From 2db90bfe4b174570424c408f04000902411d8755 Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Mon, 12 Apr 2021 21:51:55 +0200 Subject: update to current state of book --- buch/chapters/70-graphen/wavelets.tex | 250 +++++++++++++++++----------------- 1 file changed, 125 insertions(+), 125 deletions(-) (limited to 'buch/chapters/70-graphen/wavelets.tex') diff --git a/buch/chapters/70-graphen/wavelets.tex b/buch/chapters/70-graphen/wavelets.tex index 9c88c08..26a9e42 100644 --- a/buch/chapters/70-graphen/wavelets.tex +++ b/buch/chapters/70-graphen/wavelets.tex @@ -1,125 +1,125 @@ -% -% wavelets.tex -- Wavelets auf Graphen -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Wavelets auf Graphen -\label{buch:section:wavelets-auf-graphen}} -\rhead{Wavelets auf Graphen} -In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis} wurde -gezeigt dass die Standardbasis den Zusammenhang zwischen den einzelnen -Teilen des Graphen völlig ignoriert, während die Eigenbasis Wellen -beschreibt, die mit vergleichbarer Amplitude sich über den ganzen -Graphen entsprechen. -Die Eigenbasis unterdrückt also die ``Individualität'' der einzelnen -Knoten fast vollständig. - -Wenn man einen Standardbasisvektor in einem Knoten $i$ -als Anfangstemperaturverteilung verwendet, erwartet man eine Lösung, -die für kleine Zeiten $t$ die Energie immer in der Nähe des Knotens $i$ -konzentriert hat. -Weder die Standardbasis noch die Eigenbasis haben diese Eigenschaft. - -\subsection{Vergleich mit der Wärmeleitung auf $\mathbb{R}$} -Ein ähnliches Phänomen findet man bei der Wärmeausbreitung gemäss -der partiellen Differentialgleichung -\[ -\frac{\partial T}{\partial t} = -\kappa \frac{\partial^2 T}{\partial x^2}. -\] -Die von Fourier erfundene Methode, die Fourier-Theorie, verwendet die -Funktionen $e^{ik x}$, die Eigenvektoren der zweiten Ableitung -$\partial^2/\partial x^2$ sind. -Diese haben das gleiche Problem, der Betrag von $e^{ikx}$ ist $1$, die -Entfernung von einem Punkt spielt überhaupt keine Rolle. -Die Funktion -\[ -F(x,t) -= -\frac{1}{\sqrt{4\pi\kappa t}}e^{-x^2/4\kappa t} -\] -ist eine Lösung der Wärmeleitungsgleichung mit einem Maximum an -der Stelle $0$. -Sie heisst die Fundamentallösung der Wärmeleitungsgleichung. -Durch Überlagerung von Translaten in eine Funktion -\begin{equation} -f(x,t) -= -\int_{-\infty}^\infty f(\xi) F(x-\xi,t)\,d\xi -\label{buch:graphen:eqn:fundamentalueberlagerung} -\end{equation} -kann man die allgemeine Lösung aus Fundamentallösungen zusammensetzen. -Die Fundamentallösungen $f(x-\xi,t)$ sind für kleine Zeiten immer noch -deutlich in einer Umgebung von $\xi$ konzentriert. - -% XXX Ausbreitung der Fundamentallösung illustrieren -\begin{figure} -\centering -\includegraphics{chapters/70-graphen/images/fundamental.pdf} -\caption{Vergleich der verschiedenen Funktionenfamilien, mit denen -Lösungenfunktionen durch Linearkombination erzeugt werden können. -In der Standarbasis (links) ist es am einfachsten, die Funktionswerte -abzulesen, in der Eigenbasis (Mitte) kann die zeitliche Entwicklung -besonders leicht berechnet werden. -Dazuwischen liegen die Fundamentallösungen (rechts), die eine einigermassen -übersichtliche Zeitentwicklung haben, die Berechnung der Temperatur an -einer Stelle $x$ zur Zeit $t$ ist aber erst durch das Integral -\eqref{buch:graphen:eqn:fundamentalueberlagerung} gegeben. -\label{buch:graphen:fig:fundamental}} -\end{figure} - -\subsection{Fundamentallösungen