From 7e4a7b847c63064a40fd7a4d3829eddb4191aa9e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 24 May 2021 20:36:06 +0200 Subject: Wavelets auf einem Graphen --- buch/chapters/70-graphen/wavelets.tex | 228 ++++++++++++++++++++++++++++++++-- 1 file changed, 218 insertions(+), 10 deletions(-) (limited to 'buch/chapters/70-graphen/wavelets.tex') diff --git a/buch/chapters/70-graphen/wavelets.tex b/buch/chapters/70-graphen/wavelets.tex index 9c88c08..ae065bc 100644 --- a/buch/chapters/70-graphen/wavelets.tex +++ b/buch/chapters/70-graphen/wavelets.tex @@ -103,22 +103,230 @@ aus der sich alle Vektoren linear kombinieren lassen, in der aber auch auf die für die Anwendung interessante Längenskala angepasste Funktionen gefunden werden können. -\subsection{Wavelets und Frequenzspektrum} -Eine Wavelet-Basis der Funktionen auf $\mathbb{R}$ zerlegt +\subsection{Wavelets auf einem Graphen} +Die Fourier-Theorie analysiert Funktionen nach Frequenzen, wobei die +zeitliche Position von interessanten Stellen der Funktion in der Phase +der einzelnen Komponenten verschwindet. +Die Lokalisierung geht also für viele praktische Zwecke verloren. +Umgekehrt haben einzelne Ereignisse wie eine $\delta$-Funktion keine +charakteristische Frequenz, sie sind daher im Frequenzraum überhaupt +nicht lokalisierbar. +Die Darstellung im Frequenzraum und in der Zeit sind also extreme +Darstellungen, entweder Frequenzlokalisierung oder zeitliche Lokalisierung +ermöglichen, sich aber gegenseitig ausschliessen. +\subsubsection{Dilatation} +Eine Wavelet-Basis für die $L^2$-Funktionen auf $\mathbb{R}$ erlaubt +eine Funktion auf $\mathbb{R}$ auf eine Art zu analysieren, die eine +ungenaue zeitliche Lokalisierung bei entsprechend ungenauer +Frequenzbestimmung ermöglicht. +Ausserdem entstehen die Wavelet-Funktionen aus einer einzigen Funktion +$\psi(t)$ durch Translation um $b$ und Dilatation mit dem Faktor $a$: +\[ +\psi_{a,b}(t) += +\frac{1}{\sqrt{|a|}} \psi\biggl(\frac{t-b}a\biggr) += +T_bD_a\psi(t) +\] +in der Notation von \cite{buch:mathsem-wavelets}. +Auf einem Graphen ist so eine Konstruktion grundsätzlich nicht möglich, +da es darauf weder eine Translations- noch eine Streckungsoperation gibt. + +In der Theorie der diskreten Wavelet-Transformation ist es üblich, sich +auf Zweierpotenzen als Streckungsfaktoren zu beschränken. +Ein Gitter wird dadurch auf sich selbst abgebildet, aber auf einem +Graphen gibt es keine Rechtfertigung für diese spezielle Wahl von +Streckungsfaktoren mehr. +Es stellt sich daher die Frage, ob man für eine beliebige Menge +\( +T= \{ t_1,t_2,\dots\} \} +\) +von Streckungsfaktoren eine Familie von Funktionen $\chi_j$ zu finden +derart, dass man sich die $\chi_j$ in einem gewissen Sinn als aus +$\chi_0$ durch Dilatation entstanden vorstellen kann. -\subsection{Frequenzspektrum -\label{buch:subsection:frequenzspektrum}} -Die Fundamentallösung der Wärmeleitunsgleichung haben ein Spektrum, welches -wie $e^{-k^2}$ gegen $0$ geht. +Die Dilatation kann natürlich nicht von einer echten +Dilatation im Ortsraum herstammen, aber man kann wenigstens