graphen/spektral.tex +++ b/buch/chapters/70-graphen/spektral.tex @@ -1,198 +1,198 @@ -% -% spektral.tex -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Spektrale Graphentheorie -\label{buch:section:spektrale-graphentheorie}} -\rhead{Spektrale Graphentheorie} -Die Laplace-Matrix codiert alle wesentliche Information eines -ungerichteten Graphen. -Sie operiert auf Vektoren, die für jeden Knoten des Graphen eine -Komponente haben. -Dies eröffnet die Möglichkeit, den Graphen über die linearalgebraischen -Eigenschaften der Laplace-Matrix zu studieren. - -\subsection{Grapheigenschaften und Spektrum von $L$ -\label{buch:subsection:grapheigenschaften-und-spektrum-von-l}} -TODO XXX - -\subsection{Wärmeleitung auf einem Graphen -\label{buch:subsection:waermeleitung-auf-einem-graphen}} -Die Vektoren, auf denen die Laplace-Matrix operiert, können betrachtet -werden als Funktionen, die jedem Knoten einen Wert zuordnen. -Eine mögliche physikalische Interpretation davon ist die Temperaturverteilung -auf dem Graphen. -Die Kanten zwischen den Knoten erlauben der Wärmeenergie, von einem Knoten -zu einem anderen zu fliessen. -Je grösser die Temperaturdifferenz zwischen zwei Knoten ist, desto -grösser ist der Wärmefluss und desto schneller ändert sich die Temperatur -der beteiligten Knoten. -Die zeitliche Änderung der Temperatur $T_i$ im Knoten $i$ ist proportional -\[ -\frac{dT_i}{dt} -= -\sum_{\text{$j$ Nachbar von $i$}} \kappa (T_j-T_i) -= -- -\kappa -\biggl( -d_iT_i -- -\sum_{\text{$j$ Nachbar von $i$}} T_j -\biggr) -\] -Der Term auf der rechten Seite ist genau die Wirkung der -Laplace-Matrix auf dem Vektor $T$ der Temperaturen: -\begin{equation} -\frac{dT}{dt} -= --\kappa L T. -\label{buch:graphen:eqn:waermeleitung} -\end{equation} -Der Wärmefluss, der durch die -Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung} beschrieben -wird, codiert ebenfalls wesentliche Informationen über den Graphen. -Je mehr Kanten es zwischen verschiedenen Teilen eines Graphen gibt, -desto schneller findet der Wärmeaustausch zwischen diesen Teilen -statt. -Die Lösungen der Wärmeleitungsgleichung liefern also Informationen -über den Graphen. - -\subsection{Eigenwerte und Eigenvektoren -\label{buch:subsection:ein-zyklischer-graph}} -Die Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung} -ist eine lineare Differentialgleichung mit konstanten Koeffizienten, -die mit der Matrixexponentialfunktion gelöst werden. -Die Lösung ist -\[ -f(t) = e^{-\kappa Lt}f(0). -\] - -Die Berechnung der Lösung mit der Matrixexponentialreihe ist ziemlich -ineffizient, da grosse Matrizenprodukte berechnet werden müssen. -Da die Matrix $L$ symmetrisch ist, gibt es eine Basis aus -orthonormierten Eigenvektoren und die Eigenwerte sind reell. -Wir bezeichnen die Eigenvektoren mit $f_1,\dots,f_n$ und die -zugehörigen Eigenwerte mit $\lambda_i$. -Die Funktion $f_i(t)= e^{-\kappa\lambda_it}f_i$ ist dann eine