From f88b8071a623096f9004007ced8ec97195aaa218 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 25 Sep 2021 16:43:39 +0200 Subject: zweite Lesung --- buch/chapters/70-graphen/waerme.tex | 15 ++++++++------- 1 file changed, 8 insertions(+), 7 deletions(-) (limited to 'buch/chapters/70-graphen/waerme.tex') diff --git a/buch/chapters/70-graphen/waerme.tex b/buch/chapters/70-graphen/waerme.tex index bfeff74..ac49880 100644 --- a/buch/chapters/70-graphen/waerme.tex +++ b/buch/chapters/70-graphen/waerme.tex @@ -5,6 +5,7 @@ % \section{Wärmeleitung auf einem Graphen \label{buch:section:waermeleitung-auf-einem-graphen}} +\rhead{Wärmeleitung auf einem Graphen} Die Vektoren, auf denen die Laplace-Matrix operiert, können als Funktionen betrachtet werden, die jedem Knoten einen Wert zuordnen. Eine mögliche physikalische Interpretation davon ist die Temperaturverteilung @@ -44,8 +45,6 @@ wird, codiert ebenfalls wesentliche Informationen über den Graphen. Je mehr Kanten es zwischen verschiedenen Teilen eines Graphen gibt, desto schneller findet der Wärmeaustausch zwischen diesen Teilen statt. -Die Lösungen der Wärmeleitungsgleichung liefern also Informationen -über den Graphen. \subsection{Eigenwerte und Eigenvektoren \label{buch:subsection:ein-zyklischer-graph}} @@ -165,13 +164,13 @@ s_k(l) &= \sin\frac{2\pi kl}{n} = -\Im \chi_k(l) +\Im \chi_k(l), \\ c_k(l) &= \cos\frac{2\pi kl}{n} = -\Re\chi_k(l) +\Re\chi_k(l). \end{aligned} \] Das Skalarprodukt dieser Funktionen ist @@ -189,14 +188,16 @@ e^{\frac{2\pi i}{n}(m'-m)l} = \delta_{mm'} \] -Die Funktionen bilden daher eine Orthonormalbasis des Raums der -Funktionen auf $G$. +Die Funktionen bilden daher eine Orthonormalbasis des komplexen +Vektorraums der +komplexen Funktionen auf $G$ mit dem sesquilinearen Skalarprodut. Wegen $\overline{e_m} = e_{-m}$ folgt, dass für gerade $n$ die Funktionen \[ c_0, c_1,s_1,c_2,s_2,\dots c_{\frac{n}2-1},c_{\frac{n}2-1},c_{\frac{n}2} \] -eine orthonormierte Basis. +eine orthonormierte Basis des reellen Vektorraumes der reellen Funktionen +auf $G$ mit dem gewöhnlichen Skalarprodukt. \subsection{Standardbasis und Eigenbasis \label{buch:subsection:standardbasis-und-eigenbasis}} -- cgit v1.2.1