versuchen, die +Dilatation im Frequenzraum nachzubilden. +Für Funktionen in $L^2(\mathbb{R})$ entspricht die Dilatation mit dem +Faktor $a$ im Ortsraum der Dilatation mit dem Faktor $1/a$ im Frequenzraum: +\[ +\widehat{D_af}(\omega) = D_{1/a}\hat{f}(\omega). +\] +\cite[Satz~3.14]{buch:mathsem-wavelets}. +Es bleibt aber das Problem, dass sich auch die Skalierung im Frequenzraum +nicht durchführen lässt, da auch das Frequenzspektrum des Graphen nur eine +Menge von reellen Zahlen ohne innere algebraische Struktur ist. + +\subsubsection{Mutterwavelets} +\begin{figure} +\centering +\includegraphics{chapters/70-graphen/images/gh.pdf} +\caption{Lokalisierungsfunktion $g(\lambda)$ für die Dilatation (links). +Die Dilatierten Funktionen $g_i=\tilde{D}_{1/a_i}g$ lokalisieren +die Frequenzen jeweils um die Frequenzen $a_i$ im Frequenzraum. +Der Konstante Vektor ist vollständig delokalisiert, die Funktion $h$ +in der rechten Abbildung entfernt die hohen Frequenzen und liefert Funktionen, +die in der Umgebung eines Knotens wie die Konstante Funktion aussehen. +\label{buch:graphs:fig:lokalisierung}} +\end{figure} +Das Mutter-Wavelet einer Wavelet-Analyse zeichnet definiert, in welchem Mass +sich Funktionen im Orts- und im Frequenzraum lokalisieren lassen. +Die Standardbasis der Funktionen auf einem Graphen repräsentieren die +perfekte örtliche Lokalisierung, Eigenbasis der Laplace-Matrix repräsentiert +die perfekte Lokalisierung im Frequenzraum. +Sei $g(\lambda)\ge 0$ eine Funktion im Frequenzraum, die für $\lambda\to0$ und +$\lambda\to\infty$ rasch abfällt mit einem Maximum irgendwo dazwischen +(Abbildung~\ref{buch:graphs:fig:lokalisierung}). +Sie kann als eine Lokalisierungsfunktion im Frequenzraum betrachtet werden. -Die Fundamentallösung entsteht dadurch, dass die hohen Frequenzen -schneller dämpft als die tiefen Frequenzen. +Die Matrix $g(I)$ bildet entfernt aus einer Funktion die ganz hohen und +die ganz tiefen Frequenz, lokalisiert also die Funktionen im Frequenzraum. +Die Standardbasisvektoren werden dabei zu Funktionen, die nicht mehr nur +auf einem Knoten von $0$ verschieden sind, aber immer noch einigermassen +auf dem Graphen lokalisiert sind. +Natürlich sind vor allem die Werte auf den Eigenwerten +$\lambda_0 < \lambda_1\le \dots\le \lambda_n$ der Laplace-Matrix +von Interesse. +Die Matrix $g(I)$ kann mit Hilfe der Spektraltheorie berechnet werden, +was im vorliegenden Fall naheliegend ist, weil ja die Eigenvektoren von +der Laplace-Matrix bereits bekannt sind. +Die Matrix $\chi^t$ bildet die Standardbasisvektoren in die +Eigenbasis-Vektoren ab, also in eine Zerlegung im Frequenzraum ab, +$\chi$ vermittelt die Umkehrabbildung. +Mit der Spektraltheorie findet man für die Abbildung $g(I)$ die Matrix +\begin{equation} +g(I) += +\chi +\begin{pmatrix} +g(\lambda_0)&0&\dots&0\\ +0&g(\lambda_1)&\dots&0\\ +\vdots&\vdots&\ddots&\vdots\\ +0&0&\dots&g(\lambda_n) +\end{pmatrix} +\chi^t. +\label{buch:graphen:eqn:mutterwavelet} +\end{equation} -\subsection{Wavelet-Basen -\label{buch:subsection:}} +\subsubsection{Dilatation} +Die Dilatation