Lösung -der Wärmeleitungsgleichung, denn die beiden Seiten -\begin{align*} -\frac{d}{dt}f_i(t) -&= --\kappa\lambda_ie^{-\kappa\lambda_it}f_i -= --\kappa\lambda_i f_i(t) -\\ --\kappa Lf_i(t) -&= --\kappa e^{-\kappa\lambda_it} Lf_i -= --\kappa e^{-\kappa\lambda_it} \lambda_i f_i -= --\kappa \lambda_i f_i(t) -\end{align*} -von \eqref{buch:graphen:eqn:waermeleitung} stimmen überein. - -Eine Lösung der Wärmeleitungsgleichung zu einer beliebigen -Anfangstemperaturverteilung $f$ kann durch Linearkombination aus -den Lösungen $f_i(t)$ zusammengesetzt werden. -Dazu ist nötig, $f$ aus den Vektoren $f_i$ linear zu kombinieren. -Da aber die $f_i$ orthonormiert sind, ist dies besonders einfach, -die Koeffizienten sind die Skalarprodukte mit den Eigenvektoren: -\[ -f=\sum_{i=1}^n \langle f_i,f\rangle f_i. -\] -Daraus kann man die allgmeine Lösungsformel -\begin{equation} -f(t) -= -\sum_{i=1}^n \langle f_i,f\rangle f_i(t) -= -\sum_{i=1}^n \langle f_i,f\rangle e^{-\kappa\lambda_i t}f_i -\label{buch:graphen:eqn:eigloesung} -\end{equation} -ableiten. - -\subsection{Beispiel: Ein zyklischer Graph} -\begin{figure} -\centering -\includegraphics{chapters/70-graphen/images/kreis.pdf} -\caption{Beispiel Graph zur Illustration der verschiedenen Basen auf einem -Graphen. -\label{buch:graphen:fig:kreis}} -\end{figure} -Wir illustrieren die im folgenden entwickelte Theorie an dem Beispielgraphen -von Abbildung~\ref{buch:graphen:fig:kreis}. -Besonders interessant sind die folgenden Funktionen: -\[ -\left. -\begin{aligned} -s_m(k) -&= -\sin\frac{2\pi mk}{n} -\\ -c_m(k) -&= -\cos\frac{2\pi mk}{n} -\end{aligned} -\; -\right\} -\quad -\Rightarrow -\quad -e_m(k) -= -e^{2\pi imk/n} -= -c_m(k) + is_m(k). -\] -Das Skalarprodukt dieser Funktionen ist -\[ -\langle e_m, e_{m'}\rangle -= -\frac1n -\sum_{k=1}^n -\overline{e^{2\pi i km/n}} -e^{2\pi ikm'/n} -= -\frac1n -\sum_{k=1}^n -e^{\frac{2\pi i}{n}(m'-m)k} -= -\delta_{mm'} -\] -Die Funktionen bilden daher eine Orthonormalbasis des Raums der -Funktionen auf $G$. -Wegen $\overline{e_m} = e_{-m}$ folgt, dass für gerade $n$ -die Funktionen -\[ -c_0, c_1,s_1,c_2,s_2,\dots c_{\frac{n}2-1},c_{\frac{n}2-1},c_{\frac{n}2} -\] -eine orthonormierte Basis. - - -Die Laplace-Matrix kann mit der folgenden Definition zu einer linearen -Abbildung auf Funktionen auf dem Graphen gemacht werden. -Sei $f\colon V\to \mathbb{R}$ und $L$ die Laplace-Matrix mit -Matrixelementen $l_{vv'}$ wobei $v,v'\in V$ ist. -Dann definieren wir die Funktion $Lf$ durch -\[ -(Lf)(v) -= -\sum_{v'\in V} l_{vv'}f(v'). -\] - -\subsection{Standardbasis und Eigenbasis -\label{buch:subsection:standardbasis-und-eigenbasis}} -Die einfachste Basis, aus der siche Funktionen auf dem Graphen linear -kombinieren lassen, ist die Standardbasis. -Sie hat für jeden Knoten $v$ des Graphen eine Basisfunktion mit den Werten -\[ -e_v\colon V\to\mathbb R:v'\mapsto \begin{cases} -1\qquad&v=v'\\ -0\qquad&\text{sonst.