From ac5d5a9f18fb6b3ef494ae51734feabed701a1f3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 11 Sep 2021 13:35:10 +0200 Subject: chapter 9 --- buch/chapters/70-graphen/wavelets.tex | 53 +++++++++++++++++++++-------------- 1 file changed, 32 insertions(+), 21 deletions(-) (limited to 'buch/chapters/70-graphen/wavelets.tex') diff --git a/buch/chapters/70-graphen/wavelets.tex b/buch/chapters/70-graphen/wavelets.tex index 2b9f29b..b11af3f 100644 --- a/buch/chapters/70-graphen/wavelets.tex +++ b/buch/chapters/70-graphen/wavelets.tex @@ -73,20 +73,21 @@ Standardbasisvektor mit Hilfe der Lösungsformel~\eqref{buch:graphen:eqn:eigloesung} gefunden werden. Aus physikalischen Gründen ist aber offensichtlich, dass die -Wärmeenergie Fundamentallösungen $F_i(t)$ für kurze Zeiten $t$ -in der Nähe des Knoten $i$ konzentriert ist. -Dies ist aber aus der expliziten Formel +Wärmeenergie der Fundamentallösungen $F_i(t)$ für kurze Zeiten $t$ +in der Nähe des Knotens $i$ konzentriert ist. +Dies ist aber aus der Fourier-Entwicklung \begin{equation} F_i(t) = -\sum_{j=1}^n \langle f_j,e_i\rangle e^{-\kappa \lambda_i t} f_j +\sum_{j=1}^n \langle \chi_j,e_i\rangle e^{-\kappa \lambda_i t} \chi_j = \sum_{j=1}^n \overline{f}_{ji} e^{-\kappa \lambda_i t}, \label{buch:graphen:eqn:fundamentalgraph} \end{equation} nicht unmittelbar erkennbar. -Man kann aber aus~\eqref{buch:graphen:eqn:fundamentalgraph} ablesen, +Man kann aber aus~\eqref{buch:graphen:eqn:fundamentalgraph} +wenigstens ablesen, dass für zunehmende Zeit die hohen Frequenzen sehr schnell gedämpft werden. Die hohen Frequenzen erzeugen also den scharfen Peak für Zeiten nahe @@ -115,7 +116,7 @@ Die Darstellung im Frequenzraum und in der Zeit sind also extreme Darstellungen, entweder Frequenzlokalisierung oder zeitliche Lokalisierung ermöglichen, sich aber gegenseitig ausschliessen. -\subsubsection{Dilatation} +\subsubsection{Dilatation im Frequenzraum, spektrale Dilatation} Eine Wavelet-Basis für die $L^2$-Funktionen auf $\mathbb{R}$ erlaubt eine Funktion auf $\mathbb{R}$ auf eine Art zu analysieren, die eine ungenaue zeitliche Lokalisierung bei entsprechend ungenauer @@ -140,7 +141,7 @@ Graphen gibt es keine Rechtfertigung für diese spezielle Wahl von Streckungsfaktoren mehr. Es stellt sich daher die Frage, ob man für eine beliebige Menge \( -T= \{ t_1,t_2,\dots\} \} +T= \{ t_1,t_2,\dots\} \) von Streckungsfaktoren eine Familie von Funktionen $\chi_j$ zu finden derart, dass man sich die $\chi_j$ in einem gewissen Sinn als aus @@ -164,14 +165,14 @@ Menge von reellen Zahlen ohne innere algebraische Struktur ist. \centering \includegraphics{chapters/70-graphen/images/gh.pdf} \caption{Lokalisierungsfunktion $g(\lambda)$ für die Dilatation (links). -Die Dilatierten Funktionen $g_i=\tilde{D}_{1/a_i}g$ lokalisieren +Die dilatierten Funktionen $g_i=\tilde{D}_{1/a_i}g$ lokalisieren die Frequenzen jeweils um die Frequenzen $a_i$ im Frequenzraum. Der Konstante Vektor ist vollständig delokalisiert, die Funktion $h$ in der rechten Abbildung entfernt die hohen Frequenzen und liefert Funktionen, -die in der Umgebung eines Knotens wie die Konstante Funktion aussehen. +die in der Umgebung eines Knotens wie die konstante Funktion aussehen. \label{buch:graphs:fig:lokalisierung}} \end{figure} -Das Mutter-Wavelet einer Wavelet-Analyse zeichnet definiert, in welchem Mass +Das Mutter-Wavelet einer Wavelet-Analyse definiert, in welchem Mass