um $a$ im Ortsraum wird zu einer Dilatation um $1/a$ im +Frequenzraum. +Statt also nach einer echten Dilatation der Spaltenvektoren in $g(I)$ +zu suchen, kann man sich darauf verlegen, Funktionen zu finden, deren +Spektrum von einer Funktionen lokalisiert worden ist, die eine Dilatation +von $g$ ist. +Man wählt daher eine ansteigende Folge $A=(a_1,\dots)$ von Streckungsfaktoren +und betrachtet anstelle von $g$ die dilatierten Funktionen +$g_i=\tilde{D}_{1/a_i}g$. +Die zugehörigen Wavelet-Funktionen auf dem Graphen können wieder mit +der Formel~\eqref{buch:graphen:eqn:mutterwavelet} berechnet werden, +man erhält +\begin{equation} +\tilde{D}_{1/a_i}g(I) += +g_i(I) += +\chi +\begin{pmatrix} +g(a_i\lambda_0)&0&\dots&0\\ +0&g(a_i\lambda_1)&\dots&0\\ +\vdots&\vdots&\ddots&\vdots\\ +0&0&\dots&g(a_i\lambda_n) +\end{pmatrix} +\chi^t . +\end{equation} +Die Spalten von $g_i(I)$ bilden wieder eine Menge von Funktionen, die +eine gemäss $g_i$ lokalisiertes Spektrum haben. +\subsubsection{Vater-Wavelet} +Wegen $g(0)=0$ wird die konstante Funktion, die Eigenvektor zum Eigenwert +$\lambda_0=0$ ist, von den Abbildungen $g_i(I)$ auf $0$ abgebildet. +Andererseits ist diese Funktion nicht lokalisiert, man möchte Sie also +für die Analyse nicht unbedingt verwenden. +Man wählt daher eine Funktion $h(\lambda)$ mit $h(0)=1$ so, dass +für $\lambda\to \infty$ der Wert $h(\lambda)$ genügend rasch gegen $0$ +geht. +Die Matrix $h(I)$ bildet daher den konstanten Vektor nicht auf $0$ ab, +sondern lokalisiert ihn im Ortsraum. +Wir erhalten daher in den Spalten von $h(I)$ Vektoren, die um die +einzelnen Knoten lokalisiert sind. + +\subsubsection{Rekonstruktion} +Die Operatoren $h(I)$ und $g_i(I)$ erzeugen analysieren eine Funktion +nach den verschiedenen Frequenzen mit den Skalierungsfaktoren $a_i$, +aber die Rekonstruktion ist noch nicht klar. +Diese wäre einfacher, wenn die Operatoren zusammen die identische +Abbildung ergäben, wenn also +\[ +h(I) + \sum_{i}g_i(I)=I +\] +gelten würde. +Nach der Spektraltheorie gilt das nur, wenn für alle Eigenwerte +$\lambda_k$, $k=1,\dots,n$ +\[ +h(\lambda_k) + \sum_ig(a_i\lambda_k)=1 +\] +gilt. +Für beleibige Funktionen $g$ und $h$ kann man nicht davon ausgehen, +aber man kann erwarten. +Man muss daher zusätzlich verlangen, dass +\[ +h(\lambda_k) + \sum_{i} g(a_i\lambda_k) > 0 +\] +ist für alle Eigenwerte $\lambda_k$. + +\subsubsection{Frame} +Die Menge von Vektoren, die in der vorangegangenen Konstruktion gefunden +wurden, ist zu gross, um eine Basis zu sein. +Vektoren lassen sich darin auf verschiedene Art darstellen. +Wir verlangen aber auch keine eindeutige Darstellung, nur eine +Darstellung, in der wir die ``dominierenden'' Komponenten in jeder +Frequenzskala identifizieren können. + +\begin{definition} +\label{buch:graphen:def:frame} +Ein Frame des Vektorraumes $\mathbb{R}^n$ ist eine Menge +$F=\{e_k\;|\; k=1,\dots,N\}$ von Vektoren mit der Eigenschaft +\begin{equation} +A\|v\|^2 +\le +\sum_{k=1}^N |\langle v,e_k\rangle|^2 +\le +B\|v\|^2 +\label{buch:graphen:eqn:frame} +\end{equation} +Die Zahlen $A$ und $B$ heissen die {\em Frame-Konstanten} des Frames. +\end{definition} + +Die oben gefundenen Vektoren, die Spalten Vektoren von $h(I)$ und $g_i(I)$ +bilden daher ein Frame. +Die Frame-Konstanten kann man unmittelbar ausrechnen. +Der mittlere Term von \eqref{buch:graphen:eqn:frame} ist +\[ +\|h(I) v\|^2 ++ +\sum_{i} \|g_i(I)v\|^2, +\] +die durch die Funktion +\[ +f(\lambda) += +h(\lambda)^2 + \sum_i g_i(\lambda)^2 +\] +abgeschätzt werden kann. +Die Frame-Konstanten sind daher +\begin{align*} +A&=\min_{k} f(\lambda_k) +& +&\text{und}& +B&=\max_{k} f(\lambda_k). +\end{align*} +Die Konstruktion hat also ein Frame für die Funktionen auf dem Graphen +etabliert, die viele Eigenschaften einer Multiskalenanalyse in diese +wesentlich weniger symmetrische Situation rettet. -- cgit v1.2.1 From 9771c90a2643fc790dec3fb66741b969a379682e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 28 May 2021 08:27:18 +0200 Subject: wavelets, slides --- buch/chapters/70-graphen/wavelets.tex | 34 +++++++++++++++++----------------- 1 file changed, 17 insertions(+), 17 deletions(-) (limited to 'buch/chapters/70-graphen/wavelets.tex') diff --git a/buch/chapters/70-graphen/wavelets.tex b/buch/chapters/70-graphen/wavelets.tex index ae065bc..ef1520e 100644 --- a/buch/chapters/70-graphen/wavelets.tex +++ b/buch/chapters/70-graphen/wavelets.tex @@ -174,14 +174,14 @@ die in der Umgebung eines Knotens wie die Konstante Funktion aussehen. Das Mutter-Wavelet einer Wavelet-Analyse zeichnet definiert, in welchem Mass sich Funktionen im Orts- und im Frequenzraum lokalisieren lassen. Die Standardbasis der Funktionen auf einem Graphen repräsentieren die -perfekte örtliche Lokalisierung, Eigenbasis der Laplace-Matrix repräsentiert +perfekte örtliche Lokalisierung, Eigenbasis der Laplace-Matrix $L$ repräsentiert die perfekte Lokalisierung im Frequenzraum. Sei $g(\lambda)\ge 0$ eine Funktion im Frequenzraum, die für $\lambda\to0$ und $\lambda\to\infty$ rasch abfällt mit einem Maximum irgendwo dazwischen (Abbildung~\ref{buch:graphs:fig:lokalisierung}). Sie kann als eine Lokalisierungsfunktion im Frequenzraum betrachtet werden. -Die Matrix $g(I)$ bildet entfernt aus einer Funktion die ganz hohen und +Die Matrix $g(L)$ bildet entfernt aus einer Funktion die ganz hohen und die ganz tiefen Frequenz, lokalisiert also die Funktionen im Frequenzraum. Die Standardbasisvektoren werden dabei zu Funktionen, die nicht mehr nur auf einem Knoten von $0$ verschieden sind, aber immer noch einigermassen @@ -190,15 +190,15 @@ Natürlich sind vor allem die Werte auf den Eigenwerten $\lambda_0 < \lambda_1\le \dots\le \lambda_n$ der Laplace-Matrix von Interesse. -Die Matrix $g(I)$ kann mit Hilfe der Spektraltheorie berechnet werden, +Die Matrix $g(L)$ kann mit Hilfe der Spektraltheorie berechnet werden, was im vorliegenden Fall naheliegend ist, weil ja die Eigenvektoren von der Laplace-Matrix bereits bekannt sind. Die Matrix $\chi^t$ bildet die Standardbasisvektoren in die Eigenbasis-Vektoren ab, also in eine Zerlegung im Frequenzraum ab, $\chi$ vermittelt die Umkehrabbildung. -Mit der Spektraltheorie