} -\end{cases} -\] - - +% +% spektral.tex +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Spektrale Graphentheorie +\label{buch:section:spektrale-graphentheorie}} +\rhead{Spektrale Graphentheorie} +Die Laplace-Matrix codiert alle wesentliche Information eines +ungerichteten Graphen. +Sie operiert auf Vektoren, die für jeden Knoten des Graphen eine +Komponente haben. +Dies eröffnet die Möglichkeit, den Graphen über die linearalgebraischen +Eigenschaften der Laplace-Matrix zu studieren. + +\subsection{Grapheigenschaften und Spektrum von $L$ +\label{buch:subsection:grapheigenschaften-und-spektrum-von-l}} +TODO XXX + +\subsection{Wärmeleitung auf einem Graphen +\label{buch:subsection:waermeleitung-auf-einem-graphen}} +Die Vektoren, auf denen die Laplace-Matrix operiert, können betrachtet +werden als Funktionen, die jedem Knoten einen Wert zuordnen. +Eine mögliche physikalische Interpretation davon ist die Temperaturverteilung +auf dem Graphen. +Die Kanten zwischen den Knoten erlauben der Wärmeenergie, von einem Knoten +zu einem anderen zu fliessen. +Je grösser die Temperaturdifferenz zwischen zwei Knoten ist, desto +grösser ist der Wärmefluss und desto schneller ändert sich die Temperatur +der beteiligten Knoten. +Die zeitliche Änderung der Temperatur $T_i$ im Knoten $i$ ist proportional +\[ +\frac{dT_i}{dt} += +\sum_{\text{$j$ Nachbar von $i$}} \kappa (T_j-T_i) += +- +\kappa +\biggl( +d_iT_i +- +\sum_{\text{$j$ Nachbar von $i$}} T_j +\biggr) +\] +Der Term auf der rechten Seite ist genau die Wirkung der +Laplace-Matrix auf dem Vektor $T$ der Temperaturen: +\begin{equation} +\frac{dT}{dt} += +-\kappa L T. +\label{buch:graphen:eqn:waermeleitung} +\end{equation} +Der Wärmefluss, der durch die +Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung} beschrieben +wird, codiert ebenfalls wesentliche Informationen über den Graphen. +Je mehr Kanten es zwischen verschiedenen Teilen eines Graphen gibt, +desto schneller findet der Wärmeaustausch zwischen diesen Teilen +statt. +Die Lösungen der Wärmeleitungsgleichung liefern also Informationen +über den Graphen. + +\subsection{Eigenwerte und Eigenvektoren +\label{buch:subsection:ein-zyklischer-graph}} +Die Wärmeleitungsgleichung~\eqref{buch:graphen:eqn:waermeleitung} +ist eine lineare Differentialgleichung mit konstanten Koeffizienten, +die mit der Matrixexponentialfunktion gelöst werden. +Die Lösung ist +\[ +f(t) = e^{-\kappa Lt}f(0). +\] + +Die Berechnung der Lösung mit der Matrixexponentialreihe ist ziemlich +ineffizient, da grosse Matrizenprodukte berechnet werden müssen. +Da die Matrix $L$ symmetrisch ist, gibt es eine Basis aus +orthonormierten Eigenvektoren und die Eigenwerte sind reell. +Wir bezeichnen die Eigenvektoren mit $f_1,\dots,f_n$ und die +zugehörigen Eigenwerte mit $\lambda_i$. +Die Funktion $f_i(t)= e^{-\kappa\lambda_it}f_i$ ist dann eine Lösung +der Wärmeleitungsgleichung, denn die