auf einem Graphen} -Die Wärmeleitungsgleichung auf einem Graphen kann für einen -Standardbasisvektor mit Hilfe der -Lösungsformel~\eqref{buch:graphen:eqn:eigloesung} -gefunden werden. -Aus physikalischen Gründen ist aber offensichtlich, dass die -Wärmeenergie Fundamentallösungen $F_i(t)$ für kurze Zeiten $t$ -in der Nähe des Knoten $i$ konzentriert ist. -Dies ist aber aus der expliziten Formel -\begin{equation} -F_i(t) -= -\sum_{j=1}^n \langle f_j,e_i\rangle e^{-\kappa \lambda_i t} f_j -= -\sum_{j=1}^n \overline{f}_{ji} e^{-\kappa \lambda_i t}, -\label{buch:graphen:eqn:fundamentalgraph} -\end{equation} -nicht unmittelbar erkennbar. - -Man kann aber aus~\eqref{buch:graphen:eqn:fundamentalgraph} ablesen, -dass für zunehmende Zeit die hohen Frequenzen sehr schnell gedämpft -werden. -Die hohen Frequenzen erzeugen also den scharfen Peak für Zeiten nahe -beim Knoten $i$, die zu kleineren $\lambda_i$ beschreiben die Ausbreitung -über grössere Distanzen. -Die Fundamentallösung interpoliert also in einem gewissen Sinne zwischen -den Extremen der Standardbasis und der Eigenbasis. -Die ``Interpolation'' geht von der Differentialgleichung aus, -sie ist nicht einfach nur ein Filter, der die verschiedenen Frequenzen -auf die gleiche Art bearbeitet. - -Gesucht ist eine Methode, eine Familie von Vektoren zu finden, -aus der sich alle Vektoren linear kombinieren lassen, in der aber -auch auf die für die Anwendung interessante Längenskala angepasste -Funktionen gefunden werden können. - -\subsection{Wavelets und Frequenzspektrum} -Eine Wavelet-Basis der Funktionen auf $\mathbb{R}$ zerlegt - - -\subsection{Frequenzspektrum -\label{buch:subsection:frequenzspektrum}} -Die Fundamentallösung der Wärmeleitunsgleichung haben ein Spektrum, welches -wie $e^{-k^2}$ gegen $0$ geht. - -Die Fundamentallösung entsteht dadurch, dass die hohen Frequenzen -schneller dämpft als die tiefen Frequenzen. - - -\subsection{Wavelet-Basen -\label{buch:subsection:}} - - - - - +% +% wavelets.tex -- Wavelets auf Graphen +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Wavelets auf Graphen +\label{buch:section:wavelets-auf-graphen}} +\rhead{Wavelets auf Graphen} +In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis} wurde +gezeigt dass die Standardbasis den Zusammenhang zwischen den einzelnen +Teilen des Graphen völlig ignoriert, während die Eigenbasis Wellen +beschreibt, die mit vergleichbarer Amplitude sich über den ganzen +Graphen entsprechen. +Die Eigenbasis unterdrückt also die ``Individualität'' der einzelnen +Knoten fast vollständig. + +Wenn man einen Standardbasisvektor in einem Knoten $i$ +als Anfangstemperaturverteilung verwendet, erwartet man eine Lösung, +die für kleine Zeiten $t$ die Energie immer in der Nähe des Knotens $i$ +konzentriert hat. +Weder die Standardbasis noch die Eigenbasis haben diese Eigenschaft. + +\subsection{Vergleich mit der Wärmeleitung auf $\mathbb{R}$} +Ein ähnliches Phänomen findet man bei der Wärmeausbreitung gemäss +der partiellen Differentialgleichung +\[ +\frac{\partial T}{\partial t} = -\kappa \frac{\partial^2 T}{\partial x^2}. +\] +Die von Fourier erfundene Methode, die Fourier-Theorie, verwendet die +Funktionen $e^{ik x}$, die Eigenvektoren der zweiten Ableitung +$\partial^2/\partial x^2$ sind. +Diese haben das gleiche Problem, der Betrag von $e^{ikx}$ ist $1$, die +Entfernung von einem Punkt spielt überhaupt keine