findet man für die Abbildung $g(I)$ die Matrix +Mit der Spektraltheorie findet man für die Abbildung $g(L)$ die Matrix \begin{equation} -g(I) +g(L) = \chi \begin{pmatrix} @@ -214,7 +214,7 @@ g(\lambda_0)&0&\dots&0\\ \subsubsection{Dilatation} Die Dilatation um $a$ im Ortsraum wird zu einer Dilatation um $1/a$ im Frequenzraum. -Statt also nach einer echten Dilatation der Spaltenvektoren in $g(I)$ +Statt also nach einer echten Dilatation der Spaltenvektoren in $g(L)$ zu suchen, kann man sich darauf verlegen, Funktionen zu finden, deren Spektrum von einer Funktionen lokalisiert worden ist, die eine Dilatation von $g$ ist. @@ -225,9 +225,9 @@ Die zugehörigen Wavelet-Funktionen auf dem Graphen können wieder mit der Formel~\eqref{buch:graphen:eqn:mutterwavelet} berechnet werden, man erhält \begin{equation} -\tilde{D}_{1/a_i}g(I) +\tilde{D}_{1/a_i}g(L) = -g_i(I) +g_i(L) = \chi \begin{pmatrix} @@ -238,30 +238,30 @@ g(a_i\lambda_0)&0&\dots&0\\ \end{pmatrix} \chi^t . \end{equation} -Die Spalten von $g_i(I)$ bilden wieder eine Menge von Funktionen, die +Die Spalten von $g_i(L)$ bilden wieder eine Menge von Funktionen, die eine gemäss $g_i$ lokalisiertes Spektrum haben. \subsubsection{Vater-Wavelet} Wegen $g(0)=0$ wird die konstante Funktion, die Eigenvektor zum Eigenwert -$\lambda_0=0$ ist, von den Abbildungen $g_i(I)$ auf $0$ abgebildet. +$\lambda_0=0$ ist, von den Abbildungen $g_i(L)$ auf $0$ abgebildet. Andererseits ist diese Funktion nicht lokalisiert, man möchte Sie also für die Analyse nicht unbedingt verwenden. Man wählt daher eine Funktion $h(\lambda)$ mit $h(0)=1$ so, dass für $\lambda\to \infty$ der Wert $h(\lambda)$ genügend rasch gegen $0$ geht. -Die Matrix $h(I)$ bildet daher den konstanten Vektor nicht auf $0$ ab, +Die Matrix $h(L)$ bildet daher den konstanten Vektor nicht auf $0$ ab, sondern lokalisiert ihn im Ortsraum. -Wir erhalten daher in den Spalten von $h(I)$ Vektoren, die um die +Wir erhalten daher in den Spalten von $h(L)$ Vektoren, die um die einzelnen Knoten lokalisiert sind. \subsubsection{Rekonstruktion} -Die Operatoren $h(I)$ und $g_i(I)$ erzeugen analysieren eine Funktion +Die Operatoren $h(L)$ und $g_i(L)$ erzeugen analysieren eine Funktion nach den verschiedenen Frequenzen mit den Skalierungsfaktoren $a_i$, aber die Rekonstruktion ist noch nicht klar. Diese wäre einfacher, wenn die Operatoren zusammen die identische Abbildung ergäben, wenn also \[ -h(I) + \sum_{i}g_i(I)=I +h(L) + \sum_{i}g_i(L)=I \] gelten würde. Nach der Spektraltheorie gilt das nur, wenn für alle Eigenwerte @@ -301,14 +301,14 @@ B\|v\|^2 Die Zahlen $A$ und $B$ heissen die {\em Frame-Konstanten} des Frames. \end{definition} -Die oben gefundenen Vektoren, die Spalten Vektoren von $h(I)$ und $g_i(I)$ +Die oben gefundenen Vektoren, die Spalten Vektoren von $h(L)$ und $g_i(L)$ bilden daher ein Frame. Die Frame-Konstanten kann man unmittelbar ausrechnen. Der mittlere Term von \eqref{buch:graphen:eqn:frame} ist \[ -\|h(I) v\|^2 +\|h(L) v\|^2 + -\sum_{i} \|g_i(I)v\|^2, +\sum_{i} \|g_i(L)v\|^2, \] die durch die Funktion \[ -- cgit v1.2.1