beiden Seiten +\begin{align*} +\frac{d}{dt}f_i(t) +&= +-\kappa\lambda_ie^{-\kappa\lambda_it}f_i += +-\kappa\lambda_i f_i(t) +\\ +-\kappa Lf_i(t) +&= +-\kappa e^{-\kappa\lambda_it} Lf_i += +-\kappa e^{-\kappa\lambda_it} \lambda_i f_i += +-\kappa \lambda_i f_i(t) +\end{align*} +von \eqref{buch:graphen:eqn:waermeleitung} stimmen überein. + +Eine Lösung der Wärmeleitungsgleichung zu einer beliebigen +Anfangstemperaturverteilung $f$ kann durch Linearkombination aus +den Lösungen $f_i(t)$ zusammengesetzt werden. +Dazu ist nötig, $f$ aus den Vektoren $f_i$ linear zu kombinieren. +Da aber die $f_i$ orthonormiert sind, ist dies besonders einfach, +die Koeffizienten sind die Skalarprodukte mit den Eigenvektoren: +\[ +f=\sum_{i=1}^n \langle f_i,f\rangle f_i. +\] +Daraus kann man die allgmeine Lösungsformel +\begin{equation} +f(t) += +\sum_{i=1}^n \langle f_i,f\rangle f_i(t) += +\sum_{i=1}^n \langle f_i,f\rangle e^{-\kappa\lambda_i t}f_i +\label{buch:graphen:eqn:eigloesung} +\end{equation} +ableiten. + +\subsection{Beispiel: Ein zyklischer Graph} +\begin{figure} +\centering +\includegraphics{chapters/70-graphen/images/kreis.pdf} +\caption{Beispiel Graph zur Illustration der verschiedenen Basen auf einem +Graphen. +\label{buch:graphen:fig:kreis}} +\end{figure} +Wir illustrieren die im folgenden entwickelte Theorie an dem Beispielgraphen +von Abbildung~\ref{buch:graphen:fig:kreis}. +Besonders interessant sind die folgenden Funktionen: +\[ +\left. +\begin{aligned} +s_m(k) +&= +\sin\frac{2\pi mk}{n} +\\ +c_m(k) +&= +\cos\frac{2\pi mk}{n} +\end{aligned} +\; +\right\} +\quad +\Rightarrow +\quad +e_m(k) += +e^{2\pi imk/n} += +c_m(k) + is_m(k). +\] +Das Skalarprodukt dieser Funktionen ist +\[ +\langle e_m, e_{m'}\rangle += +\frac1n +\sum_{k=1}^n +\overline{e^{2\pi i km/n}} +e^{2\pi ikm'/n} += +\frac1n +\sum_{k=1}^n +e^{\frac{2\pi i}{n}(m'-m)k} += +\delta_{mm'} +\] +Die Funktionen bilden daher eine Orthonormalbasis des Raums der +Funktionen auf $G$. +Wegen $\overline{e_m} = e_{-m}$ folgt, dass für gerade $n$ +die Funktionen +\[ +c_0, c_1,s_1,c_2,s_2,\dots c_{\frac{n}2-1},c_{\frac{n}2-1},c_{\frac{n}2} +\] +eine orthonormierte Basis. + + +Die Laplace-Matrix kann mit der folgenden Definition zu einer linearen +Abbildung auf Funktionen auf dem Graphen gemacht werden. +Sei $f\colon V\to \mathbb{R}$ und $L$ die Laplace-Matrix mit +Matrixelementen $l_{vv'}$ wobei $v,v'\in V$ ist. +Dann definieren wir die Funktion $Lf$ durch +\[ +(Lf)(v) += +\sum_{v'\in V} l_{vv'}f(v'). +\] + +\subsection{Standardbasis und Eigenbasis +\label{buch:subsection:standardbasis-und-eigenbasis}} +Die einfachste Basis, aus der siche Funktionen auf dem Graphen linear +kombinieren lassen, ist die Standardbasis. +Sie hat für jeden Knoten $v$ des Graphen eine Basisfunktion mit den Werten +\[ +e_v\colon V\to\mathbb R:v'\mapsto \begin{cases} +1\qquad&v=v'\\ +0\qquad&\text{sonst.} +\end{cases} +\] + + -- cgit v1.2.1