Rolle. +Die Funktion +\[ +F(x,t) += +\frac{1}{\sqrt{4\pi\kappa t}}e^{-x^2/4\kappa t} +\] +ist eine Lösung der Wärmeleitungsgleichung mit einem Maximum an +der Stelle $0$. +Sie heisst die Fundamentallösung der Wärmeleitungsgleichung. +Durch Überlagerung von Translaten in eine Funktion +\begin{equation} +f(x,t) += +\int_{-\infty}^\infty f(\xi) F(x-\xi,t)\,d\xi +\label{buch:graphen:eqn:fundamentalueberlagerung} +\end{equation} +kann man die allgemeine Lösung aus Fundamentallösungen zusammensetzen. +Die Fundamentallösungen $f(x-\xi,t)$ sind für kleine Zeiten immer noch +deutlich in einer Umgebung von $\xi$ konzentriert. + +% XXX Ausbreitung der Fundamentallösung illustrieren +\begin{figure} +\centering +\includegraphics{chapters/70-graphen/images/fundamental.pdf} +\caption{Vergleich der verschiedenen Funktionenfamilien, mit denen +Lösungenfunktionen durch Linearkombination erzeugt werden können. +In der Standarbasis (links) ist es am einfachsten, die Funktionswerte +abzulesen, in der Eigenbasis (Mitte) kann die zeitliche Entwicklung +besonders leicht berechnet werden. +Dazuwischen liegen die Fundamentallösungen (rechts), die eine einigermassen +übersichtliche Zeitentwicklung haben, die Berechnung der Temperatur an +einer Stelle $x$ zur Zeit $t$ ist aber erst durch das Integral +\eqref{buch:graphen:eqn:fundamentalueberlagerung} gegeben. +\label{buch:graphen:fig:fundamental}} +\end{figure} + +\subsection{Fundamentallösungen auf einem Graphen} +Die Wärmeleitungsgleichung auf einem Graphen kann für einen +Standardbasisvektor mit Hilfe der +Lösungsformel~\eqref{buch:graphen:eqn:eigloesung} +gefunden werden. +Aus physikalischen Gründen ist aber offensichtlich, dass die +Wärmeenergie Fundamentallösungen $F_i(t)$ für kurze Zeiten $t$ +in der Nähe des Knoten $i$ konzentriert ist. +Dies ist aber aus der expliziten Formel +\begin{equation} +F_i(t) += +\sum_{j=1}^n \langle f_j,e_i\rangle e^{-\kappa \lambda_i t} f_j += +\sum_{j=1}^n \overline{f}_{ji} e^{-\kappa \lambda_i t}, +\label{buch:graphen:eqn:fundamentalgraph} +\end{equation} +nicht unmittelbar erkennbar. + +Man kann aber aus~\eqref{buch:graphen:eqn:fundamentalgraph} ablesen, +dass für zunehmende Zeit die hohen Frequenzen sehr schnell gedämpft +werden. +Die hohen Frequenzen erzeugen also den scharfen Peak für Zeiten nahe +beim Knoten $i$, die zu kleineren $\lambda_i$ beschreiben die Ausbreitung +über grössere Distanzen. +Die Fundamentallösung interpoliert also in einem gewissen Sinne zwischen +den Extremen der Standardbasis und der Eigenbasis. +Die ``Interpolation'' geht von der Differentialgleichung aus, +sie ist nicht einfach nur ein Filter, der die verschiedenen Frequenzen +auf die gleiche Art bearbeitet. + +Gesucht ist eine Methode, eine Familie von Vektoren zu finden, +aus der sich alle Vektoren linear kombinieren lassen, in der aber +auch auf die für die Anwendung interessante Längenskala angepasste +Funktionen gefunden werden können. + +\subsection{Wavelets und Frequenzspektrum} +Eine Wavelet-Basis der Funktionen auf $\mathbb{R}$ zerlegt + + +\subsection{Frequenzspektrum +\label{buch:subsection:frequenzspektrum}} +Die Fundamentallösung der Wärmeleitunsgleichung haben ein Spektrum, welches +wie $e^{-k^2}$ gegen $0$ geht. + +Die Fundamentallösung entsteht dadurch, dass die hohen Frequenzen +schneller dämpft als die tiefen Frequenzen. + + +\subsection{Wavelet-Basen +\label{buch:subsection:}} + + + + + -- cgit v1.2.1