sich Funktionen im Orts- und im Frequenzraum lokalisieren lassen. Die Standardbasis der Funktionen auf einem Graphen repräsentieren die perfekte örtliche Lokalisierung, Eigenbasis der Laplace-Matrix $L$ repräsentiert @@ -181,8 +182,8 @@ $\lambda\to\infty$ rasch abfällt mit einem Maximum irgendwo dazwischen (Abbildung~\ref{buch:graphs:fig:lokalisierung}). Sie kann als eine Lokalisierungsfunktion im Frequenzraum betrachtet werden. -Die Matrix $g(L)$ bildet entfernt aus einer Funktion die ganz hohen und -die ganz tiefen Frequenz, lokalisiert also die Funktionen im Frequenzraum. +Die Matrix $g(L)$ entfernt die ganz hohen und die ganz tiefen Frequenz +aus einer Funktion, lokalisiert also die Funktionen im Frequenzraum. Die Standardbasisvektoren werden dabei zu Funktionen, die nicht mehr nur auf einem Knoten von $0$ verschieden sind, aber immer noch einigermassen auf dem Graphen lokalisiert sind. @@ -191,7 +192,7 @@ $\lambda_0 < \lambda_1\le \dots\le \lambda_n$ der Laplace-Matrix von Interesse. Die Matrix $g(L)$ kann mit Hilfe der Spektraltheorie berechnet werden, -was im vorliegenden Fall naheliegend ist, weil ja die Eigenvektoren von +was im vorliegenden Fall naheliegend ist, weil ja die Eigenvektoren der Laplace-Matrix bereits bekannt sind. Die Matrix $\chi^t$ bildet die Standardbasisvektoren in die Eigenbasis-Vektoren ab, also in eine Zerlegung im Frequenzraum ab, @@ -211,7 +212,7 @@ g(\lambda_0)&0&\dots&0\\ \label{buch:graphen:eqn:mutterwavelet} \end{equation} -\subsubsection{Dilatation} +\subsubsection{Spektrale Dilatation der Mutterwavelets} Die Dilatation um $a$ im Ortsraum wird zu einer Dilatation um $1/a$ im Frequenzraum. Statt also nach einer echten Dilatation der Spaltenvektoren in $g(L)$ @@ -266,12 +267,20 @@ h(L) + \sum_{i}g_i(L)=I gelten würde. Nach der Spektraltheorie gilt das nur, wenn für alle Eigenwerte $\lambda_k$, $k=1,\dots,n$ -\[ +\begin{equation} h(\lambda_k) + \sum_ig(a_i\lambda_k)=1 -\] +\label{buch:graphen:eqn:summegh} +\end{equation} gilt. -Für beliebige Funktionen $g$ und $h$ kann man nicht davon ausgehen, -aber man kann erwarten. + +Allerdings kann man im Allgemeinen nicht erwarten, +dass \ref{buch:graphen:eqn:summegh} für +beliebige Funktionen $g$ und $h$ gilt. +Da es aber nur auf die Werte auf den Eigenwerten ankommt, +muss nur sichergestellt sein, dass +die linke Seite von \eqref{buch:graphen:eqn:summegh} +nicht verschwindet. +Dies garantiert, dass die Wavelet-Entwicklung umkehrbar ist. Man muss daher zusätzlich verlangen, dass \[ h(\lambda_k) + \sum_{i} g(a_i\lambda_k) > 0 @@ -301,7 +310,7 @@ B\|v\|^2 Die Zahlen $A$ und $B$ heissen die {\em Frame-Konstanten} des Frames. \end{definition} -Die oben gefundenen Vektoren, die Spalten Vektoren von $h(L)$ und $g_i(L)$ +Die oben gefundenen Vektoren, die Spaltenvektoren von $h(L)$ und $g_i(L)$, bilden daher ein Frame. Die Frame-Konstanten kann man unmittelbar ausrechnen. Der mittlere Term von \eqref{buch:graphen:eqn:frame} ist @@ -318,12 +327,14 @@ h(\lambda)^2 + \sum_i g_i(\lambda)^2 \] abgeschätzt werden kann. Die Frame-Konstanten sind daher -\begin{align*} +\[ +\begin{aligned} A&=\min_{k} f(\lambda_k) & &\text{und}& B&=\max_{k} f(\lambda_k). -\end{align*} +\end{aligned} +\] Die Konstruktion hat also ein Frame für die Funktionen auf dem Graphen etabliert, die viele Eigenschaften einer Multiskalenanalyse in diese wesentlich weniger symmetrische Situation rettet. -- cgit v1.2.1