From d2fecb0eeb3854c999108aa224cdcd260bed7ef0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 22 Feb 2021 20:41:15 +0100 Subject: =?UTF-8?q?Beispiele=20von=20Basen=20f=C3=BCr=20Wavelets=20auf=20G?= =?UTF-8?q?raphen?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/chapters/70-graphen/wavelets.tex | 125 ++++++++++++++++++++++++++++++++++ 1 file changed, 125 insertions(+) (limited to 'buch/chapters/70-graphen/wavelets.tex') diff --git a/buch/chapters/70-graphen/wavelets.tex b/buch/chapters/70-graphen/wavelets.tex index 6a4876a..0739f14 100644 --- a/buch/chapters/70-graphen/wavelets.tex +++ b/buch/chapters/70-graphen/wavelets.tex @@ -6,3 +6,128 @@ \section{Wavelets auf Graphen \label{buch:section:wavelets-auf-graphen}} \rhead{Wavelets auf Graphen} +Graphen werden oft verwendet um geometrische Objekte zu approximieren. +Funktionen auf einem Graphen können dann Approximationen von physikalischen +Grössen wie zum Beispiel der Temperatur auf dem geometrischen Objekt +interpretiert werden. +Verschiedene Basen für die Beschreibung solcher Funktionen sind im Laufe +der Zeit verwendet worden, doch Wavelets auf einem Graphen sind eine +neuere Idee, mit der man aus der Laplace-Matrix Basen gewinnen kann, +die die Idee von langsam sich ausbreitenden Störungen besonders gut +wiederzugeben in der Lage sind. + +In diesem Abschnitt werden erst Funktionen auf einem Graphen genauer +definiert. +In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis} +wird die Eigenbasis mit dem Laplace-Operator konstruiert und mit +der Standarbasis verglichen. +Schliesslich werden in Abschnitt~\ref{buch:subsection:wavelet-basen} +verschiedene Wavelet-Basen konstruiert. + +\subsection{Funktionen auf einem Graphen und die Laplace-Matrix} +Sei $G$ ein Graph mit der Knotenmenge $V$. +Eine Funktion $f$ auf einem Graphen ist eine Funktion $f\colon V\to\mathbb{R}$. +Funktionen auf $G$ sind also Vektoren, die mit den Knoten $V$ indiziert +sind. + +Es gibt auch ein Skalarprodukt für Funktionen auf dem Graphen. +Sind $f$ und $g$ zwei Funktionen auf $G$, dann ist das Skalarprodukt +definiert durch +\[ +\langle f,g\rangle += +\frac{1}{|V|}\sum_{v\in V} \overline{f}(v) g(v) +\] +Dies ist das bekannte Skalarprodukt der Vektoren mit Komponenten $f(v)$. + +\begin{figure} +\centering +\includegraphics{chapters/70-graphen/images/kreis.pdf} +\caption{Beispiel Graph zur Illustration der verschiedenen Basen auf einem +Graphen. +\label{buch:graphen:fig:kreis}} +\end{figure} +\begin{beispiel} +Wir illustrieren die im folgenden entwickelte Theorie an dem Beispielgraphen +von Abbildung~\ref{buch:graphen:fig:kreis}. +Besonders interessant sind die folgenden Funktionen: +\[ +\left. +\begin{aligned} +s_m(k) +&= +\sin\frac{2\pi mk}{n} +\\ +c_m(k) +&= +\cos\frac{2\pi mk}{n} +\end{aligned} +\; +\right\} +\quad +\Rightarrow +\quad +e_m(k) += +e^{2\pi imk/n} += +c_m(k) + is_m(k). +\] +Das Skalarprodukt dieser Funktionen ist +\[ +\langle e_m, e_{m'}\rangle += +\frac1n +\sum_{k=1}^n +\overline{e^{2\pi i km/n}} +e^{2\pi ikm'/n} += +\frac1n +\sum_{k=1}^n +e^{\frac{2\pi i}{n}(m'-m)k} += +\delta_{mm'} +\] +Die Funktionen bilden daher eine Orthonormalbasis des Raums der +Funktionen auf $G$. +Wegen $\overline{e_m} = e_{-m}$ folgt, dass für gerade $n$ +die Funktionen +\[ +c_0, c_1,s_1,c_2,s_2,\dots c_{\frac{n}2-1},c_{\frac{n}2-1},c_{\frac{n}2} +\] +eine orthonormierte Basis. +\end{beispiel} + + +Die Laplace-Matrix kann mit der folgenden Definition zu einer linearen +Abbildung auf Funktionen auf dem Graphen gemacht werden. +Sei $f\colon V\to \mathbb{R}$ und $L$ die Laplace-Matrix mit +Matrixelementen $l_{vv'}$ wobei $v,v'\in V$ ist. +Dann definieren wir die Funktion $Lf$ durch +\[ +(Lf)(v) += +\sum_{v'\in V} l_{vv'}f(v'). +\] + +\subsection{Standardbasis und Eigenbasis +\label{buch:subsection:standardbasis-und-eigenbasis}} +Die einfachste Basis, aus der siche Funktionen auf dem Graphen linear +kombinieren lassen, ist die Standardbasis. +Sie hat für jeden Knoten $v$ des Graphen eine Basisfunktion mit den Werten +\[ +e_v\colon V\to\mathbb R:v'\mapsto \begin{cases} +1\qquad&v=v'\\ +0\qquad&\text{sonst.} +\end{cases} +\] + + +\subsection{Wavelet-Basen +\label{buch:subsection:wavelet-basen}} + + + + + + -- cgit v1.2.1